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Abstract 

The shock containing free jet emerging from a convergent-divergent nozzle with 

circular or elliptic shape at the exit has been investigated experimentally and theoretically. In 

the experimental investigation, the blowdown wind tunnel is used to generate a supersonic jet 

from round Laval nozzle with design Mach number of 1.5 followed by a cylindrical duct with 

an inner diameter of 10 𝑚𝑚, and length of 50 𝑚𝑚. Density measurements, and internal flow 

feature of the jet have been conducted using a rainbow schlieren deflectometry combined with 

the computed tomography to observe the three-dimensional structure of overexpanded and 

underexpanded jets. The effect of cylindrical duct on jet flow properties are examined. Contour, 

isopycnic visualizations and favorable flow characteristics of the cylindrical duct exit surface 

are also shown and discussed to compare the analytical results.  

In the theoretical analysis, a modified vortex sheet model taking viscosity into account 

has been proposed. The first Fourier mode of eigenvalues expansion, and recurrence relations 

with orthogonal properties of Bessel’s functions for circular jet and Mathieu functions for 

elliptic jet are executed to evaluate the explicit solution for inviscid and viscous jet respectively. 

The flow characteristics through convergent-divergent cylindric and elliptic nozzle such as 

centerline pressure and density, density contours, density mesh have been calculated for the 

inviscid and viscous jet separately. Comparing with the Tam’s and Emami et al. models, the 

results of modified model for both circular and elliptic jets are exhibited quantitatively good 

agreement with the rainbow schlieren deflectometry. The shock-cell spacing, and size 

measuring of elliptic jets have also been examined theoretically by aspect ratios (𝐴𝑅), nozzle 

pressure ratios (𝑁𝑃𝑅) and design Mach numbers (𝑀ௗ) arbitrarily and favorable output is shown 

in first time by comparing with the Rao’s experiment for 𝐴𝑅 ൌ 7.72. Finally, it has found that 

the modified elliptic model is presented more effective flow than the circular flow from their 

comparison. The calculated theoretical results may contribute to future investigate of the 

internal shock structure for large aspect scale, design of the advanced aircrafts with vessels, 

and so on where the effect of screech tones or noise, leakage, exhaustion, and plumes are 

momentous.  
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Nomenclature 

Variables Definition 

𝛼 : Mach angle  

𝑐 : speed of sound 

𝑒 : eccentricity  

ℎ : enthalpy 

𝑙 : perimeter 

𝑚 : mass 

𝑝 : pressure 

𝑞 : vector velocity 

𝑟 : polar radial axis 

𝛾 : specific heat ratio 

𝑡 : time 

𝜇 : dynamic viscosity 

𝑣 : specific volume 

𝜏 : shear stress 

𝑥 : Cartesian𝑥-axis 

𝑦 : Cartesian 𝑦-axis 

𝑧 : Cartesian 𝑧-axis 

𝜙 : velocity potential 

𝜌 : density 

𝜃 : azimuth/ polar angle 

𝜉 : elliptic confocal 

𝐴 : cross-sectional area  

𝛽 : volume expansion 

𝐶 : specific heat 

𝐷 : diameter 

𝛦 : bulk modulus of elasticity  

𝐸 : internal energy 

𝐹 : body force 

𝐺 : mass flow rate 
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𝐾 : coefficient of gas compressibility  

𝐿 : length 

𝑀 : Mach number 

𝑂 : center 

𝑃 : force potential 

𝑄 : total thermal energy per unit mass 

T : absolute temperature 

𝑈 : axis velocity 

𝑉 : velocity 

∆ : increment  

𝛻ത  : vector differential operator 

𝐴𝑅 : aspect ratio 

𝑅𝑒 : Reynolds number 

𝑁𝑃𝑅 : nozzle pressure ratio 

Subscripts 

𝑏 : ambient 

𝑑 : design 

𝑒 : nozzle exit 

𝑗 : fully expanded 

𝑚 : major  

𝑛 : minor 

𝑝 : constant pressure 

𝑠 : shock-cell spacing 

𝑡 : turbulent 

𝑣 : constant volume 

𝑒𝑞 : equivalent 

Superscripts 

* : critical condition 
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Chapter 1 

Introduction 

1.1 Background 

The advancement of underexpanded and overexpanded jet study is one of the most 

important research components in the contemporary globalization. This unprecedented 

innovation of momentum with the passage of time has brought existence to a unique height 

where the high-speed jets development is directly unified. A couple of well-known researchers 

have been doing their works on the supersonic jet flow over the years integrated with the shock 

structure particularly the presence of shock waves which all are based on the characteristics of 

compressibility. The effects such as jet exhaust, plumes, noise, screech tone, ignition, 

combustors associate to the characteristics of mixing promoting and thrust producing 

propulsive schemes having their potential applications in fluid mechanics, aerospace and 

aeronautic engineering, aerodynamics, and others technical sectors which are brought 

revolutionary advances. Especially, broadband shock associated noise is one of the instances 

of supersonic jet which is set at the interface of the shock-cell with the turbulent vortexes in 

the share layer and appeared as multiple crests on the far field spectra. At first, Harper-Bourne 

and Fisher [1] introduced such types of noise components for insight and forecasting of the 

intensity, spectrum and directivity of broadband shock associated noise. Later Tam [2] was 

also capable to predict the near and far field noise by the stochastic model for broadband shock 

associated noise. Reducing broadband shock associated noise and lucrative noise prediction 

methods are necessary to advance the jet exhaust systems for producing highly developed 

propulsive airframe engine of aeroacoustics engineering, because it can cause sonic fatigue 

failure. On the other hand, some control systems or operating condition needs refining to deal 
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the severity of these high-speed flows due to outflow of forced fluid or noxious leakage of 

gases as unintentional or misapplication sources and ballistic explosions with thermal diffusion 

as danger or lethal relevant reasons where the potentiality of mixing and propulsive is 

undeniable. The knowledge of risk prediction in each situation and link control of the overall 

structure of the jet can be compared with several physical parameters such studies referenced 

by Franquet et al. [3].  

Recently, the design and fabrication of a micro-electro-mechanical systems (MEMS) 

has been increased to analyze the characteristics of high-speed jet through the axisymmetric 

microscale devices (such as micro-orifices, micro-nozzle, micro-valves) and asymmetric 

microscale devices (such as micro-slot, micro-rectangle, micro-hexagon, micro-elliptic nozzle, 

and so on). It is noted that the structural variation of fine crevices, notches, rips, and coarsened 

surfaces along with the nozzle exit geometry is one of the major tools for causing jet vortex 

and turbulent mixing. The shape, size and structural mechanism of the nozzle are also the most 

key factors affecting the jet flow. This is because jets size and features vary due to the 

differences of nozzle characteristics. For example, the shock wave structure of a rectangular 

nozzle is formed from the corner of the nozzle exit which blows to downstream and the Mach 

reflection scene is apparent on the surface of the incident shock wave. Parallelly, the Mac disk 

is originated at the end of first cell. The shape of a Mac disk may be like a nozzle type, such as 

a square nozzle may produce square disk, round and elliptical nozzle would form circular and 

elliptical shape disk respectively and so on. Scroggs and Settles [4] first introduced 

axisymmetric nozzles that included a remarkable contribution in the supersonic microjets 

structures. Consequently, there are several experimental methods are qualitatively established 

in visualizing and analyzing the underexpanded supersonic jet flow, schlieren and 

shadowgraph optical techniques, Twyman-Green interferometry and Mach-Zehnder 

interferometry are one of them. These new optical setups [details in the section 1.3] including 

small satellite thruster in space engineering are effective by the microscale devices where mass-

flow rate at a low Reynolds number and micro-propulsion system are vital components for the 

investigation of noise and shock-cell structures referenced by [5, 6, 7]. Additionally, the 

appropriate portion of the large-scale mass of vortices entering and small-scale mass of vortices 

transporting on the flow field is the perfect mechanism of the mixing augmentation. The small-

scale mass transportation and mixing-promotion inherent characteristics are appeared 

simultaneously in non-circular nozzle due to the azimuthal asymmetry, whereas circular nozzle 
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is seen to be organized separately due to the axisymmetric studied inclusion from Kumar and 

Rathakrishnan [8]. 

The high-speedy free jets require a straightforward flow geometry, despite having the 

existence of turbulence and shock-cells decaying effects. It is good to know that the 

incompatibility of the nozzle outlet pressure and the ambient pressure at the off-design 

conditions is the reason to create supersonic jet comprises oblique shocks and expansion fans 

which are striking on the jet boundary as the quasi-periodic multi shock-cell structures. More 

clearly, a wave-series or waveguide of expansion-compression waves is formed and kept 

continuing to the ambient from the nozzle exits for recovering the mismatch of the static 

pressures. Tam et al. [9, 10], and Tam [11] were developed the Harper-Bourne and Fisher [1] 

progress by a multi-scales shock-cell model including the effects of slow jet propagation and 

turbulence attenuation. In fact, the turbulence, or supersonic schemes measurement with the 

advantage of mean flow properties is by far the most satisfactory of the inventions. Also, the 

turbulence structures of jet that mimics downstream and periodic waveguide modes and its 

permeability stimulates the turbulence blending progress at the wide range first introduced by 

Tam and Tanna [9]. Consequently, Morris and Miller [12] advanced a model through the 

average Reynolds average Navier-Stokes solution where required two parameters governing 

with the jet flow, nozzle pressure ratio and the total temperature ratio. They were explained the 

nozzle interior and exterior jet flow by the inbuilt two boundary conditions associated the 

nozzle geometry and ambient flow circumstances. Further, Kalyan and Karabasov [13] 

enhanced to predict the mixing noise, screech tone and broadband shock associated noise issued 

from axisymmetric and asymmetric convergent-divergent and convergent nozzle by their 

improved turbulence scale model. Usually at the lip region of convergent and convergent-

divergent nozzle, these types of flow behavior have long been observed by the reference of 

Love et al. [14].  

Apparently, the flow of underexpanded or overexpanded jet is influenced by the 

compressible properties of entire flow field. The effects of compressibility depend on the 

variation in density at high flow speed or substantial temperature changes, whereas the 

significant velocity changes yield substantial pressure variation. The theoretical advanced 

interests of the propulsive and mixing promotion yield into the pressure and density variation 

of axisymmetric and asymmetric underexpanded jets are increasing now. Because of 

authorized imperfectly expanded flow field of jet is analyzed by the various experimental 
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works where the axisymmetric and asymmetric nozzle are performed, rainbow schlieren 

deflectometry (RSD) [15] is one of the quantitative experiments. Although there are some 

studies of circular, rectangular, and elliptic supersonic jets that developed theoretically, Tam 

[16, 17] and Emami et al. [18] are one of them. Tam referred to as the vortex-sheet shock-cell 

model where the mixing layer of the jet is approximated by a discontinuous surface along the 

entire length of the circular, rectangular and elliptic jets, whereas Emami’s model was the 

linearized theory taking the mean Reynolds stresses into account of the fully expanded circular 

jet only. Perturbation conservation equations were solved by the eigenfunction expansion, and 

the first Fourier mode is considered for the simplicity in both cases. Additionally, the explicit 

solution with shock-cell structures analysis of axisymmetric and asymmetric jets were 

discussed in Tam’s model, but there has lack of explicit solution for the elliptic jets. Moreover, 

the theoretical understanding of circular and elliptic supersonic jet flow with 3D effect of jet 

boundary are one of the requirements now a days, despite having a quite bit of difficulties to 

analyze the shock-cell structures and shock-cell sizes due to their involuted phenomena and 

characteristics.  

1.2 Objectives 
The content of this thesis has been established basing on theoretical assumptions with 

the importance of shock containing jet flow where the kinematic and dynamic flow conditions 

must be employed. The first purpose is to establish a modified model for isentropic flow of 

fluid by extending the well-known Navier-Stokes equations where quiescent dry air and the 

Reynolds eddy viscosity is considered in the conservation of mass and momentum equations 

respectively. In momentum equation, the measured turbulent viscosity of Witzs [19] is 

modified for the fully developed jet by a variation term which makes a difference from the 

Tam’s [16, 17] and Emami’s [18] models. The isentropic energy equation is built up by 

considering the fully expanded speed of sound in terms of pressure changes due to density 

changes. In the boundary conditions, the change of pressure gradient due to downstream 

direction of flow is considered instead of velocity gradient where established other conditions 

are satisfied by the properties of dynamic and kinematic systems as well. Second purpose is to 

find the explicit solution of this modified model where the effects of eddy and without eddy 

are considered for the cylindrical and elliptic supersonic jet separately. Third purpose is to 

derive the density profile through the explicit solution of pressure for visualizing the centerline 

effects, contour effects and Mesh contour effects of shock containing for circular and elliptic 
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jet individually. Fourth purpose is to analyze the experimental results elaborately where the 

possible flow characteristics of round sonic jet are recognized by the rainbow schlieren pictures. 

Fifth, the calculated analytical results of circular and elliptic supersonic jets will have to 

compare with the Tam’s [16, 17], Emami’s [18] and the round jet data of rainbow schlieren 

experiment where the equivalent nozzle exit has to use for the validity of the modified model. 

Final wish is to develop the theories of fully expanded shock-cell size and shock-cell spacing 

through the nozzle exit diameter and compare with the experiment of Rao’s [20] data for 

checking the error tolerance between developed theories and published data. Additionally, the 

perturbation techniques and the mean flow properties are used to linearize the modified model. 

The fast Fourier mode of eigenvalues problem has deemed to solve the modified theories where 

the mixing layer consider as the vortex sheet surface of Tam’s [16, 17] concepts and mean 

Reynolds stress of Emami et al. [18] concepts are also taking into the account. The effects of 

arbitrary nozzle pressure ratios, arbitrary aspect ratios of nozzle exit geometry for elliptic jets, 

and arbitrary design Mach numbers are also provided sequentially to analyze the 3D density 

profile of shock-cell structures as a pioneer work. Though, the present elliptic analysis is rare 

significantly to compare with any reliable elliptic data either analytical or experimental, 

because lack of availability of verified references till now. Nevertheless, the results of elliptic 

jets help to future investigate of the internal shock structure for large aspect scale, design of the 

advanced aircrafts and vessels, increase the control system of conducting light gases, and so on 

where the effect of screech tones or noise, leakage, exhaustion, plumes are momentous.  

1.3   Literature Review 

The approach of using the analysis of underexpanded supersonic axisymmetric and 

asymmetric jets, reasonable accurate results may be possible to provide through the 

experimental and numerical works with mathematical simulations. To validate an analytical 

and computational model reliable experimental data are important. The availability of 

experimental data provides a scope to show stability of analytical results by comparing those 

results. The balance and compatibility equations for the compressible fluid representing a 

constitutive model that captures the characteristics of supersonic jets with laminar or turbulence 

shock waves suitably. As a laboratory experiment, the schlieren and shadowgraph techniques 

familiar with optical tools [21] have widely used earlier to understand and visualize the salient 

features of complex shock waves. The traditional schlieren strategies can visualize qualitative 
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flow because they require considerable effort to extract quantitative features. On the other hand, 

recent methods for quantitatively visualizing the field of jet density include laser-based 

interferometry such as Twyman-Green interferometry [22] and Mach-Zehnder interferometry 

[23, 24], or schlieren-based optical techniques such as background oriented Schlieren (BOS) 

[25], calibrated schlieren [26, 27], and rainbow schlieren deflectometry [28-30]. Among them, 

rainbow schlieren deflectometry measurement may be the easiest and effective optical system 

for quantitatively measuring the jet density field. The rainbow schlieren deflection 

measurement method is a variant but different from the conventional schlieren such as 

grayscale schlieren with knife edges and color schlieren with tricolor filters [21, 30] in that it 

can capture density field of flow with variable refractive index. In addition, rainbow schlieren 

deflectometry can be combined with computer tomography to measure the density field of 3D 

free jets [28]. A comprehensive and detailed review of the rainbow schlieren method is 

presented by Agarwal et al. [31] where includes theoretical and numerical algorithms, system 

design criteria, hardware setup, rainbow calibration, and density measurement methods. The 

leek peeler nozzle jets in rainbow schlieren deflectometry method has been carried out by Ezoe 

et al. [32] to improve nozzle peeling efficiency and explore a new nozzle with a higher 

removable potential for peeling leeks than the traditional nozzles. These newly invented 

nozzles are able to present complex issues such as noise associated screech tone frequency, 

turbulence scale of exhausted jet, expansion-compression waves, variation of density by 

analyzing the inside and outside features of the underexpanded or overexpanded flow. 

Early working with high velocity jets, Powell [33] was the first to visualize data on the 

sound field and physical phenomenon of rectangular chocked jets by shadowgraph technique. 

The high-intensity discrete-frequency acoustic noise referred to as the screech tone was the 

crucial clue of Powel. Hammitt [34] also kept some contribution to measure the oscillating jet 

and sound fields in terms of the length of the shock-wave cells. The progress of theoretical 

assessment for measuring the shock cell structure and wavelength as well as shock-cell spacing 

of an imperfectly underexpanded supersonic jet issuing from orifice with the velocity of sound 

launched with the search of Prandtl [35]. He considered the velocity of efflux as the mean 

velocity and estimated the wavelength by using the slightly perturbated first term solution. 

Though his work based on the Emden’s experimental results [36] where the used jets (air, 

carbon dioxide and hydrogen) exhibited approximated periodic structure known as wavelength 

for the first time. Successively, a linearized velocity potential equation derived from Euler 

equation of motion for compressible inviscid underexpanded jet was solved by Pack [37]. He 
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explored that the wavelength was expressed in terms of the mean velocity of the jet. He also 

modified the mean velocity of cylindrical jets as the bounding streamlines, but not the velocity 

of efflux which was the main difference from Prandtl model [35]. Satisfactory agreement was 

found by Pack’s correction which is known as vortex sheet shock-cell model. Subsequent, the 

linearized pressure perturbation problems promoted as shock-cell noise problem was solved 

and developed by Tam [16] and Howe and Ffowcs-williams [38] respectively. Later, a 

numerical model of turbulent axisymmetric jet was developed by Seiner et al. [39] where they 

added eddy viscosity at first time in the governing equations. After few of research on the 

inviscid jet flow and shock feature, the characteristic of underexpanded screeching jet was used 

to determine the shock oscillation by the linearized solution of Panda [40]. However, all the jet 

flow model exhibits simple flow geometry and effective at near shock-cell, but there has lack 

of clear concept about later shock-cells. Further, Emami et al. [18] provided an analytical 

solution of under/over expanded turbulent supersonic jet by extending the Navier-Stokes 

equation where the mean Reynolds stress was considered. In their developed model, the Favre-

averaged continuity and momentum equations for turbulence were used but neglected 

molecular viscous terms. The obtained outcomes were compared with inviscid experimental 

data, there has absent viscous comparison.  

Shock-containing jets from elliptic nozzles exhibit significant flow features relative to 

round nozzles. Gutmark et al. [41] compared the mixing characteristics between the circular, 

elliptic and rectangular underexpanded jets and found that the elliptic and rectangular jets have 

a higher spreading rate when compared to the circular jet, especially at the minor axis plane. 

Kinzie and McLaughlin [42] compared aeroacoustics properties of supersonic round and 

elliptic jets and showed that elliptic jets radiate less noise than the round jet at comparable 

operating conditions. Menon and Skews [43] investigated the near-field shock structures of 

underexpanded sonic jets from square, rectangular, slot, and elliptic nozzles by the grey scale 

schlieren technique and Reynolds-averaged Navier-Stokes (RANS) simulations. Mitchell et al. 

[44] acquired the velocity fields and turbulent statics of underexpanded jets from a convergent 

nozzle with an aspect ratio of 2 at the exit using planar particle image velocimetry (PIV). 

Kumar and Rathakrishnan [8] obtained flow characteristics of supersonic jets from a design 

Mach number of 2 with an aspect ratio of 2 by Pitot probe measurements along the jet centerline 

and shadowgraph technique. Kalyan and Karabasov [13] proposed a new flow model to predict 

the broadband shock associated noise from axisymmetric and asymmetric jets and found that 

for the same thrust conditions, the elliptical nozzles lead to noise reduction at the source in 
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comparison with the corresponding axisymmetric jets. In addition, they showed that the area 

ratio (AR) of the major to minor axis dimensions at the exit of an elliptic nozzle increases, the 

number of shock-cells and their width reduces. Li et al [45] investigated flow characteristics of 

highly underexpanded jets from four different nozzles with the circular, square, rectangular, 

and elliptic shapes at the nozzle exit by the large eddy simulation (LES). They showed that the 

circular and square jets both correspond to a three-dimensional helical instability mode, while 

the elliptic and rectangular jets have two-dimensional flapping instability in their minor axis 

planes. 

1.4 Construction of the Thesis 

The present study is constructed by five chapters. Chapter 1 is allocated to the discussion 

of axisymmetric and asymmetric high-speed jets flow background and main objectives of this 

study with their important usages. Further, a literature review of the circular, rectangular and 

elliptic supersonic jet has been discussed through the authentic referenced papers. Lastly, 

chapter wise constructive summery is included to gather overall idea about the thesis.  

In Chapter 2, some fundamental concepts with related definitions are discussed to 

understand the flow features, governing equations of motion and the characteristics of scalar 

and vector quantities of compressible fluid flow. Various flow configurations based on nozzle 

shapes have also been sketched to get the clear concept of such complex phenomena with 

behavior of supersonic flow. 

 Chapter 3 is titled by the Shock Containing Circular Jet. In the first section, the jet from 

a round Laval nozzle with a design Mach number of 1.5 followed by a cylindrical duct with an 

inner diameter of 10 𝑚𝑚 and a length of 50 𝑚𝑚 is investigated experimentally. Quantitative 

flow visualization of the jet issued from the duct exit is performed over a range of nozzle 

pressure ratios from 2.0 ~ 4.5 using the rainbow schlieren deflectometry combined with the 

computed tomography to investigate the jet three-dimensional structure. The flow features of 

the near-field shock systems in the jets are displayed with the density contour plot at the cross-

section including the jet centerline. Effects of the nozzle pressure ratio on the density profile 

along the jet centerline are clarified quantitatively. In addition, a comparison between the 

present experiment and the previous one with a conventional Laval nozzle for jet centerline 

density profiles is carried out to examine the effect of the cylindrical duct. Furthermore, the 

three-dimensional structures of overexpanded and underexpanded jets are demonstrated with 



-17- 
 

the isopycnic surfaces to visualize the internal flow features. In the second section, a modified 

model of high-speed jet has to form where the turbulent viscosity [18] is considered and 

linearize by the assumptions of mean value properties with perturbation techniques. At the off-

design condition of axisymmetric convergent divergent nozzle, the explicit solutions of 

normalized pressure and density profile have been derived for the fully expanded inviscid and 

viscous jet separately, where the mixing layer of the jets are approximated by the discontinuous 

surfaces along the entire length of the jet’s idea linked with [16]. A quantitative comparison 

among the evaluated analytical results with the rainbow schlieren experiment, Tam’s [16] 

theory and Emami’s [18] theory has been constructed by the centerline density curves, contours 

of density profiles and Mesh plots with contour plots.  In the final section, a very good 

promising conclusion is constructed about the proposed modified models and it’s explicit 

solutions where the solution of inviscid jet is followed completely by the Tam’s [16] model 

and the solution of turbulent viscous jet is shown the better agreements with the RSD 

experiment rather than Emami et al. [18] model. In the comparison section, the molecular 

interactions are neglected and the turbulent viscosity of Witz’s [19] measure is modified by a 

variation term for the best fitting of the analytical results with the experiment upon the jet axis.  

In Chapter 4, a theoretical analysis of supersonic elliptic jets has been constructed by 

employing the modified model of Chapter 3 to elliptic co-ordinates system, exploring the 

explicit solutions of pressure as well as density profile, and developing size and spacing 

formulas of shock-cell structures of Tam’s [17] theories.  In this section, the fully developed 

free jet is produced from the convergent-divergent asymmetric nozzle at exit elliptic cross-

section under the off-design conditions where a mixing layer is replaced by thin vortex sheet 

with assumption of the inviscid flow inside the jet layer same as Tam’s [16, 17] models. A 

downstream multi-shocks structure with periodic elliptic expansion and compression waves 

are developed where the maximum 25 expansion coefficients of Mathieu function has been 

considered in the MATLAB scripts first time. The fast Fourier mode of eigenvectors is used 

for the straightforward flow feature on the near shock-cell of nozzle exit. Further, the effects 

of major and minor axis planes of elliptic jet flow parameters are provided for the first time 

due to the arbitrary nozzle pressure ratios, aspect ratios, and design Mach numbers on the 

shock-cell structure. Additionally, the centerline density, contours, and mesh contours of fully 

expanded jet satisfied by the appropriate kinematic and dynamic boundary conditions have 

been measured and analyzed with the circular jet theories and experiment. Very favorable 

hypothetical results are found for the shock-cell spacings with Rao’s [20] experimental result. 
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At the last part, a comprehensive analysis with conclusion is written as a pioneer work. A 

prominent quantitative output of fully expanded elliptic jet has been discussed and analyzed by 

theoretically and graphically with the arbitrary nozzle pressure ratios, arbitrary aspect ratios, 

and arbitrary design Mach numbers for the first time. From the comparison of elliptic and 

circular canonical filed of shock containing jet, it is found that the elliptic jet exhibits better 

output than the circular jets, though the experimental results of round nozzle have been 

presented as a criterion in the comparison where the circular exit diameter is considered as an 

equivalent diameter in the elliptic jet for the betterment of the investigation.  

In Chapter 5, a comprehensive conclusion of this study has been included for 

understanding the present work and feasibilities of further investigations. It is mentionable that 

the present analytical results of elliptic supersonic jet haven’t compared directly to any data 

either theoretical or experimental because lack of available reliable references into the domain. 

Though, the newly investigated result may help, associate, and contribute some qualitative 

information significantly to increase and develop the knowledge of the high-speed jet flow 

field, especially in broadband shock associate noise prediction, reducing screech tones, jet 

mixing promotion matter and thrust propulsive systems. Finally, the studied journals, 

proceedings, symposiums, books and used links are listed into the Reference section. 
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Chapter 2 

Basic Principles of Compressible Flow 

2.1 Introduction  

The compressible fluid flow causes variation in density pertaining to the gas dynamics 

because of compressibility effect. In favor of this concepts, gases (oxygen, helium, nitrogen, 

carbon dioxide, and so no) are treated as the compressible fluid. Variation in density arises 

considerably owing to large scale changes in pressure and temperature. Though, the large-scale 

pressure changes depend on the large-scale velocity changes of fluid. There is no doubt that 

the studies involving with the mechanics, aerodynamics, chemical kinetics, and 

thermodynamics where consider the compressibility effect have often been employing the basic 

concerns and principles on gas dynamics.  

The basic principles and definitions that underlie the theoretical basis for the analysis 

of supersonic gas flow are the main assessments in this chapter.  The analysis of gas dynamic 

problem concerns with the compressible fluid flow is based on the interrelationships among 

the below mentioned laws are referenced from [46, 47]: 

(i). The law of conservation of mass.  

(ii). Newton’s second law of motion.  

(iii). The first law of thermodynamics.  

(iv). The second law of thermodynamics.  
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It is universally acknowledged that these laws are independent according to the 

principles of flowing fluid or flow process. Whereas the requirements of flow are fulfilled by 

the law of conservation of mass which is conveying the physical interpretation of the equation 

of continuity in the flow model. Newton’s second law of motion can be described the kinetic 

and dynamic effects of fluid flow through the inertia frame which is referred as the momentum 

equation entire the governing form. The first law of thermodynamics states that the principle 

of the conservation of energy which is defined as the energy equation. And the second law of 

thermodynamics relates with heat interaction and irreversibility which is known as the entropy 

equation in the mathematical model of compressible fluid flow. 

2.2 Summaries of Thermodynamic Contents 

The following concepts, definitions, and relations of compressible fluid flow are 

referenced from [47, 48]. 

2.2.1 Ideal Gas 

If the molecules of a gas have negligible volume and apparently there has no mutual 

attraction of molecules, then such gas is called ideal gas or perfect gas. Oxygen (𝑂ଶ), hydrogen 

(𝐻ଶ), nitrogen (𝑁ଶ), carbon dioxide (𝐶ଶ𝑂), helium (He), and so on are the ideal gases. 

2.2.2 Specific Volume 

The volume which is captured by the unit mass of a gas, is defined as the specific 

volume, and denoted by 𝑣. Another way, the specific volume 𝑣  is the reciprocal of the density 

𝜌. The following expression can be written for the specific volume 𝑣, 

𝑣 ൌ 1/𝜌. (2.1)

2.2.3 Equation of State  

The well-known equation of state for ideal compressible fluid can be defined by the 

following relation among the absolute pressure 𝑝, specific volume 𝑣, specific gas constant of a 

particular gas 𝑅 and the absolute temperature 𝑇 which obey the perfect gas law, 
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𝑝𝑣 ൌ 𝑅𝑇. (2.2)

Using Eq. (2.1), then Eq. (2.2) becomes,  

𝑝 ൌ 𝜌𝑅𝑇, (2.3)

At the atmospheric air, the gas constant 𝑅 is considered 287.04 J/kg-K for the convenience. On 

the other hand, the ambient pressure 𝑝௕ is 101.325 ൈ 10ଷ Pa and the ambient temperature 𝑇௕ 

is 295 K. It is good to know that used all the components are measured in absolute scale. 

2.2.4 Specific Heat  

If the amount of heat required to raise the temperature of a unit mass of a gas by one 

degree, then the system is defined as specific heat of a gas which is denoted by 𝐶. The following 

expression can be written for the specific heat, 

𝐶 ൌ ሺ𝜕𝑄/𝜕𝑇ሻ (2.4)

where, 𝛿𝑄 is the amount of heat required to raise the temperature 𝛿𝑇. The constant volume 

process and the constant pressure process are the two well-known process to evaluate the 

specific heat of a gas. The following mathematical symbols are required to express such 

process: 

Specific heat at constant volume, 𝐶௩ ൌ ሺ𝜕𝑄/𝜕𝑇ሻ௩ (2.5)

Specific heat at constant pressure, 𝐶௣ ൌ ሺ𝜕𝑄/𝜕𝑇ሻ௣ (2.6)

2.2.5 Volume expansion, Compressibility and Bulk Modulus of Elasticity 

With the presence of shearing forces, the continuous deformation is exhibited by fluids. 

The gas is the perfect example of compressible fluid which shows the density ሺ𝜌ሻ changes with 

the changes of pressure ሺ𝑝ሻ and temperature ሺ𝑇ሻ. So, the total density changes  ሺ𝑑𝜌ሻ can be 

expressed as the following way, 

    𝑑𝜌/𝜌 ൌ ሺ1/𝜌ሻ ൈ ሺ𝜕𝜌/𝜕𝑇ሻ௣𝑑𝑇 ൅ ሺ1/𝜌ሻ ൈ ሺ𝜕𝜌/𝜕𝑝ሻ்𝑑𝑝. (2.7)

Using Eq. (2.1), the total volume changes  ሺ𝑑𝑣ሻ can be evaluated as: 
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    𝑑𝑣/𝑣 ൌ ሺ1/𝑣ሻ ൈ ሺ𝜕𝑣/𝜕𝑇ሻ௣𝑑𝑇 ൅ ሺ1/𝑣ሻ ൈ ሺ𝜕𝑣/𝜕𝑝ሻ்𝑑𝑝. (2.8)

Now at the constant pressure, the comparative change in volume (or density) produced by an 

infinitesimal change of temperature is called the coefficient of volume expansion 𝛽 as, 

     𝛽 ൌ ሺ1/𝑣ሻ ൈ ሺ𝜕𝑣/𝜕𝑇ሻ௣ ൌ െሺ1/𝜌ሻ ൈ ሺ𝜕𝜌/𝜕𝑇ሻ௣. (2.9)

Similarly, at the constant temperature or isothermal process, the comparative change in volume 

(or density) produced by an infinitesimal change of pressure can be defined as the coefficient 

of gas compressibility ሺ𝐾ሻ as  

     𝐾 ൌ െሺ1/𝑣ሻ ൈ ሺ𝜕𝑣/𝜕𝑝ሻ் ൌ ሺ1/𝜌ሻ ൈ ሺ𝜕𝜌/𝜕𝑝ሻ், (2.10)

here, the minus notation bears the decreasing volume with increasing the pressure.   

Finally, the quantity of bulk modulus of elasticity is defined as the ratio of volumetric 

stress to the volumetric strain. If a little enhances in pressure 𝑑𝑝 causes a change 𝑑𝑣 of the 

specific volume 𝑣, then the bulk modulus of elasticity ሺ𝐸ሻ can be expressed as, 

   Ε ൌ 𝑑𝑝/െሺ𝑑𝑣/𝑣ሻ ൌ 𝜌ሺ𝑑𝑝/𝑑𝜌 ሻ. (2.11)

Using Eqs. (2.8) with (2.9) and (2.10), the expressions can be simplified as: 

Ε ൌ
1

𝐾 െ 𝛽 ൈ ሺ𝑑𝑇/𝑑𝑝ሻ
. (2.12)

2.2.6 Internal Energy  

The amount of heat which store in a gas is called internal energy and denoted by 𝐸. 

More clearly, when certain amount of heat is supplied to a gas, then temperature of gas or 

volume of gas or both may increase thereby performing some external work. The internal 

energy 𝐸 of a perfect gas can be defined as follows by the temperature 𝑇 only.  

𝐸 ൌ 𝐸ሺ𝑇ሻ (2.13)

Therefore, we can be added that the internal energy is directly proportional to the 

temperature which is known as kinetic energy theory.  
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2.2.7 Enthalpy 

The enthalpy per unit mass of the system can be expressed by the sum of internal energy 

ሺ𝐸ሻ and pressure specific volume product 𝑝𝑣. If the enthalpy is denoted by h, then the total 

heat content or enthalpy is,  

ℎ ൌ 𝐸 ൅ 𝑝𝑣 (2.14)

2.2.8 Properties of First Law of Thermodynamics 

Form the first law of thermodynamics which implies the law of conservation of energy, 

the change of internal energy ሺ𝑑𝐸ሻ can be written as,  

𝑑𝑄 ൌ 𝑑𝐸 ൅ 𝑝𝑑𝑣, (2.15)

where, 𝑄 is the total thermal energy per unit mass, 𝐸 the internal energy per unit mass, 𝑝 the 

pressure, and 𝑣 the specific volume of a perfect gas. Using the specific heat properties of the 

perfect gas, then Eq. (2.15) becomes, 

𝐶௩ ൌ
𝑑𝐸
𝑑𝑇

ൌ ൬
𝜕𝑄
𝜕𝑇

൰
௩
 (2.16)

𝐶௣ ൌ
𝑑𝐸
𝑑𝑇

൅ 𝑝 ൬
𝜕𝑣
𝜕𝑇

൰
௣

ൌ ൬
𝜕𝑄
𝜕𝑇

൰
௣
 (2.17)

Again, from Eq. (2.4), the following one can be derived, 

ሺ𝜕𝑣/𝜕𝑇ሻ௣ ൌ 𝑅/𝑝 (2.18)

By using Eq. (2.16) to (2.18), the following relation is built up,  

𝐶௣ െ 𝐶௩ ൌ 𝑅 (2.19)

  Therefore, according to the kinetic energy theory we can say that 𝐶௩ and 𝐶௣ are constant 

for a particular gas which are carried out by the Eq. (2.16) and (2.17) respectively. Also, the 

ratio of 𝐶௩ and 𝐶௣ is known as adiabatic constant or specific heat ratio that is expressed by, 

𝐶௣/𝐶௩ ൌ 𝛾 (2.20)
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From Eq. (2.19) and (2.20), it is clear that 𝐶௣ ൐ 𝐶௩ and 𝛾 ൐ 1. It is mentionable that the specific 

heat ratio or adiabatic index is 1.40 for air, 1.41 for hydrogen, 1.30 for carbon dioxide, 1.66 for 

helium, 1.67 for argon and so on are used at the absolute temperature level to verify the one- 

or two-dimensional flow model. 

2.2.9 Properties of Second Law of Thermodynamics 

From the second law of thermodynamics, the concept of irreversible process has been carried 

from a process where both a system and its environment can be restored to its the initial states. 

Though, the irreversible process is performed at an infinitely slow rate, then the system 

becomes quasi-equilibrium entire the process. Again, a process which proceeds at a finite rate 

with finite potential differences is also irreversible. Similarly, an absolute scale of temperature 

with extensive property called entropy ideas are also introduced by the second law of 

thermodynamics. Entropy is a measure of the probability that a system is in a particular 

microscopic state and is associated with the irreversible of thermodynamic processes. In the 

reverse process, changes in the entropy of a fixed-mass system are due to thermal interactions 

only referenced by [47]:    

𝑑𝑆 ൌ ሺ𝛿𝑄/𝑇ሻ௥௘௩ (2.21)

 For the irreversible process, the changes in entropy due to thermal interactions is as, 

𝑑𝑆 ൐ ሺ𝛿𝑄/𝑇ሻ௜௥௥௘௩ (2.22)

If initial and final conditions are specified, the actual process will only occur if the change in 

entropy ሺ𝑑𝑆ሻ is greater than the value of 𝛿𝑄/𝑇. Whether the path is reversible or irreversible, 

the change in entropy is the same. However, the heat exchange is less in an irreversible way. 

On the other hand, the reversible adiabatic process is called isentropic while the entropy 

remains constant. 
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2.2.10 Combination of First and Second Law of Thermodynamics 

The significant measures 𝑝, 𝜌 and 𝑇 having their usual meaning which associate with 

the equation of gas state can be assembled as a pair of independent variables into any 

thermodynamical function 𝜙 where 𝑣 ൌ 1/𝜌 is considerable referencing from [48]. 

If 𝜙ሺ𝑝, 𝑣ሻ be a function of 𝑝, 𝑣 that depends only on the conditions at the initial ሺ𝑃଴ሻ 

and any state ሺ𝑃ሻ, not other paths of joining 𝑃଴ to 𝑃, then 𝜙ሺ𝑝, 𝑣ሻ is called a function of state. 

According to the assumption of total differentiation, 𝜙ሺ𝑝, 𝑣ሻ can be written as, 

 𝑑𝜙ሺ𝑝, 𝑣ሻ ൌ 𝑀ሺ𝑝, 𝑣ሻ𝑑𝑝 ൅ 𝑁ሺ𝑝, 𝑣ሻ𝑑𝑣, (2.23)

where, 𝑀ሺ𝑝, 𝑣ሻ  and 𝑁ሺ𝑝, 𝑣ሻ  depends on 𝑝  and 𝑣  only. Now, 𝑑𝜙ሺ𝑝, 𝑣ሻ  becomes an exact 

differential, if ൫𝜙௉ െ 𝜙௉଴൯  independents of the path joining 𝑃଴  to 𝑃  and fulfill the below 

mentioned necessary and sufficient condition of exactness. 

ሺ𝜕𝑀/𝜕𝑣ሻ௣ ൌ ሺ𝜕𝑁/𝜕𝑝ሻ௩. (2.24)

From Eq. (2.15) and (2.16) of first law of thermodynamics, it can write, 

𝑑𝐸 ൌ 𝐶௩𝑑𝑇. (2.25)

The perfect gas Eq. (2.4) can be written as, 

𝑑𝑇 ൌ ሺ1/𝑅ሻ ൈ 𝑑ሺ𝑝𝑣ሻ. (2.26)

Using Eqs. (2.25) and (2.26),  

𝑑𝐸 ൌ
𝐶௩

𝑅
ൈ 𝑑ሺ𝑝𝑣ሻ. (2.27)

Now combining Eqs. (2.15) and (2.27),  

𝑑𝑄 ൌ
𝐶௩

𝑅
ൈ 𝑑ሺ𝑝𝑣ሻ ൅ 𝑝𝑑𝑣. (2.28)

ൌ൐  𝑑𝑄 ൌ ஼ೡ

ோ
ൈ ሺ𝑝𝑑𝑣 ൅ 𝑣𝑑𝑝ሻ ൅ 𝑝𝑑𝑣 = 

஼ೡ

ோ
ൈ 𝑣𝑑𝑝 ൅ ቀ1 ൅ ஼ೡ

ோ
ቁ ൈ 𝑝𝑑𝑣. 
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 ൌ൐  𝑑𝑄 ൌ
𝐶௩

𝑅
ൈ 𝑣𝑑𝑝 ൅ ൬

𝐶௣

𝑅
൰ ൈ 𝑝𝑑𝑣; [using Eq. (2.19)]. 

 ൌ൐  𝑑𝑄 ൌ 𝑇 ൬
𝐶௩

𝑝
൰ ൈ 𝑑𝑝 ൅ 𝑇 ൬

𝐶௣

𝑣
൰ ൈ 𝑑𝑣; [using Eq. (2.4)]. 

 ∴  𝑑𝑆 ൌ ൬
𝐶௩

𝑝
൰ ൈ 𝑑𝑝 ൅ ൬

𝐶௣

𝑣
൰ ൈ 𝑑𝑣; [using Eq. (2.21)]. (2.29)

Here, Eq. (2.29) and (2.23) are identical, then it can be expressed as, 

𝑀ሺ𝑝, 𝑣ሻ ൌ ሺ𝐶௩/𝑝ሻ and 𝑁ሺ𝑝, 𝑣ሻ ൌ ሺ𝐶௣/𝑝ሻ.  

Hence, ሺ𝜕𝑀/𝜕𝑣ሻ௣ ൌ 0 ൌ ሺ𝜕𝑁/𝜕𝑝ሻ௩ 

which implies that the change of entropy 𝑑𝑆 is an exact differential; so, the entropy 𝑆 is a 

function of state. By integrating Eq. (2.29) with the initial 𝑆଴ and final ሺ𝑆ሻ conditions, then it 

becomes,  

𝑆 െ 𝑆଴ ൌ 𝐶௩ lnሺ𝑝ሻ ൅ 𝐶௣ lnሺ𝑣ሻ. 

⇒ 𝑆 െ 𝑆଴ ൌ 𝐶௩ lnሺ𝑝ሻ ൅ 𝛾𝐶௩ lnሺ𝑣ሻ, [using Eq. (2.20)]. 

  ⇒
𝑆 െ 𝑆଴

𝐶௩
ൌ lnሺ𝑝ሻ ൅ lnሺ𝑣ఊሻ ൌ lnሺ𝑝𝑣ఊሻ. 

⇒ 𝑝𝑣ఊ ൌ 𝑒
ௌିௌబ

஼ೡ , (2.30)

since 𝑆 is the entropy per unit mass and the flow is isentropic, then 𝑆 is constant, though 𝐶௩ 

and 𝑆଴ are obviously constant. Therefore, Eq. (2.30) can be evaluated as,  

𝑝𝑣ఊ ൌ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, (2.31)

which is one of the properties of isentropic flow. It can also be written as, 

𝑝
𝜌ఊ ൌ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (2.32)

The following useful processes can be described basing on the above properties:  

(i). Isothermal Process: In a process where the compression or expression of a gas is 

happened at the constant temperature 𝑇, is called an isothermal process. For a perfect gas, Eq. 

(2.4) becomes, 𝑝𝑣 ൌ 𝑝/𝜌 ൌ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 at the isothermal process. 
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(ii). Adiabatic Process: In a process where the compression or expression of a gas 

holds a passage in such a way that the gas doesn’t exchange heat with its surroundings, is called 

an adiabatic process. In the reversible adiabatic process, 𝑝𝑣ఊ ൌ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

(iii). Homentropic Process: when the entropy of every single quantity of a gas of fixed 

mass is the same and remains constant with any change of the quantity, then such a change is 

defined as homentropic process. 

2.2.11 Viscous and Inviscid Fluid 

In generally, body forces and surface forces act on an infinitesimal fluid element 

where first one is proportional to the mass of the body and second one is proportional to the 

surface area. A fluid element encloses in a surface ሺ𝑠ሻ at the point 𝑝 is depicted in the Fig. 2.1 

where the unit element 𝑑𝑠, normal stress, and shearing stress are marked significantly. Here 

the normal force per unit area is called normal stress or pressure and the tangential force per 

unit area is called shearing stress.  

 

Fig. 2.1: Schematic view of normal stress and shear stress of a fluid. 

Therefore, when normal as well as shearing stress is exit in a fluid, then it is called a 

viscous or real fluid. Oppositely, when shearing stress doesn’t employ, then it is called inviscid 

or non-viscous or perfect or ideal fluid. Water and air are the ideal examples of inviscid fluid. 

2.2.12 Viscosity 

Fluid viscosity is an important feature that can describe the properties of a fluid and 

control the conduct of shear stress in the case of angular distortion of the fluid. The strong 

background of viscosity is one of the measures of fluidity. In detail, viscosity is the amount of 
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internal reluctance that is exhibited when one layer of fluid is moved relative to another. 

Whereas the velocity gradient is due to the boundary layer that accumulates on the wall during 

the motion of real fluid. In the Fig. 2.2 is shown that at the wall velocity is zero and it increases 

up to the free-stream level outside the boundary layer. So, the construction of boundary layer 

bases on the effect of fluid viscosity is referenced from Saad [47]. 

Consider 𝑣 be the velocity of the lower portion and ሺ𝑉 ൅  𝑑𝑉ሻ be the slightly increase 

velocity of the upper portion of two contiguous layers. The difference of the velocity of the 

extreme layers at the wall and the free stream is controlled by the boundary conditions. Since 

the upper layer is faster, there is a net momentum transport from the upper layer to the lower 

layer. While balancing this motion of flow, there is a shear force between the two layers, 

dragging the slower layer to the fast-moving layer. 

 

Fig. 2.2: Effect of velocity gradient with viscosity to construct the boundary layer. 

 For the most exposed fluids, the proportional relation between shear stress and rate of 

strain can be expressed as the following way,  

𝜏 ∝ ൬
𝑑𝑉
𝑑𝑦

൰, 

where, 𝜏 and ሺ𝑑𝑣/𝑑𝑦 ሻ indicates the and the velocity gradient respectively. By assigning a 

proportionality constant, the above shear stress relation becomes,  

𝜏 ൌ 𝜇 ൬
𝑑𝑣
𝑑𝑦

൰, (2.33)
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where, used constant 𝜇 is called the coefficient of viscosity or dynamic viscosity which is 

familiar as Newton’s law of viscosity. So, the fluid which follows this characteristic is called 

Newtonian fluid and which doesn’t follow is called non-Newtonian fluid.  

It is important to know that the coefficient of viscosity is a characteristic of fluid which 

is independent of the flow geometry but depends on pressure and temperature. Because the 

gases viscosity is increased, whereas the liquid viscosity is decreased with increasing the 

temperature. So, the viscosity of perfect gases can be defined as the function of only molecular 

dimensions and of absolute temperature through the kinetic theory of gases. On the other hand, 

the coefficient of viscosity is zero for the perfect gases or inviscid fluids.  

2.2.13 Governing Equations of Motion for a Gas 

(i). The Equation of Continuity: The inherent objective of the equation of continuity 

is expressing the law of conservation of mass where the motion of fluid is continuous. The 

main premise of the law of conservation of mass is that the fluid mass would neither be created 

nor be destroyed. Based on this assumption, the equation of continuity describes the fact that 

at any given time, the increase in the mass of the fluid on a closed surface drawn in the fluid 

must be equal to the excess of the mass flow out over the flow mass. The below vector form is 

known as the equation of continuity that holds all points of fluid free from sources and sinks,  

𝜕𝜌/𝜕𝑡 ൅ ∇. ሺ𝜌𝒒ሻ ൌ 0, (2.34)

where, ∇ൌ ሺ𝜕/𝜕𝑥ሻ𝚤̂ ൅ ሺ𝜕/𝜕𝑦ሻ𝚥̂ ൅ ሺ𝜕/𝜕𝑧ሻ𝑘෠  is called the vector differential operator, 𝜌 is the 

fluid density and 𝒒 ൌ 𝑢𝚤̂ ൅ 𝑣𝚥̂ ൅ 𝑤𝑘෠  is the velocity at any point 𝑝ሺ𝑥, 𝑦, 𝑧ሻ of time 𝑡. In the 

steady motion of a gas, the term ሺ𝜕𝜌/𝜕𝑡 ሻ ൌ 0, then Eq. (2.34) becomes, 

  ∇. ሺ𝜌𝒒ሻ ൌ 0. (2.35)

(ii). The Equation of Motion: The well-known Navier-Stokes equation of motion is 

based on the Newton’s second law of motion which is described by the kinetic and dynamic 

effects of a viscous compressible fluid flow. 

ሺ𝜕𝒒/𝝏𝒕ሻ ൅ ሺ𝐪. ∇ሻ𝒒 ൌ 𝐹 െ ሺ∇𝑝/𝜌ሻ ൅ 𝜈∇ଶ𝒒 ൅ ሺ𝜈/3ሻ ൈ ∇ሺ∇. 𝒒ሻ, (2.36)
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where, 𝜈 ൌ ሺ𝜇/𝜌ሻ, 𝐹, and 𝑝 be the kinematic viscosity, external body force, and pressure at 

any point 𝑝ሺ𝑥, 𝑦, 𝑧, 𝑡ሻ respectively. Now, Eq. (2.36) becomes for the inviscid fluid, 

𝜕𝒒
𝜕𝑡

൅ ሺ𝐪. ∇ሻ𝒒 ൌ 𝐹 െ
∇𝑝
𝜌

. (2.37)

Equation. (2.36) is known as the Euler’s equation of motion which is valid for both 

compressible and incompressible flows. For the compressible flows 𝜌 is the function of both 

pressure and temperature while 𝜌 is constant for the incompressible flows. In the case of steady 

motion of a gas which is free from body forces, then Eq. (2.36) becomes, 

ሺ𝐪. ∇ሻ𝒒 ൌ െ
∇𝑝
𝜌

. (2.38)

(iii). The Energy Equation: The Euler’s equation of motion is always integrable when 

the velocity potential and force potential are exists. Because velocities and external forces are 

derivable from the potential function. If 𝜙 is the velocity potential and 𝑃 is the force potential, 

then the following pressure equation can be derived from Eq. (2.36), 

െ
𝜕ϕ
𝜕𝑡

൅
𝑞ଶ

2
൅ 𝑃 ൅ න

𝑑𝑝
𝜌

ൌ 𝑓ሺ𝑡ሻ, (2.39)

where, 𝒒 ൌ െ∇𝜙,  𝐹 ൌ െ∇𝑃 and 𝜌 is a function of pressure 𝑝. For the steady motion where no 

body forces are acting, then the Bernoulli’s equation. Eq. (2.39) becomes, 

𝑞ଶ

2
൅ න

𝑑𝑝
𝜌

ൌ 𝑘.  [ where, 𝑘 is a constant] (2.40)

When flow becomes isentropic where the entropy remains constant, then Eq. (2.40) can be 

derived as follow by using the Eq. (2.32): 

𝑞ଶ

2
൅

𝛾
𝛾 െ 1

ൈ
𝑝
𝜌

ൌ 𝑘,  (2.41)

where, the concepts of 𝛾  is established from the combination of first and second law of 

thermodynamics. The values of specific heat are varied depending on the gases.  
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(iv). The Equation of State: When the study is conducted with the ideal or perfect gas, 

then the equation of state is given by,  

𝑝 ൌ 𝜌𝑅𝑇, (2.42)

using the notation 𝑅 is the universal constant for a gas under consideration. 

 The various formation of continuity, momentum and energy equations based on the 

particular co-ordinates system are used in a variety of fluid models. The cylindrical and 

elliptical co-ordinates formations of continuity, momentum and energy equations has been 

established details in Chapter 3 and Chapter 4 separately. 

2.2.14 Speed of Sound 

Sound waves are infinitely small pressure disturbances which are travels through a 

medium in compressive and propagative ways. The speed at which small pressure vibrations 

(waves) propagate through a medium is known as the speed of sound. Thus, the compressible 

effect of the medium where sound waves propagate is crucial for measuring the speed of sound. 

Using the continuity and momentum equation to a control volume of small length of 

observer is configured in the referenced [47] across the pressure wave where 𝑝 is the pressure, 

𝜌 is the density, 𝑑𝑉 is the steady velocity and 𝐴 be the cross-sectional area of piston, then the 

speed of sound ሺ𝑐ሻ can be conveyed as: 

𝑐 ൌ ඥ𝑑𝑝/𝑑𝜌, (2.43)

where, the symbols 𝑑𝑝 and 𝑑𝜌 are used having their usual meaning. If the process is considered 

under the isentropic where negligible heat interaction becomes the process reversible and 

adiabatic, then speed of sound can be stated as,   

𝑐 ൌ ඥሺ𝜕𝑝/𝜕𝜌ሻ௦ ൌ ඥ𝛾𝑝/𝜌 ൌ ඥ𝛾𝑅𝑇. (2.44)

For the process is conducted in an isothermal system, the velocity of sound can be derived as,  

 𝑐 ൌ √𝑅𝑇. (2.45)
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It is clear that Eqs. (2.44) and (2.45) show the effect of change in temperature on the 

velocity of sound at their respective process. The speed of sound can also be expressed in terms 

of bulk modulus and effect of change in velocity. 

  2.2.15 Mach Number 

In compressible flow field, there is a dynamic relation between velocity of fluid flow 

and the local velocity of sound. So, the ratio of the velocity of fluid ሺ𝑉ሻ at a point to the local 

speed of sound ሺ𝑐ሻ at the same point is called Mach number. In mathematically, the Mach 

number ሺ𝑀ሻ can be defined as, 

𝑀 ൌ 𝑉/𝑐. (2.46)

In contrast, fluid contains the elastic nature, so Mach number can also be stated as the 

ratio of inertia forces to elastic forces which specifies that when the inertia forces or velocity 

of fluid becomes smaller than the elastic forces or local speed of sound, then Mach number 

becomes low. In that case, the variation of density is considered small, and the flow may be 

referred to incompressible. The following classification of compressible fluid flow has been 

included based on the different measures of Mach number: 

 (i). Subsonic flow: A flow is turned into subsonic, when the Mach number ሺ𝑀ሻ is less 

than unity ሺ 𝑀 ൏ 1ሻ, which implies that the local velocity of sound ሺ𝑐ሻ is greater than the 

velocity of fluid ሺ𝑉ሻ,    𝑖. 𝑒.  𝑉 ൏ 𝑐. 

(ii). Sonic flow: A flow is become sonic, when the Mach number ሺ𝑀ሻ is equal to unity 

ሺ𝑀 ൌ 1ሻ, which indicates that the value of fluid velocity ሺ𝑉ሻ is same as the rate of small-

pressure disturbances ሺ𝑐ሻ,  𝑖. 𝑒. 𝑉 ൌ 𝑐.  

(iii). Supersonic flow: A flow is said to be supersonic, when the Mach number ሺ𝑀ሻ is 

greater than unity and less than the value of five, ሺ𝑖. 𝑒. 1 ൏ 𝑀 ൏ 5ሻ, which implies that the 

velocity of fluid ሺ𝑉ሻ is greater than the local speed of sound ሺ𝑐ሻ,  𝑖. 𝑒. 𝑉 ൐ 𝑐.  

Parallelly, when Mach numbers ሺ𝑀ሻ  are greater than 5 , then the flow is called 

hypersonic. Again, if the Mach numbers ሺ𝑀ሻ somewhat less than unity or slightly greater than 

unity, approximately ሺ0.8 ൏ 𝑀 ൏ 1.4ሻ, then the flow is called transonic. 
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2.2.16 Geometrical Transmission of Sound Waves 

Let us consider a system of continuous waves is emitted in a compressible fluid or gas 

from a moving particle where waves are propagated in all directions with the finite velocity of 

sound 𝑐. Since the Mach numbers are the measure of transmission of sound wave, then the 

possible flow pattern has been established by Figs. 2.3 to 2.5 where the effects of subsonic, 

sonic, and supersonic flow are configured. The contents are referenced from [47]. 

For the subsonic effect in Fig. 2.3 where a particle is moving at a constant velocity 𝑉 

and reached a position such as 𝑃, 𝑄, 𝑅, and so on according at the times 0, 𝑡, 2𝑡, and so on. As 

a result, a spherical wave would be emitted by the particle. By covering the distance 𝑉𝑡, the 

disturbance particle is transmitted 𝑃 to 𝑄 during the time 𝑡. In contrast, the wave is radiated up 

to the radius distance 𝑐𝑡 from the source position 𝑃 specifying the point disturbance. So, the 

disturbances effects are perceived throughout the flow field, and point disturbances always 

drop behind the spherical waves which are generated by it. Continuous spherical waves are 

dense in the direction of motion and the pattern is non-symmetrical.  

The sonic feature is illustrated in Fig. 2.4 where the source is moving with the same 

speed as the waves it produces, and a series of spheres touch each other tangentially at the point 

of interference representing the sound waves. At this speed, acoustic disturbances cannot 

convey the information and the fluid cannot pre-adapt to the approaching particles. 

 

Fig. 2.3: Subsonic flow, ሺ𝑉 ൏ 𝑐, 𝑀 ൏ 1ሻ 
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Fig. 2.4: Sonic flow, ሺ𝑉 ൌ 𝑐, 𝑀 ൌ 1ሻ 

 

Fig. 2.5: Supersonic flow, ሺ𝑉 ൐ 𝑐, 𝑀 ൐ 1ሻ 

At the supersonic speeds, the particle moves faster than the generated waves which are 

enveloped in a circular cone, called the Mach cone showing in the Fig. 2.5. Whereas the Mach 

lines or Mach waves can be defined by the generators of the Mach cone and the coincided angle 

of the Mach line with the moving direction of particle can also be specified by Mach angle 𝛼. 

At the action zone, the disturbance effect of source point is restricted. So, it is mentionable that 

the disturbances cannot propagate upstream in supersonic flow. Again, the dependence zone is 

created by expanding the Mach lines oppositely and keeping the same measurement of the 

Mach cone at same apex where the pressure and velocity at the point disturbance are also 

affected through the inside disturbances of the Mach cone. The region outside of the 
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dependence zone and Mach cone is unchanged by the disturbance that is called the silence zone. 

Using the right triangle property on Fig. 2.5 with Eq. (2.46), Mach angle 𝛼 is given by  

 𝛼 ൌ sinିଵሺ𝑐𝑡/𝑉𝑡 ሻ ൌ sinିଵሺ1/𝑀ሻ. (2.47)

Equation (2.47) is implemented only for supersonic flow. For sonic flow 𝑠𝑖𝑛𝛼 ൌ 1, or 𝛼 ൌ

𝜋/2 and subsonic flow 𝑠𝑖𝑛𝛼 ൏ 1 or 𝛼 ൏ 𝜋/2. From Eq. (2.47), it can say that the Mach angle 

decreases with increasing the Mach number and Mach cone also depends on the Mach number. 

For an example of supersonic flow, when an airplane is flying at a supersonic speed, then a 

viewer cannot hear the sound until it is a long way behind the viewer. 

2.2.17 Reynolds Number 

The classified laminar and turbulent fluid flow can be described by the concepts of 

dimensionless Reynolds number. The ratio of inertia forces to viscous forces is defined by the 

Reynolds number. The mathematical expression of Reynolds number ሺ𝑅𝑒ሻ is as follows: 

    𝑅𝑒 ൌ ሺ𝑉𝐷/𝜈ሻ ൌ ሺ𝜌𝑉𝐷/𝜇ሻ. (2.48)

Here, 𝐷 is the characteristic length or diameter, 𝜈 is the kinematic viscosity, 𝜌 is the density 

and 𝑉 is the velocity of fluid. When the inertia forces are predominated, then Reynolds number 

is high, and flow becomes turbulent. Since the turbulent flow does not show simple flow 

structure, because of random eddies existence which causes change of momentum across the 

mean streamlines. The mean velocity is still required to describe this fluid flow. On the other 

hand, when the viscous forces are predominated, then the Reynolds number is low, and flow 

shows laminar structure where the adjacent layers of fluid move in an orderly way parallel to 

each other to the flow direction. In a circular device, the flow is laminar and parabolic when 

Reynolds number is below 2100, whereas it is turbulent when the Reynolds is exceeded 4000.  

2.2.18 Isentropic Flow, Nozzle and Diffuser 

In general, the insertion of simple flows originates the complex flow structures which 

are visualized through the flow of compressible fluid. Under some considerations, the flow of 

compressible fluid obeys the isentropic flow properties, though ideal isentropic flow is quite 

hard to occur. The diminished irreversible effects are occurred by the smoothness of duct’s 

inner walls and the zero viscosity of fluid which are approaching adiabatic flow to isentropic 
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flow through a variational cross-sectional area of duct is shown in Fig. 2.6. In an isentropic 

flow which is adiabatic and frictionless, the static characteristics change depending on the 

cross-sectional area, but stagnation characteristics do not change. 

 

Fig. 2.6: Flow through a varying area of a nozzle. 

A nozzle is a duct of short length having variable cross-sectional area for accelerating 

fluid from reservoir. The front part of nozzle may be convergent or divergent. The flow 

passage decreases to a minimum cross-section in a convergent-divergent nozzle or Laval-

nozzle is known as the throat shown in Fig. 2.6. Because of a short length of nozzle, the flow 

is assumed frictionless, and no work is done along the boundary, then it is turned to isentropic 

flow. A nozzle is acted as a diffuser when fluid is decelerating through the cross-sectional area.  

2.2.19 Isentropic Flow through a Duct 

Figure 2.7 is illustrated an isentropic gas flow through a duct where the pressure ሺ𝑝ሻ, 

velocity ሺ𝑉ሻ, density ሺ𝜌ሻ and temperature ሺ𝑇ሻ are located at the cross-sectional area ሺ𝐴ሻ. Then, 

the continuity equation of the steady-state one-dimensional gas through a duct becomes, 

    𝜌𝐴𝑉 ൌ 𝐾ሺ𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡ሻ. (2.49)

 

 

Fig. 2.7: Isentropic flow through a duct. 

The differentiating form of Eq. (2.49) is, 
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    ሺ𝑑𝜌/𝜌ሻ ൅ ሺ𝑑𝐴/𝐴ሻ ൅ ሺ𝑑𝑉/𝑉ሻ ൌ 0. (2.50)

From the Bernoulli’s equation (2.40), it can be rearranged by,  

    ሺ1/𝜌ሻ ൌ െ𝑉 ൈ ሺ𝑑𝑉/𝑑𝑝ሻ. (2.51)

Again, using Eq. (2.43), the speed of sound can be written as, 

    𝑐ଶ ൌ ሺ𝑑𝑝/𝑑𝜌ሻ. (2.52)

Now, combining Eqs. (2.51) and (2.52), 

    ሺ𝑑𝜌/𝜌ሻ ൌ ሺെ𝑉/𝑐ଶሻ ൈ 𝑑𝑉. (2.53)

From Eqs. (2.53) and (2.50), 

    ሺെ𝑉/𝑐ଶሻ ൈ 𝑑𝑉 ൅ ሺ𝑑𝐴/𝐴ሻ ൅ ሺ𝑑𝑉/𝑉ሻ ൌ 0. (2.54)

Using Eq. (2.46), then Eq. (2.54) becomes, 

⇒ 𝑑𝑉/𝑉 ൌ 𝑑𝐴/ሾ𝐴 ൈ ሺ𝑀ଶ െ 1ሻሿ. (2.55)

From Eqs. (2.55) and (2.50), 

⇒ 𝑑𝜌/𝜌 ൌ 𝑀ଶ ൈ 𝑑𝐴/ሾ𝐴 ൈ ሺ𝑀ଶ െ 1ሻሿ. ൌ െ𝑀ଶሺ𝑑𝑉/𝑉ሻ. (2.56) 

Again, using Eqs. (2.56), (2.52), and (2.50), 

⇒
𝑑𝑝
𝑝

ൌ
𝛾𝑀ଶ

ሺ1 െ 𝑀ଶሻ
𝑑𝐴
𝐴

. (2.57)

Equations (2.55) to (2.57) represent the relative change in velocity, density, and pressure 

respectively according to the relative change in cross-sectional area which are also drawn in 

the Figs. 2.8 to 2.10 separately against the Mach number. It is clear that when 𝑀 ൏ 1, the ratio 

of all the cases is negative and velocity, density and pressure differs inversely with the cross-

sectional area, whereas for 𝑀 ൐ 1,  the ratio of all the cases is positive and velocity, density 

and pressure differs identically with the cross-sectional area for the gases. In Eq. (2.56) has 
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another relation between the relative change in density with respect to the relative change in 

velocity for 𝑀 ൐ 0 is represented by Fig. 2.11.  

Fig. 2.8: Effect of relative velocity with cross-

sectional area to Mach number 

Fig. 2.9: Effect of relative density with cross-

sectional area to Mach number 

Fig. 2.10: Effect of relative pressure with 

cross-sectional area to Mach number 

Fig. 2.11: Effect of relative density with 

velocity to Mach number 

The following possible outcomes are carried out from the above discussion: 

(i). The fluid acceleration or deceleration at any point depends on the cross-sectional 

area and the Mach number of the flow is more or less than 1 those are described by Eq. (2.55). 

The opposite effects on subsonic and supersonic have been occurred by the change of cross-

sectional area. Now, for convergent duct, the flow becomes subsonic at 𝑀 ൏ 1, but it is also 

behaved as a supersonic diffuser at 𝑀 ൐ 1. 
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(ii). When the cross-sectional area is unchanged, 𝑖. 𝑒. 𝑑𝐴 ൌ 0 and 𝑀 ൌ 1, then 𝑑𝑉 ൌ 0,  

𝑑𝜌 ൌ 0, and 𝑑𝑝 ൌ 0 which are evaluated from Eqs. (2.55), (2.56), and (2.57) respectively. 

These results implies that the constant velocity, density, and pressure are exhibited at 𝑑𝐴 ൌ 0 

and 𝑀 ൌ 1 which section is known as throat of the device. Also, the sonic velocity of isentropic 

flow is appeared only at the throat section, not for others.    

(iii). The acceleration of subsonic flow in a nozzle cannot be done beyond the Mach 

number 1. On the other hand, the flow may be accelerated from subsonic to supersonic speed 

by connecting the convergent portion with divergent section, though it is depended on the exit 

pressure. That time, throat Mach number is passed the value 1 by the downstream procedure 

and the acceleration of flow is also occurred continuously. 

(iv). And rest of the possible outputs for velocity, density, and pressure associates with 

Eqs. (2.55) to (2.57) listing in the Table 2.1 and depicting in Fig. 2.12 where ′ ൅ ′ and ′ െ ′ 

signs are used for increasing and decreasing cases respectfully. 

Table 2.1 

 Mach number, 𝑀 ൏ 1 Mach number, 𝑀 ൐ 1 

𝑑𝐴 ൅ 
 

𝑑𝑉 െ 𝑑𝜌 ൅ 𝑑𝑝 ൅ 𝑑𝑉 ൅ 𝑑𝜌 െ 𝑑𝑝 െ 

𝑑𝐴 െ 
 

𝑑𝑉 ൅ 𝑑𝜌 െ 𝑑𝑝 െ 𝑑𝑉 െ 𝑑𝜌 ൅ 𝑑𝑝 ൅ 

 

Subsonic conditions  Supersonic conditions 

  

  

Fig. 2.12: The effect of velocity, density and pressure due to the change of area for the 

subsonic and supersonic flow with respect to the Mach number. 
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2.2.20 Isentropic Flow Relations for a Perfect Gas 

In this section, the various isentropic relations of a perfect gas are constructed with 

keeping constant the specific heats. All the expressed relations are based on the properties of 

stagnation, Mach number and dimensionless.    

Combining the energy equation (2.41) and the velocity of sound Eq. (2.44) for an isentropic 

flow of gas, it can be written as,    

𝑉ଶ

2
൅

𝛾𝑝
𝜌ሺ𝛾 െ 1ሻ

ൌ 𝑘,  (2.58)

where, the used notations are having their usual meaning. Here, it is clear that the velocity 

becomes maximum 𝑉 ൌ 𝑉௠௔௫ when the speed of sound 𝑐 ൌ 0, then Eq. (2.58) gives,  

𝑘 ൌ
𝑉௠௔௫

ଶ

2
.  (2.59)

Now, at the throat position, when 𝑉 ൌ 𝑐, the speed of sound is called critical speed of sound 

and denoted by 𝑉 ൌ 𝑐 ൌ 𝑐∗, then the constant of Eq. (2.58) can be expressed as, 

𝑘 ൌ
𝛾 ൅ 1

2ሺ𝛾 െ 1ሻ
𝑐∗ଶ. (2.60)

 Considering, 𝑐଴, 𝜌଴, 𝑝଴, and 𝑇௢௦  be the stagnation values of the static speed of sound ሺ𝑐ሻ, 

density ሺ𝜌ሻ, pressure ሺ𝑝ሻ, and temperature ሺ𝑇ሻ repectively at the fluid velocity, 𝑉 ൌ 0. Then 

the constant of Eq. (2.58) can be written as follows for 𝑐 ൌ 𝑐଴ with Eq. (2.44).  

𝑘 ൌ 𝑐଴
ଶ/ሺ𝛾 െ 1ሻ ൌ 𝛾𝑝଴/𝜌଴ሺ𝛾 െ 1ሻ.  (2.61)

 Using Eqs. (2.61) and (2.58), it can be written as, 

𝑉ଶ

2
൅

𝛾𝑝
𝜌ሺ𝛾 െ 1ሻ

ൌ
𝛾𝑝଴

𝜌଴ሺ𝛾 െ 1ሻ
.  (2.62)

From Eqs. (2.20) and (2.19), it can be established that,  

𝐶௣ ൌ 𝑅𝛾/ሺ𝛾 െ 1ሻ.  (2.63)
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Again, using Eq. (2.63) with the equation of gas state  𝑝 ൌ 𝜌𝑅𝑇, 

𝛾𝑝
𝜌ሺ𝛾 െ 1ሻ

ൌ
𝑅𝛾

ሺ𝛾 െ 1ሻ
𝑇 ൌ 𝐶௣𝑇.  (2.64)

Now applying the concept of Eqs. (2.64) in (2.62), then it becomes, 

𝑉ଶ/2 ൅ 𝐶௣𝑇 ൌ 𝐶௣𝑇଴.  (2.65)

⇒
𝑇଴

𝑇
ൌ 1 ൅

𝑉ଶ

2𝐶௣𝑇
ൌ 1 ൅

ሺ𝛾 െ 1ሻ𝑉ଶ

2 ൈ 𝛾𝑅𝑇
. (2.66)

Using Eqs. (2.44) and (2.46), it becomes, 

𝑇଴/𝑇 ൌ 1 ൅ 𝑀ଶ ൈ ሺ𝛾 െ 1ሻ/2. (2.67)

The ratio of the stagnation to the static speed of sound can be evaluated by, 

𝑐଴/𝑐 ൌ ඥሺ𝑝଴/𝑝ሻ ൈ ሺ𝜌/𝜌଴ሻ. (2.68)

From Eq. (2.32) for isentropic flow of a perfect gas, 

𝑝଴/𝑝 ൌ ሺ𝜌଴/𝜌ሻఊ. (2.69)

Using the realtion (2.33) with (2.68), it is given as, 

𝑐଴/𝑐 ൌ ሺ𝜌଴/𝜌ሻ
ఊିଵ

ଶ ൌ ሺ𝑝଴/𝑝ሻ
ఊିଵ

ఊ . (2.70)

Again, the ratio of the stagnation to static speed of sound is reformed by Eq. (2.44) as,  

𝑐଴

𝑐
ൌ ඥ𝑇଴/𝑇 ൌ ൬1 ൅

𝛾 െ 1
2

𝑀ଶ൰
ଵ/ଶ

. (2.71)

Using Eqs. (2.71), (2.70), and (2.67), the following relation are obatined by, 

𝜌଴

𝜌
ൌ ൬

𝑇଴

𝑇
൰

ଵ
ఊିଵ

ൌ ൬1 ൅
𝛾 െ 1

2
𝑀ଶ൰

ଵ
ఊିଵ

. (2.72)
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𝑝଴

𝑝
ൌ ൬

𝑇଴

𝑇
൰

ఊ
ఊିଵ

ൌ ൬1 ൅
𝛾 െ 1

2
𝑀ଶ൰

ఊ
ఊିଵ

. (2.73)

If the mass flow rate per unit area ሺ𝐴ሻ is called mass flux 𝐺, then it can be defined as, 

𝐺 ൌ 𝑚ሶ /𝐴 ൌ 𝜌𝑉. (2.74)

Using the equation of gas state and Eq. (2.44), then the Eq. (2.73) becomes, 

𝐺 ൌ 𝑚/𝐴ሶ ൌ 𝑝ሺ𝑉/𝑐ሻ ൈ ඥ𝛾/𝑅𝑇. (2.75)

Substituting the values of 𝑇 and 𝑝 from Eqs. (2.67) and (2.73) in Eq. (2.75), then mass flux can 

be written as,   

𝐺 ൌ
𝑚ሶ
𝐴

ൌ
𝑝଴

ඥ𝑇଴

ට
𝛾
𝑅

ൈ

⎣
⎢
⎢
⎢
⎡

𝑀

ቀ1 ൅ 𝛾 െ 1
2 𝑀ଶቁ

ఊାଵ
ଶሺఊିଵሻ

⎦
⎥
⎥
⎥
⎤
. (2.76)

Using the critical condition, the mass flow rate 𝐺 is maximum when 𝑀 ൌ 1 at the throat section 

where area is minimum, then Eq. (2.76) becomes, 

𝐺∗ ൌ 𝑚/𝐴∗ሶ ൌ ሺ𝑝଴/ඥ𝑇଴ሻටሺ𝛾/𝑅ሻ ൈ ሺ2/𝛾 ൅ 1ሻ
ఊାଵ
ఊିଵ. (2.77)

Now the following cross-sectional area ratio can be expressed in terms of 𝛾 and the Mach 

number by using Eqs. (2.76) and (2.77),  

𝐴
𝐴∗ ൌ

𝐺∗

𝐺
ൌ

1
𝑀

൤
2

𝛾 ൅ 1
ൈ ൬1 ൅

𝛾 െ 1
2

𝑀ଶ൰൨

ఊାଵ
ଶሺఊିଵሻ

. (2.78)

It is mentionable that the value of the ratio of cross-sectional area 
஺

஺∗  is never less than unity, 

and the minimum value of unity is occurred by Eq. (2.77) at 𝑀 ൌ 1 which is included from the 

reference [47]. 
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2.2.21 Characterizes of a Perfect Gas through a Nozzle 

   When a high-speed gas issues from a nozzle, then the compressibility characteristics 

affect the flow of gas. Usually, the cross-sectional area of the nozzle is one of the reasons for 

showing such characteristics. The study in this section constructs with such issued gas which 

is conducting through a convergent nozzle or convergent-divergent nozzle and then the nozzle 

exits pressure, and the ambient pressure makes the difference to evaluate the flow variables. 

 (i). Flow through a Convergent Nozzle: In this case, the initial pressure of a gas and 

the ratio of the total pressure of the gas to the ambient pressure are the key factors to measure 

the possible encountered situations. In Fig. 2.13 (B), the expected flow schemes have been 

drawn to evaluate the several scales of pressure into the nozzle (Fig. 2.13 (A)) due to the nozzle 

axial distance ሺ𝑧ሻ. The related mass flow and exit pressure evaluations are also depicted in Fig. 

2.13 (C) and Fig. 2.13 (D) separately. All the potential effects are listed in below: 

 The first scheme due to the subsonic flow is characterized with the case 𝑎 𝑡𝑜 𝑐 in Fig. 

2.13 (B) where the nozzle exit pressure ሺ𝑝௘ሻ is equal to the ambient or back pressure ሺ𝑝௕ሻ 

and the mass flow ሺ𝑚ሶ ሻ is increased with respect to the stagnation pressure ሺ𝑝଴ሻ. 

 

 Second one is stated with the critical condition where the sonic flow is characterized by 

the case 𝑑 in Fig. 2.13 (B) and the nozzle is said to choked. At this stage, the nozzle exit 

pressure ሺ𝑝௘ሻ is equal to the critical pressure ሺ𝑝∗ሻ and the mass flow is become maximum 

ሺ𝑚ሶ ௠௔௫ሻ which is shown in Fig. 2.13 (C). It is noted that the overall conditions are 

considered for measuring the flow properties, but the assumption would be different for 

the presence of boundary layer. 

 
 

 Finally, almost similar behavior has been appeared inside the nozzle upon all the flow 

quantities demarcating in case 𝑒 of Fig. 2.13 (B) yet the exit pressure is higher than the 

back pressure. Then, an under-expansion wave has been created under this circumstance 

and the pressure stability is also happened into the ambient.  
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Fig. 2.13: Evaluation of the flow quantities of perfect gas through (A) convergent nozzle for 

various pressure ratios: (B) pressure, (C) mass flow, and (D) exit pressure. 

(ii). Flow through a Convergent-Divergent Nozzle: An analogue schematic flow of 

a perfect gas under this circumstance has been illustrated with Fig. 2.14 where the evaluation 

of pressure (Fig. 2.14 (B)), Mach number (Fig. 2.14 (C)), mass flow (Fig. 2.14 (D)) and exit 

pressure (Fig. 2.14 (E)) are also described. In the following section, the potential effects of 

flow quantities are considered according to case wise: 

 The case 𝑏 in Fig. 2.14 (B) is indicating the subsonic feature where the nozzle exit 

pressure ሺ𝑝௘ሻ same as the ambient pressure ሺ𝑝௕ሻ and the mass flow is evaluated 

with respect to the ratio between back pressure ሺ𝑝௕ሻ to stagnation pressure ሺ𝑝଴ሻ.  

 

 The sonic flow is attained at the throat where the Mach number ሺ𝑀ሻ is equal to 1 

and the choked flow is stated by the case 𝑐 in Fig. 2.14 (B). Then the mass flow 

can also be measured by the stagnation conditions. 

 

 The exit pressure will be differed from the ambient pressure, until attending the 

design operating conditions marked as case 𝑑 . The under-expansion feature is 

appeared when the ratio ሺ𝑝଴/𝑝௕ ሻ is greater than the ratio ሺ𝑝଴/𝑝∗ሻ. The references 

[3, 47] are recommended for the details understanding of such flow feature.  
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Fig. 2.14: Evaluation of the flow quantities in (A) convergent-divergent nozzle for several 

pressure ratios: (B) pressure, (C) Mach number, (D) mass flow, (E) exit pressure. 

2.2.22 Shock Waves  

An intense disturbances or variations in pressure exit across the infinitesimal pressure 

waves, causing discontinuous and irreversible changes in the fluid properties such as velocity, 

temperature, pressure, and density which switch from supersonic to subsonic. These are called 

shock waves. In Fig. 2.15 is a rainbow schlieren picture of inviscid nonconducting gas flow 

where the thin layers or surfaces of gas are indicating as the shock waves with the order of 

finite thickness (ൎ 10ଶ 𝑛𝑚) [47]. It is noted that the changing properties of the real fluid (such 

as viscosity, heat conductivity and diffusivity) may affect the thickness of the duct shock.  

Consequently, when the flow is extended to isentropic for a sufficiently large change 

in pressure with an increase in entropy, the wave is called expansion waves. In Fig. 2.15, the 
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focused expansion waves are created on the lip of nozzle exit which propagate to the opposite 

side of the jet and reflect the free jet layer called jet boundary as a compression wave. Before 

attaining the middle of the jet, these converge to the incident shock waves, resulting in the 

mac reflections with the corresponding Mach discs, reflective waves, and shear layers 

concepts are implemented from [43].  

 

Fig. 2.15: Rainbow Schlieren picture of shock waves. 

There are two types of shock waves: normal or one-dimensional shock waves and oblique or 

multidimensional shock waves are usually observed through the following definitions. 

(i). Normal shock waves: If the change of fluid properties in a shock wave occurs to 

the same direction of the fluid flow, then the shock wave is called one-dimensional or normal 

shock wave. In a normal shock wave where shock wave is perpendicular to the incoming flow, 

as stated in Fig. 2.16 through the reference [49].  

 

Fig. 2.16: A picture of normal shock wave [49].  
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(ii). Oblique shock waves: If the change in the fluid properties of the shock wave �����

form over supersonically traveling objects occurs in a direction that does not coincide with the 

overall direction of the flow, then the shock wave is called multidimensional or oblique shock 

wave. In an oblique shock wave where shock wave is inclined at an angle to the incoming flow. 

As a concern, the formation of a bow/detached shock wave depends on the structure of the 

objects which is separated from the object as defined in Fig. 2.17 with the oblique shock wave 

through the reference [49].  

Fig. 2.17: A picture of visualizing oblique and detached shock wave. 

 The studies in this chapter along with the fundamental concepts of compressible fluid 

and their flow behavior has been summarized for the overall reflection of work and for the 

betterment of Chapter 3 and Chapter 4. The characteristics of various nozzles behavior are 

helpful to construct the governing equations which are followed by the kinematic and dynamic 

boundary conditions. Newton’s law of viscosity, first and second law of thermodynamics and 

their related topics are discussed to understand the compressible fluid flow. Mach number and 

Reynold number are the vital subjects to analyze and classify the high-speed jet flow. With the 

presence of turbulence and molecular viscosity, the compressibility effects of fluid why and 

how create the complex phenomena into the flow filed has been discussed for the 

comprehensive observation and finding some information which haven’t established yet in the 

domain of research. 
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Chapter 3 

Shock Containing Circular Jet 

3.1 Introduction 

To understanding the prominent characteristics of complex shock-containing circular 

jet, schlieren and shadowgraph methods [21] have been widely used as optical tools because 

of its simple optical arrangement with a higher degree of resolution and ability to easily observe 

such shock wave structures, Prandtl-Meyer compression, and expansion waves in supersonic 

flows. The techniques of conventional schlieren are more applicable for some scientists to 

analyze the jet flow, but recently laser-based interferometry such as Twyman-Green 

interferometry [22], Mach-Zehnder interferometry [23, 24] or rainbow schlieren deflectometry 

[26~32] methods are becoming much more useful for visualizing jet density fields 

quantitatively. The rainbow schlieren deflectometry (RSD) would presumably be the simplest 

optical technique to acquire the density fields of underexpanded supersonic jets quantitatively. 

For getting the information of vector and scalar quantities in the flow field, the microscale 

devices are required in all the optical methods. Though few, some qualitative information about 

shock-containing jets from the convergent-divergent circular nozzle are known in the current 

literature because of technical difficulties in measurements. Although Franquet et al. [3] 

provided a comprehensive review on axisymmetric supersonic jets issued from convergent or 

convergent-divergent nozzle, covering papers experimentally dealing with underexpanded jets, 

the structure, and dynamical properties of axisymmetric underexpanded jets are still known 

only qualitatively, and there is little quantitative information on the dynamics of microjets. 
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In this chapter, at first the rainbow schlieren deflectometry is applied for jets from a 

round Laval nozzle followed by a cylindrical duct for the experimental investigation. Such a 

Laval nozzle followed by a long duct attracts special attentions on applications for the cold 

spray technology [50, 51], which includes a deposition process in which small particles in the 

solid state accelerate to high velocities in a supersonic gas jet and deposit on the substrate 

material. It has been widely recognized that the quality of the coating depends significantly on 

the gas flow velocity and stagnation temperature. The higher gas velocity makes the particle 

velocity increased, resulting in highly tough and dense coatings on a solid surface. To achieve 

optimal conditions for deposition, the quantitative information of the supersonic jets is required. 

However, there are little quantitative experimental data about the gas dynamics of the cold 

splay technology. In addition, the design of the spray gun has been primarily empirical and 

based upon engineering intuition. Therefore, as a first step of an application for the cold spray 

technology, the effects of nozzle pressure ratios on flow features of the jet from a supersonic 

nozzle followed by a long duct are described here. Furthermore, the previous experimental data 

[29] on a jet issued from a conventional Laval nozzle is used for a comparison with the present 

RSD data where a long duct is used. A peer reviewed journal paper has been published with 

this sectional analysis that is available in the references [15]. 

Secondly, the issued supersonic jet from an axisymmetric convergent-divergent nozzle 

has been solved analytically by a modified model where the concepts are gathered from the 

two flow models [16,18]. Former one was proposed by Tam [16] where the thin layer of the 

jets compared as a vortex sheet, second one was established by Emami et al. [18] where the 

mean Reynolds stress took into their account. In the present model, the concepts of continuity 

and momentum equations has been derived by extending the Navier-Stokes equations where 

the turbulent viscous effects are measured moderately by using the Witz’s [19] formula for the 

fully expanded jet, whereas the turbulent viscous effects in the model [18] was studied for the 

nozzle exit level. On the other hand, the involvement of modified turbulent viscousity is the 

contrast of the present modified model and Tam’s [16] with Emami’s [18] model, but the 

similarity of present and Tam’s [16] models is that those have been analyzed by the fully 

expanded jet. consequently, the proposed model is completed through the formation of the 

isentropic equation where the fully expanded speed of sound is specified in the Bernoulli’s 

equation of energy. This expended speed of sound concept isolates the present model from the 

theory [18], nevertheless, the similar change of perturbated pressure gradient at nozzle exit is 

deemed in these two models. Whereas, in Tam’s model [16], the change of velocity gradient at 
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the nozzle exit for the inviscid supersonic jet is considered. Two explicit analytical solutions 

have been come out separately by using the cylindrical transformation due to the circular cross-

section at the nozzle exit. The first case of solution is determined for the inviscid jet which is 

the similar as Tam’s model [16] known as vortex sheet model, and second case of solution is 

modified one which is varied with the Emami et al. [18] model by the flow characteristics of 

fully expanded jet. The first mode of eigenvalues expansion has been considered to find the 

complete solutions where arbitrary nozzle pressure ratios and design Mach numbers are 

depends on the nozzle exit cross-sectional area. The centerline density profile and density 

contour plots, mesh density contours of shock-cell structures have been calculated separately 

through these two modified explicit solutions. Finally, the enhanced modified results are also 

compared with the reliable circular data of RSD experiment [52], original Emami et al. [18] 

and Tam’s [16] model to measure the accuracy of the modified model. One peer reviewed 

journal and two international conference proceedings have been published with these results 

which are cited by [15, 52, 53] in the references section.   

3.2 Cylindrical Co-ordinates System 

The cylindrical coordinate system is an effective three-dimensional coordinate system. 

Sometimes it is known as cylindrical polar coordinates system. Figure 3.1 is illustrated by the 

cylindrical co-ordinate system where is showing a transformation between Cartesian and Polar 

co-ordinates system. The origin of the system is that three coordinates can be specified as 𝑂 

which is the intersecting point of reference plane and the axis. The axis is variously referred to 

as a cylindrical axis ሺ𝑍ሻ and the other sides ሺ𝑋, 𝑌ሻ perpendicular to the cylindrical axis ሺ𝑍ሻ are 

called the radial lines. The distance from the cylindrical axis is called the radial distance or 

radius ሺ𝑟ሻ, and the angular coordinates ሺ𝜃ሻ are called the angular position or azimuth. The 

radius and azimuth are collectively called polar coordinates. This is because it matches the two-

dimensional polar system in the plane that passes through the parallel points of the reference 

plane. If the reference plane is considered horizontal, then third coordinate is called the axial 

distance ሺ𝑧ሻ.  

Considering 𝑝ሺ𝑟, 𝜃, 𝑧ሻ be any point in a reference plane where 𝑟, 𝜃, and 𝑧 are specified 

with their usual meaning, then the following relation can be derived, 

𝑥 ൌ 𝑟𝑐𝑜𝑠ሺ𝜃ሻ, 𝑦 ൌ 𝑟𝑠𝑖𝑛ሺ𝜃ሻ, 𝑧 ൌ 𝑧, (3.1)
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where, 𝑟 ൒ 0, 0 ൑ 𝜃 ൑ 2𝜋 and െ∞ ൏ 𝑧 ൏ ∞ (3.2)

Expressing the cylindrical co-ordinates  𝑟, 𝜃, 𝑧 in terms of Cartesian co-ordinates 𝑥, 𝑦, 𝑧 yield,  

𝑟 ൌ ඥ𝑥ଶ ൅ 𝑦ଶ, 𝜃 ൌ tanିଵ ቀ
𝑦
𝑥

ቁ and z ൌ z.  (3.3)

Again, if 𝑅ሬ⃗  be a position vector of the point 𝑝ሺ𝑥, 𝑦, 𝑧ሻ, then it can be expressed as, 

𝑅ሬ⃗ ൌ 𝑥𝚤̂ ൅ 𝑦𝚥̂ ൅ 𝑧𝑘෠. (3.4)

𝑅ሬ⃗ ൌ 𝑟𝑐𝑜𝑠ሺ𝜃ሻ𝚤̂ ൅ 𝑟𝑠𝑖𝑛ሺ𝜃ሻ𝚥̂ ൅ 𝑧𝑘෠. (3.5)

Then the vector differential operator ∇ഥ can also be written as, 

In Cartesian form, ∇ഥൌ
𝜕

𝜕𝑥
𝚤̂ ൅

𝜕
𝜕𝑦

𝚥̂ ൅
𝜕

𝜕𝑧
𝑘෠. (3.6)

In cylindrical form, ∇ഥൌ
𝜕

𝜕𝑟
𝚤̂ ൅ ൬

1
𝑟

൰
𝜕

𝜕𝜃
𝚥̂ ൅

𝜕
𝜕𝑧

𝑘෠. (3.7)

By using the vector differential calculus, the Laplacian of vector differential operator in 

Cartesian to cylindrical form can be derived as, 

In cartesian form, ∇ଶൌ
𝜕ଶ

𝜕𝑥ଶ ൅
𝜕ଶ

𝜕𝑦ଶ ൅
𝜕ଶ

𝜕𝑧ଶ. (3.8)

In cylindrical form, ∇ଶൌ
𝜕ଶ

𝜕𝑟ଶ ൅ ൬
1
𝑟

൰
𝜕

𝜕𝑟
൅ ൬

1
𝑟ଶ൰

𝜕ଶ

𝜕𝜃ଶ ൅
𝜕ଶ

𝜕𝑧ଶ. (3.9)

On the other hand, the elementary arc-length in cylindrical co-ordinates can be written as, 

𝑑𝑠ଶ ൌ ሺ𝑑𝑟ሻଶ ൅ ሺ𝑟𝑑𝜃ሻଶ ൅ ሺ𝑑𝑧ሻଶ. (3.10)

The usages of cylindrical coordinates [54] are related with several rotating symmetric 

objects and phenomena centered on the axial direction (cylindrical axis), such as the flow of 

fluid through a duct or pipe with a circular cross section, the distribution of heat in a metal 

cylinder, the electromagnetic field generated by an electric current, straight wire, accretion 

disks in astronomy, and so on. 
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Fig. 3.1: Cylindrical Co-ordinates System 

3.3 Experimental Apparatus and Method 

A schematic drawing of experimental apparatus with a rainbow schlieren system is 

shown in Fig. 3.2. A blowdown wind tunnel with a high-pressure tank (𝟐𝒎𝟑) was used to 

provide the air flow to a cylindrical plenum chamber connected to a test nozzle. The high-

pressure dry air from the tank is stagnated in the plenum chamber and then discharged into the 

atmosphere through the test nozzle. The total temperature in the plenum chamber was equal to 

the room temperature, and the plenum pressure was controlled and maintained constant during 

the testing by a valve. The test nozzle is shown schematically in Fig. 3.3. It is made of acrylic 

and consists of a round Laval nozzle with a design Mach number of 1.5 followed by a constant-

area straight duct with an inner diameter of 10 mm and a length of 50 mm. The wall contour of 

the Laval nozzle has a sinusoidal curve over a range of parts A to B and the contour between 

the throat (part B) and exit (part C) is designed by the axisymmetric method of characteristics 

[55] to provide uniform and parallel flow in the nozzle exit plane at the design condition.  



-53- 
 

 

Fig. 3.2: Schmatic drawing of experimental apparatus with rainbow schlieren system. 

 

Fig. 3.3: Test nozzle with dimensions in mm. 

The jet issued from the nozzle was visualized by the rainbow schlieren deflectometry 

over a range of nozzle pressure ratios (NPR = pos/pb) from 2.0 to 4.5 where pos is the plenum 

pressure and pb the back pressure (= 101.8 kPa) or atmospheric pressure, and Tb (= 295.5 K) 

the ambient temperature.  

The rainbow schlieren system consists of rail-mounted optical components including a 

continuous 250 W metal halide light source with a 𝟑 𝒎𝒎  × 𝟓 0 𝝁𝒎  rectangular slit, 

collimating and decollimating lenses with a 𝟏𝟎𝟎 𝒎𝒎 diameter and 500 𝒎𝒎 focal length, a 

rainbow filter, and a digital camera (Nikon D7100) with a 𝟑𝟎 𝒎𝒎 diameter focusing lens of 

𝟔𝟎𝟎 𝒎𝒎 focal length. Figure 3.4 (a) shows a rainbow filter used in the present experiment and 

the corresponding calibration curve is displayed in Fig. 3.4 (b). The rainbow filter was 

fabricated in computer software and then printed digitally on a high-resolution 𝟑𝟓 𝒎𝒎 color 

film recorder. It has continuous hue variation from 𝑯𝒖𝒆 ൌ  𝟎 to 𝟑𝟔𝟎 𝒅𝒆𝒈 in a 𝟐. 𝟎 𝒎𝒎 wide 

strip, and the background hue is 𝑯𝒖𝒆 ൌ  𝟏𝟗𝟐 𝒅𝒆𝒈  in the present experiment. The 
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characteristics of the rainbow filter were performed by traversing the rainbow filter in intervals 

of 𝟐𝟎 𝝁𝒎 to the vertical (𝒚ሻ direction at the schlieren cutoff plane before starting experiment.  

	

	

Fig 3.4: Rainbow filter with calibration curve. 

The rays from the rectangular light source paralleled by the collimating lens traverse a 

transparent, refracting schlieren test area and are refocused by the decollimating lens to form 

an inverted image of the light source at the schlieren cutoff plane where the rainbow filter is 

placed. In rainbow schlieren systems, when a collimated light ray is deflected through the test 

area, a color image of the area revealing the ray deflections is formed on a recording medium 

of the digital camera. The schlieren image of the test area is digitized to obtain a direct 

quantification of the light deflections using the calibration curve of the rainbow filter. The 

camera output in the RGB format was digitized by a computer with 24-bit color frame grabber.  

In the present experiments, multiple viewing rainbow schlieren pictures were acquired 

over a range of nozzle angular angles from 0 𝑑𝑒𝑔 to 180 𝑑𝑒𝑔 by rotating the nozzle about its 

longitudinal axis (z axis) in equal angular intervals of 10 𝑑𝑒𝑔. These 19 schlieren pictures were 
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used for reconstruction of the jet density field. The detailed description for the reconstruction 

process is given in Awata et al. [56]. The jet three-dimensional density field was reconstructed 

using both Abel inversion method based upon the assumption of axisymmetric jets and the 

convolution back-projection (CBP) method. However, only those obtained from the CBP 

method are demonstrated in the present studies because the density fields obtained by the Abel 

inversion method produced some noises on the jet centerline. The principle of the rainbow 

schlieren deflectometry combined with the CBP method is also given by [28, 29]. 

3.4. Modified Model of Circular Jet 

In an off-design setup, a slightly moderated supersonic jet issued from a convergent-

divergent nozzle shown in Fig. 3.5 which is free from outside disturbance and considering the 

mean Reynolds number for the eddy viscosity. In this model, the jet has flowed through the 

axial direction ሺ𝑧ሻ and ሺ𝑟ሻ is the radial distance from the cylindrical axis where mixing thin 

layer of jet treated as a vortex sheet surface established by Tam’s [16]. Also, the emerged vortex 

surfaces are constructed in Cartesian shape for the fully developed jets. As a result, the shock-

cell structures are also narrowed to the inside of the vortex sheet. Since the perturbation 

methods are required in the motion of fluid, so the velocity ሺ𝑉ሻ, pressure ሺ𝑝ሻ and density ሺ𝜌ሻ 

can be stated as the sum of mean quantities with perturbated quantities entire the flow field: 

𝑉௜ ൌ 𝑉పഥ ൅ 𝑑𝑉௜ , 𝑉ത௭ ൌ 𝑈௝, 𝑉ത௫ ൌ 𝑉ത௬ ൌ 0,  𝑝 ൌ 𝑝௝ ൅ 𝑑𝑝 and 𝜌 ൌ 𝜌௝ ൅ 𝑑𝜌, (3.11)

 

Fig 3.5: Schematic diagram of the decaying shock-cell structures of underexpanded jet from 

convergent-divergent circular nozzle. 
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where, the notations 𝑑𝑉௜, 𝑑𝑝 , and 𝑑𝜌  are accustomed to perturbation associated velocity, 

pressure, and density in the shock-cell structures. Consequently,  𝑉ത௜  is indicating the mean 

value of velocities where suffix ሺ𝑖ሻ  bearing the 𝑥, 𝑦, 𝑧 axes. The fully expanded density, 

pressure, and velocity are labelled by the notation 𝜌௝, 𝑝௝,and 𝑈௝  respectively. Therefore, the 

perturbation relations (3.11) are applied to extend the Navier-Stokes equation through the Eqs. 

(2.35), (2.37), and (2.43) for the following equations of motion which are associated with 

Emami et al. [18] model where the exit results were compared only for the inviscid fluid. 

The equation of continuity, 𝜌௝
∂𝑑𝑉௜

𝜕𝑥௜
൅ 𝑈௝

𝜕𝑑𝜌
𝜕𝑧

ൌ 0, (3.12)

The momentum equation,  𝜌௝𝑈௝
𝜕𝑑𝑉௜

𝜕𝑧
൅

∂𝑑𝑝
𝜕𝑥௜

൅
4𝜇௧𝑈௝

3 𝜌௝

𝜕
𝜕𝑥௜

൬
𝜕𝑑𝜌
𝜕𝑧

൰ ൌ 0, (3.13)

The isentropic equation,  
𝑑𝑝
𝑑𝜌

ൌ 𝑎௝
ଶ, (3.14)

where, ሺ𝜕/𝜕𝑥𝑖ሻ  and 𝑎௝ represent the vector differential operator and expended speed of sound 

respectively. In Eq. (3.13), the turbulent viscosity ሺ𝜇௧ሻ is measured from the following formula, 

which is modified by the fully developed characteristics, because the eddy viscosity remains 

almost constant over the flow field of jet, based on this theme the original formula [19] was 

explored by the exit characteristics where the value of 𝜂 was 0.01: 

𝜇௧ ൌ 𝜂𝜌௕
଴.ଶ଼𝜌௝

଴.଻ଶ𝑈௝𝐷௝൫1 െ 0.16𝑀௝൯. (3.15)

 In Eq. (3.15), the notation 𝜂 is using for the best data fitting with the RSD experimental data. 

According to the Tam’s [16] model, the following homogeneous Eqs. (3.16) to (3.19) based on 

the kinematic and dynamic boundary conditions which are required for the governing Eqs. 

(3.12) to (3.14) where the nozzle exit pressure ሺ𝑝௘ሻ is greater than ambient pressure ሺ𝑝௕ሻ:   

𝑑𝑝ሺ𝑧, 𝑟 ൌ 0ሻ ൌ 0, (3.16)

𝜕ሺ𝑑𝑝ሻ
𝜕𝑧

ሺ𝑧 ൌ 0, 𝑟ሻ ൌ 0, (3.17)

𝑑𝑝 ൬𝑧 ൌ 0, 𝑟 ∈ ൤
𝐷௘

2
,
𝐷௝

2
൨൰ ൌ 0, (3.18)

𝑑𝑝 ൤𝑧 ൌ 0, 𝑟 ∈ ൬0,
𝐷௘

2
൰൨ ൌ ∆𝑝 ൌ 𝑝௘ െ 𝑝௕, (3.19)
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here, the symbols 𝐷௘ and 𝐷௝ are used for the nozzle exit diameter and expanded diameter of jet 

respectively. The condition (3.16) is applied for the nozzle exit region to appear the shock-cell 

structures, because of variation of pressure. Also, the perturbated pressure is zero at the center 

and jet exit boundary to expanded boundary with oust side which are expressed by Eqs. (3.18) 

and (3.17) separately. The pressure gradient is also zero shown at the nozzle exit by Eq. (3.19). 

Using Eq. (3.14) in Eqs. (3.12) and (3.13), then the followings are found: 

𝜌௝𝑈௝
∂𝑑𝑉௜

𝜕𝑥௜
൅ 𝑀௝

ଶ 𝜕𝑑𝑝
𝜕𝑧

ൌ 0, (3.20)

 𝜌௝𝑈௝
𝜕𝑑𝑉௜

𝜕𝑧
൅

∂𝑑𝑝
𝜕𝑥௜

൅
4
3

𝜇௧𝑈௝

𝜌௝𝑎௝
ଶ

𝜕
𝜕𝑥௜

൬
𝜕𝑑𝑝
𝜕𝑧

൰ ൌ 0, (3.21)

where, 𝑀௝ ൌ
𝑈௝

𝑎௝
, (3.22)

here, 𝑀௝ is called the fully expanded jet Mach number. Now differentiating Eqs. (3.21) and 

(3.20) with respect to 𝑥௜ and 𝑧 respectively, then the followings are derived as, 

𝜌௝𝑈௝
∂ଶ𝑑𝑉௜

𝜕𝑧𝜕𝑥௜
൅

𝜕ଶ𝑑𝑝
𝜕𝑥௜

ଶ ൅
4
3

𝜇௧𝑈௝

𝜌௝𝑎௝
ଶ

𝜕ଶ

𝜕𝑥௜
ଶ ൬

𝜕𝑑𝑝
𝜕𝑧

൰ ൌ 0 (3.23)

𝜌௝𝑈௝
∂ଶ𝑑𝑉௜

𝜕𝑥௜𝜕𝑧
൅ 𝑀௝

ଶ 𝜕ଶ𝑑𝑝
𝜕𝑧ଶ ൌ 0. (3.24)

By subtracting Eq. (3.23) to (3.24), the required pressure differential equation is become as, 

𝜕ଶ𝑑𝑝
𝜕𝑥௜

ଶ ൅ 𝛼
𝜕ଶ

𝜕𝑥௜
ଶ ൬

𝜕𝑑𝑝
𝜕𝑧

൰ െ 𝑀௝
ଶ 𝜕ଶ𝑑𝑝

𝜕𝑧ଶ ൌ 0, (3.25)

where, α ൌ
4
3

𝜇௧𝑈௝

𝜌௝𝑎௝
ଶ. (3.26)

Using Eq. (3.9) into Eq. (3.25) for the transforming the Laplacian operator Cartesian to 

cylindrical form, because of the nozzle exit is circular cross-section, then it is found as, 

𝜕ଶ𝑑𝑝
𝜕𝑟ଶ ൅

1
𝑟

𝜕𝑑𝑝
𝜕𝑟

൅
𝜕ଶ𝑑𝑝
𝜕𝑧ଶ ൅ 𝛼 ቆ

𝜕ଷ𝑑𝑝
𝜕𝑟ଶ𝜕𝑧

൅
1
𝑟

𝜕ଶ𝑑𝑝
𝜕𝑟𝜕𝑧

൅
𝜕ଷ𝑑𝑝
𝜕𝑧ଷ ቇ െ 𝑀௝

ଶ 𝜕ଶ𝑑𝑝
𝜕𝑧ଶ ൌ 0. 
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∴ 𝛼 ቆ
𝜕ଷ𝑑𝑝
𝜕𝑧ଷ ൅

𝜕ଷ𝑑𝑝
𝜕𝑟ଶ𝜕𝑧

൅
1
𝑟

𝜕ଶ𝑑𝑝
𝜕𝑟𝜕𝑧

ቇ ൅ ሺ1 െ 𝑀௝
ଶሻ

𝜕ଶ𝑑𝑝
𝜕𝑧ଶ ൅

𝜕ଶ𝑑𝑝
𝜕𝑟ଶ ൅

1
𝑟

𝜕𝑑𝑝
𝜕𝑟

ൌ 0. (3.27)

Thus, Eq. (3.27) is called the perturbation pressure partial differential equation for the circular 

underexpanded jet. A method of separation of variables for the eigenfunction expansion is 

applied on Eq. (3.27) to find the explicit solution of the required linearized model. Thus, the 

perturbated pressure 𝑑𝑝ሺ𝑟, 𝑧ሻ can be considered as, 

𝑑𝑝ሺ𝑟, 𝑧ሻ ൌ 𝑅ሺ𝑟ሻ ൈ 𝑍ሺ𝑧ሻ. (3.28)

By utilizing Eqs. (3.27) and (3.28), the following form is obtained, 

𝑅" ൅ 𝑅ᇱ/𝑟 
𝑅

ൌ
െ𝛼𝑍ᇱᇱᇱሺ𝑧ሻ ൅ ൫𝑀௝

ଶ െ 1൯𝑍"ሺ𝑧ሻ

𝛼𝑍ᇱሺ𝑧ሻ ൅ 𝑍ሺ𝑧ሻ
ൌ െ𝜆ଶ ,  (3.29)

where, 𝜆 is the eigen value, and the negative sign indicates that the shock-cells are decaying 

downstream wise with increasing the distance along the flow direction from the nozzle exit. 

Using the first and third part of Eq. (3.29), then it is given as, 

𝑟ଶ𝑅"ሺ𝑟ሻ ൅ 𝑟𝑅ᇱሺ𝑟ሻ ൅ ሾሺ𝑟𝜆ሻଶ െ 0ሿ𝑅ሺ𝑟ሻ ൌ 0,  (3.30)

Equation (3.30) is a Bessel’s differential equation of zeroth order, then the following general 

solution is obtained by using the series solution technique of ordinary differential equations: 

𝑅ሺ𝑟ሻ ൌ 𝐶ଵ𝐽଴ሺ𝜆𝑟ሻ ൅ 𝐶ଶ𝑌଴ሺ𝜆𝑟ሻ,  (3.31)

where, 𝐽଴ሺ𝜆𝑟ሻ ൌ 1 ൅ ෍
ሺെ1ሻ௡

𝑛!
ൈ ൬

𝜆𝑟
2

൰
ଶ௡ஶ

௡ୀଵ

; (3.32)

and, 𝑌଴ሺ𝜆𝑟ሻ ൌ
2
𝜋

൤𝐸ெ ൅ ln ൬
𝜆𝑟
2

൰൨ 𝐽଴ሺ𝜆𝑟ሻ ൅ ෍
ሺെ1ሻ௡ାଵ𝐻௡

ሺ𝑛!ሻଶ

ஶ

௡ୀଵ

൬
𝜆𝑟
2

൰
ଶ௡

, (3.33)

where, 𝐽଴ሺ𝜆𝑟ሻ and 𝑌଴ሺ𝜆𝑟ሻ are the Bessel’s function of first kind and second kind respectively, 

and 𝐶ଵ, 𝐶ଶ are also constants. In Eq. (3.33), 𝐸ெ is called the Euler Masecheroni constant that 

approximate value is evaluated by.  
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𝐸ெ ൎ lim
௡→ஶ

ሾ𝐻௡ െ lnሺ𝑛ሻሿ ≅ 0.5772 (3.34)

where, 𝐻௡ ൌ ෍ ൬
1
𝑛

൰ .

ஶ

௡ୀଵ

 (3.35)

 Again, by using the last two terms of Eq. (3.29), the following form is obtained:  

െ𝛼𝑍ᇱᇱᇱሺ𝑧ሻ ൅ ൫𝑀௝
ଶ െ 1൯𝑍"ሺ𝑧ሻ

𝛼𝑍ᇱሺ𝑧ሻ ൅ 𝑍ሺ𝑧ሻ
ൌ െ𝜆ଶ,  (3.36)

∴ െ𝛼𝑍ᇱᇱᇱሺ𝑧ሻ ൅ ൫𝑀௝
ଶ െ 1൯𝑍ᇱᇱሺ𝑧ሻ ൅ 𝜆ଶሾ𝛼𝑍ᇱሺ𝑧ሻ ൅ 𝑍ሺ𝑧ሻሿ ൌ 0. (3.37)

Eq. (3.37) is ordinary differential equation where the term 𝛼 depends on the turbulent viscosity 

ሺ𝜇௧ሻ that play an important rule on flow model. There are two possible cases have been raised 

for the 𝜇௧ ൌ 0 and 𝜇௧ ് 0 which are described as follows: 

Case -I: When 𝜇௧ ൌ 0, the jet becomes an inviscid and there is no turbulent viscosity and 

molecular diffusion in the flow. Then flow model is turned into the vortex sheet shock-cell 

model for the inviscid jet where first Fourier mode is used to solve the model. So, Eq. (3.37) is 

become by the following form where the term 𝛼 ൌ 0,   

𝑍"ሺ𝑧ሻ  ൅
𝜆ଶ

൫𝑀௝
ଶ െ 1൯

𝑍ሺ𝑧ሻ ൌ 0  (3.38)

The general solution of the homogeneous ordinary differential equation (3.38) is given by, 

𝑍ሺ𝑧ሻ ൌ 𝐶ଷ cos

⎝

⎛ 𝜆𝑧

ට𝑀௝
ଶ െ 1

⎠

⎞ ൅ 𝐶ସ sin

⎝

⎛ 𝜆𝑧

ට𝑀௝
ଶ െ 1

⎠

⎞. (3.39)

In Eq. (3.39), the constant 𝐶ଷand 𝐶ସ must be met up by the boundary conditions. Using Eqs. 

(3.28), (3.31) and (3.39), the required general solution is formed as, 

𝑑𝑝ሺ𝑟, 𝑧ሻ ൌ ሾ𝐶ଵ𝐽଴ሺ𝜆𝑟ሻ ൅ 𝐶ଶ𝑌଴ሺ𝜆𝑟ሻሿ ൈ

⎣
⎢
⎢
⎡
𝐶ଷ cos

⎝

⎛ 𝜆𝑧

ට𝑀௝
ଶ െ 1

⎠

⎞ ൅ 𝐶ସ sin

⎝

⎛ 𝜆𝑧

ට𝑀௝
ଶ െ 1

⎠

⎞

⎦
⎥
⎥
⎤
 (3.40)
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For the boundary condition (3.16) at 𝑟 ൌ 0,  𝐶ଶ ൌ 0, Eq. (3.40) becomes, 

𝑑𝑝ሺ𝑟, 𝑧ሻ ൌ 𝐶ଵ𝐽଴ሺ𝜆𝑟ሻ ൈ

⎣
⎢
⎢
⎡
𝐶ଷ cos

⎝

⎛ 𝜆𝑧

ට𝑀௝
ଶ െ 1

⎠

⎞ ൅ 𝐶ସ sin

⎝

⎛ 𝜆𝑧

ට𝑀௝
ଶ െ 1

⎠

⎞

⎦
⎥
⎥
⎤
   (3.41)

Again, applying the condition (3.17), the perturbated pressure gradient 𝜕ሺ𝑑𝑝ሻ/𝜕𝑧 ൌ 0 where 

𝑧 ൌ 0 then 𝐶ସ ൌ 0. So, Eq. (3.41) can be written as, 

𝑑𝑝ሺ𝑟, 𝑧ሻ ൌ ሺ𝐶ଵ𝐶ଷሻ ൈ 𝐽଴ሺ𝜆𝑟ሻ cos

⎝

⎛ 𝜆𝑧

ට𝑀௝
ଶ െ 1

⎠

⎞  (3.42)

Since, the jet is fully developed, so it’s radius would be 𝑟 ൌ ሺ𝐷௝/2ሻ. Then the condition (3.18) 

is appropriate under this circumstance for Eq. (3.42) which is given by   

𝐽଴ሺ𝛽௠ሻ ൌ 0. (3.43)

where, 𝛽௡ ൌ 𝜆
𝐷௝

2
, and 𝑛 ൌ 1,2,3, …. (3.44)

here, 𝛽ଵ, 𝛽ଶ and so on are called the Bessel’s zeros of Eq. (3.43) and the numbers ሺ𝑚ሻ indicate 

the mode of Bessel’s zeros. According to this condition, Eq. (3.42) becomes the following 

expansion series where the coefficients convey the flow characteristics of jet. 

𝑑𝑝ሺ𝑟, 𝑧ሻ ൌ ෍ 𝐴௠ ൈ 𝐽଴ ቆ
2𝛽௠𝑟

𝐷௝
ቇ cos

⎝

⎛ 2𝛽௠𝑧

𝐷௝ට𝑀௝
ଶ െ 1

⎠

⎞ ,

ஶ

௠ୀଵ

 (3.45)

It is noted that constant 𝐶ଵ, 𝐶ଷ turns to the constant 𝐴௡ for the series (3.45). Since all the eigen 

values bear the flow characteristics of jets sequentially, as though fluid particles extend 

significantly. Finally, Eq. (3.45) is satisfied by the condition (3.19) at the nozzle exit where the 

radius vector 𝑟 ∈ ቀ0, ஽೐

ଶ
ቁ , then followings formula has been derived, 

𝑑𝑝 ቆ0, 𝑟 ∈ ൬0,
𝐷௘

2
൰ቇ ൌ ෍ 𝐴௠ ൈ 𝐽଴ ቆ

2𝛽௠𝑟
𝐷௝

ቇ

ஶ

௠ୀଵ

, (3.46)
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⇒  𝑟𝐽଴ ቆ
2𝛽௠𝑟

𝐷௝
ቇ ൈ 𝑑𝑝 ቆ0, 𝑟 ∈ ൬0,

𝐷௘

2
൰ቇ ൌ ෍ 𝐴௠ ൈ 𝑟𝐽଴

ଶ ቆ
2𝛽௠𝑟

𝐷௝
ቇ

ஶ

௠ୀଵ

, 
[Since jets 

are fully 

developed]
⇒  න 𝑟𝐽଴ ቆ

2𝛽௠𝑟
𝐷௝

ቇ ൈ 𝑑𝑝 ቆ0, 𝑟 ∈ ൬0,
𝐷௘

2
൰ቇ 𝑑𝑟

஽ೕ
ଶ

଴

ൌ ෍ 𝐴௠ ൈ න 𝑟𝐽଴
ଶ ቆ

2𝛽௠𝑟
𝐷௝

ቇ

஽ೕ
ଶ

଴

𝑑𝑟

ஶ

௠ୀଵ

, 

∴ ෍ 𝐴௠

ஶ

௠ୀଵ

ൌ

⎣
⎢
⎢
⎢
⎡

න 𝑟𝐽଴ ቆ
2𝛽௠𝑟

𝐷௝
ቇ ൈ 𝑑𝑝 ቆ0, 𝑟 ∈ ൬0,

𝐷௘

2
൰ቇ 𝑑𝑟

஽ೕ
ଶ

଴
⎦
⎥
⎥
⎥
⎤

/

⎣
⎢
⎢
⎢
⎡

න 𝑟𝐽଴
ଶ ቆ

2𝛽௠𝑟
𝐷௝

ቇ 𝑑𝑟

஽ೕ
ଶ

଴
⎦
⎥
⎥
⎥
⎤

, (3.47)

Equation (3.47) is established according to the Fourier formula for the expansion of Bessel’s 

function. Now applying the integral recurrence formula of Bessel’s function and imposing the 

pressure raise with the particular range of developing jets, then Eq. (3.47) gives, 

𝐴௠ ൌ

⎣
⎢
⎢
⎢
⎡

න 𝑟𝐽଴ ቆ
2𝛽௠𝑟

𝐷௝
ቇ ൈ ሺ∆𝑝ሻ𝑑𝑟

஽೐
ଶ

଴

൅ න ሺ0ሻ ൈ 𝑑𝑟

஽ೕ
ଶ

஽೐
ଶ ⎦

⎥
⎥
⎥
⎤

/

⎣
⎢
⎢
⎢
⎡

න 𝑟𝐽଴
ଶ ቆ

2𝛽௠𝑟
𝐷௝

ቇ 𝑑𝑟

஽ೕ
ଶ

଴
⎦
⎥
⎥
⎥
⎤

  

⇒ 𝐴௡ ൌ

⎣
⎢
⎢
⎢
⎡
න 𝑟𝐽଴ ቆ

2𝛽௠𝑟
𝐷௝

ቇ ൈ ሺ∆𝑝ሻ𝑑𝑟

஽೐
ଶ

଴
⎦
⎥
⎥
⎥
⎤

/

⎣
⎢
⎢
⎡൬

𝐷௝
2 ൰

ଶ

2
𝐽ଵ

ଶ ቌ
2𝛽௠ ൈ

𝐷௝
2

𝐷௝
ቍ 

⎦
⎥
⎥
⎤
,  

⇒ 𝐴௠ ൌ

⎣
⎢
⎢
⎢
⎡

2∆𝑝

൬
2𝛽௠
𝐷௝

൰
ଶ න ቆ

2𝛽௠𝑟
𝐷௝

ቇ 𝐽଴ ቆ
2𝛽௠𝑟

𝐷௝
ቇ 𝑑 ቆ

2𝛽௠𝑟
𝐷௝

ቇ

ଶఉ೘
஽ೕ

ൈ
஽೐
ଶ

଴
⎦
⎥
⎥
⎥
⎤

/ ቈ൬
𝐷௝

2
൰

ଶ

𝐽ଵ
ଶሺ𝛽௠ሻ ቉,  

        ⇒ 𝐴௠ ൌ

⎣
⎢
⎢
⎢
⎡

2∆𝑝

൬
2𝛽௠
𝐷௝

൰
ଶ ൈ ቈቆ

2𝛽௠𝑟
𝐷௝

ቇ 𝐽ଵ ቆ
2𝛽௠𝑟

𝐷௝
ቇ቉

଴

ଶఉ೘
஽ೕ

ൈ
஽೐
ଶ

⎦
⎥
⎥
⎥
⎤

/ ቈ൬
𝐷௝

2
൰

ଶ

𝐽ଵ
ଶሺ𝛽௠ሻ ቉,  

⇒ 𝐴௠ ൌ

⎣
⎢
⎢
⎢
⎡

2∆𝑝

൬
2𝛽௠
𝐷௝

൰
ଶ ൈ ቆ

2𝛽௠

𝐷௝
ൈ

𝐷௘

2
ቇ ൈ 𝐽ଵ ቆ

2𝛽௠

𝐷௝
ൈ

𝐷௘

2
ቇ

⎦
⎥
⎥
⎥
⎤

/ ቈ൬
𝐷௝

2
൰

ଶ

ൈ 𝐽ଵ
ଶሺ𝛽௠ሻ ቉,  

∴ 𝐴௠ ൌ
൬2∆𝑝 ൈ

𝐷௘
𝐷௝

൰ ൈ 𝐽ଵ ൬𝛽௠
𝐷௘
𝐷௝

൰

𝛽௡ ൈ 𝐽ଵ
ଶሺ𝛽௠ሻ

. (3.48)

By using Eq. (3.45), the particular form of Eq. (3.40) can be written as, 
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𝑑𝑝ሺ𝑟, 𝑧ሻ ൌ ෍
൬2∆𝑝 ൈ

𝐷௘
𝐷௝

൰ ൈ 𝐽ଵ ൬𝛽௠
𝐷௘
𝐷௝

൰

𝛽௡ ൈ 𝐽ଵ
ଶሺ𝛽௠ሻ

ൈ 𝐽଴ ቆ
2𝛽௠𝑟

𝐷௝
ቇ cos

⎝

⎛ 2𝛽௠𝑧

𝐷௝ට𝑀௝
ଶ െ 1

⎠

⎞ ,

ஶ

௠ୀଵ

   (3.49)

 Equation (3.49) is the complete solution of Eq. (3.27) where the viscosity 𝜇௧ ൌ 0 .  Putting the 

value of Eq. (3.49) in the pressure term of Eq. (3.11), then the total pressure equation becomes, 

𝑝 ൌ 𝑝௝ ൅ ቆ2∆𝑝 ൈ
𝐷௘

𝐷௝
ቇ ෍

𝐽ଵ ൬𝛽௠
𝐷௘
𝐷௝

൰

𝛽௠𝐽ଵ
ଶሺ𝛽௠ሻ

𝐽଴ ቆ
2𝛽௠𝑟

𝐷௝
ቇ cos

⎝

⎛ 2𝛽௠𝑧

𝐷௝ට𝑀௝
ଶ െ 1

⎠

⎞ ,

ஶ

௠ୀଵ

   

⇒ 𝑝 ൌ 𝑝௝ ൅ 2ሺ𝑝௘ െ 𝑝௕ሻ ቆ
𝐷௘

𝐷௝
ቇ ൈ

⎣
⎢
⎢
⎡

෍
𝐽ଵ ൬𝛽௠

𝐷௘
𝐷௝

൰

𝛽௠𝐽ଵ
ଶሺ𝛽௠ሻ

𝐽଴ ቆ
2𝛽௠𝑟

𝐷௝
ቇ cos

⎝

⎛ 2𝛽௠𝑧

𝐷௝ට𝑀௝
ଶ െ 1

⎠

⎞
ஶ

௠ୀଵ
⎦
⎥
⎥
⎤

 

∴
𝑝
𝑝௝

ൌ 1 ൅ 2 ቆ
𝑝௘

𝑝௝
െ

𝑝௕

𝑝௝
ቇ ቆ

𝐷௘

𝐷௝
ቇ ൈ

⎣
⎢
⎢
⎡

෍
𝐽ଵ ൬𝛽௠

𝐷௘
𝐷௝

൰

𝛽௠𝐽ଵ
ଶሺ𝛽௠ሻ

𝐽଴ ቆ
2𝛽௠𝑟

𝐷௝
ቇ cos

⎝

⎛ 2𝛽௠𝑧

𝐷௝ට𝑀௝
ଶ െ 1

⎠

⎞
ஶ

௠ୀଵ
⎦
⎥
⎥
⎤
   (3.50)

Since the extended pressure has the tendency to make balance with ambient pressure at the 

boundary of extended diameter ൫𝐷௝൯, then ratio of ሺ𝑝/𝑝௝ሻ is also tends to ratio  ሺ𝑝/𝑝௕ሻ. In 

mathematically,  

𝑝
𝑝௝

ൌ
𝑝

𝑝௕
 (3.51)

Therefore, Eq. (3.50) becomes as the following required explicit form of normalized pressure, 

𝑝
𝑝௕

ൌ 1 ൅ 2 ൬
𝑝௘

𝑝௕
െ 1൰ ቆ

𝐷௘

𝐷௝
ቇ

⎣
⎢
⎢
⎡

෍
𝐽ଵ ൬𝛽௠

𝐷௘
𝐷௝

൰

𝛽௠𝐽ଵ
ଶሺ𝛽௠ሻ

𝐽଴ ቆ2𝛽௠
𝐷௘

𝐷௝

𝑟
𝐷௘

ቇ cos

⎝

⎛ 2𝛽௠

ට𝑀௝
ଶ െ 1

𝐷௘

𝐷௝

𝑧
𝐷௘

⎠

⎞
ஶ

௠ୀଵ
⎦
⎥
⎥
⎤
  (3.52)

Again, the density of underexpanded jet can also be measured from the pressure equation (3.52) 

by applying Eq. (2.69), then the pressure and density are related as, 

𝑝
𝑝௝

ൌ
𝑝

𝑝௕
ൌ ቆ

𝜌
𝜌௝

ቇ
ఊ

,  (3.53)
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The symbol 𝛾 is the specific heat constant and the extended density is differed from the ambient 

density,  𝑖. 𝑒 𝜌௝ ് 𝜌௕, then Eq. (3.52) turns to, 

𝜌
 𝜌௝

ൌ 1 ൅
2
𝛾

൬
𝑝௘

𝑝௕
െ 1൰ ቆ

𝐷௘

𝐷௝
ቇ ൈ 𝑑𝜌௔௣ ൬

𝑟
𝐷௘

,
𝑧

𝐷௘
൰, (3.54)

where, 𝑑𝜌௔௣ ൬
𝑟

𝐷௘
,

𝑧
𝐷௘

൰ ൌ

⎣
⎢
⎢
⎡

෍
𝐽ଵ ൬𝛽௠

𝐷௘
𝐷௝

൰

𝛽௠𝐽ଵ
ଶሺ𝛽௠ሻ

𝐽଴ ቆ2𝛽௠
𝐷௘

𝐷௝

𝑟
𝐷௘

ቇ cos

⎝

⎛ 2𝛽௠

ට𝑀௝
ଶ െ 1

𝐷௘

𝐷௝

𝑧
𝐷௘

⎠

⎞
ஶ

௠ୀଵ
⎦
⎥
⎥
⎤
 (3.55)

But Eq. (3.54) can be de formed as, 

𝜌 ൌ 𝜌௝ ቈ1 ൅
2
𝛾

൬
𝑝௘

𝑝଴
ൈ 𝑁𝑃𝑅 െ 1൰ ቆ

𝐷௘

𝐷௝
ቇ ൈ 𝑑𝜌௔௣ ൬

𝑟
𝐷௘

,
𝑧

𝐷௘
൰቉. (3.56)

In Eq. (3.54), 𝑁𝑃𝑅 ൌ ሺ𝑝଴/𝑝௕ሻ is called nozzle pressure ratio of the nozzle stagnation pressure 

(𝑝଴) to the ambient pressure ሺ𝑝௕ሻ. And the ratio ሺ𝑝௘/𝑝଴ሻ obey the relation (2.73) through, 

𝑝଴

𝑝௘
ൌ ൬1 ൅

𝛾 െ 1
2

𝑀௘
ଶ൰

ఊ
ఊିଵ

, (3.57)

where, 𝑀௘ is the design Mach number or exit Mach number and the extended Mach number 

൫𝑀௝൯ can also be measured from Eq. (2.73) in terms of 𝑁𝑃𝑅 as, 

𝑁𝑃𝑅 ൌ
𝑝଴

𝑝௝
ൌ ൬1 ൅

𝛾 െ 1
2

𝑀௝
ଶ൰

ఊ
ఊିଵ

,  

∴ 𝑀௝ ൌ ඨ
2

𝛾 െ 1
൬𝑁𝑃𝑅

ఊିଵ
ఊ െ 1൰ (3.58)

It is very important to know that the jet flow is only effective within the range of jet operating 

conditions which is defined by 𝑀௝ and 𝑀௘ as, 

 ห𝑀௝
ଶ െ 𝑀௘

ଶห ൏ 1, (3.59)

On the other hand, according to the properties of isentropic flow where stagnation temperature 

ሺ𝑇଴ሻ  and the ambient Temperature ሺ𝑇௕ሻ are equal, the following assumptions are required as, 
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𝜌௝

𝜌௕
ൌ

𝜌௝

𝜌଴
ൈ

𝜌଴

𝜌௕
 (3.60)

Using Eqs. (2.3) and (2.69) in (3.60), then  

𝜌௝

𝜌௕
ൌ ൬

𝑝௝

𝑝଴
൰

ଵ/ఊ

ൈ ቌ

𝑝଴
𝑅𝑇଴
𝑝௕

𝑅𝑇௕

ቍ  

∴
𝜌௝

𝜌௕
ൌ ൬

𝑝௝

𝑝଴
൰

ଵ/ఊ

ൈ
𝑝଴

𝑝௕
 (3.61)

Using Eq. (3.51), then Eq. (3.61) can also be written by 

𝜌௝ ൌ 𝜌௕ ൥൬
𝑝௕

𝑝଴
൰

ଵ
ఊ

ൈ
𝑝଴

𝑝௕
൩ ൌ 𝜌௕ ൈ 𝑁𝑃𝑅

ఊିଵ
ఊ  (3.62)

Through Eq. (3.62), the density equation (3.56) stands for 

𝜌
𝜌௕

ൌ 𝑁𝑃𝑅
ఊିଵ

ఊ ቈ1 ൅
2
𝛾

൬
𝑝௘

𝑝଴
ൈ 𝑁𝑃𝑅 െ 1൰ ቆ

𝐷௘

𝐷௝
ቇ ൈ 𝑑𝜌௔௣ ൬

𝑟
𝐷௘

,
𝑧

𝐷௘
൰቉, (3.63)

which is the normalized density profile of the underexpanded jet. In Eqs. (3.52) and (3.63), the 

ratio ൫𝐷௘/𝐷௝൯ can be evaluated by using Eq. (2.78) as, 

𝐴௘

𝐴௝
ൌ ቌ

𝐷௘
𝐷∗

𝐷௝
𝐷∗

ቍ

ଶ

ൌ
𝑀௝

𝑀௘
ቈ
ሺ 𝛾 െ 1ሻ 𝑀௘

ଶ ൅ 2
ሺ 𝛾 െ 1ሻ 𝑀௝

ଶ ൅ 2
቉

ఊାଵ
ଶሺఊିଵሻ

.  

∴
𝐷௘

𝐷௝
ൌ ඩ𝑀௝

𝑀௘
ቈ
ሺ 𝛾 െ 1ሻ 𝑀௘

ଶ ൅ 2
ሺ 𝛾 െ 1ሻ 𝑀௝

ଶ ൅ 2
቉

ఊାଵ
ଶሺఊିଵሻ

. (3.64)

Therefore, the theoretical pressure and density prediction of fully expanded inviscid jet can 

be performed by Eqs. (3.52) and (3.63) respectively where 𝑁𝑃𝑅, 𝑀௘,  and 𝛾  have to be 

considered as preassigned parameter. Centre line measures and mesh contours of pressure and 

density can also be demonstrated through these assumptions linking with the source [52].  
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Case-II: When 𝜇௧ ് 0, then the turbulent viscosity has to consider in the flow of jet and Eq.  

(3.37) is remain unchanged. Then the modified model obeys the mean flow model proposed by 

Emami et al. [18] for the round jet. To find the explicit solution of underexpanded jet for the 

case-II where coefficient 𝛼 ് 0, Eq. (3.37) is reformed by, 

𝑍ᇱᇱᇱሺ𝑧ሻ ൅ ቆ
1 െ 𝑀௝

ଶ

𝛼
ቇ 𝑍ᇱᇱሺ𝑧ሻ െ 𝜆ଶ𝑍ᇱሺ𝑧ሻ െ

𝜆ଶ

𝛼
𝑍ሺ𝑧ሻ ൌ 0, (3.65)

Equation (3.65) is a third order homogeneous ordinary differential equation with constant 

coefficient. Now, for a trail solution 𝑍ሺ𝑧ሻ ൌ 𝑒ఙ௭, the characteristics equation is given by 

𝜎ଷ ൅ ቆ
1 െ 𝑀௝

ଶ

𝛼
ቇ 𝜎ଶ െ 𝜆ଶ𝜎 െ

𝜆ଶ

𝛼
ൌ 0. (3.66)

In Eq. (3.66) is a third-degree polynomial that has three roots. Due to the Descartes' rule of 

signs for Eq. (3.66) where no change of sign has been occurred two times and change of sign 

occurred one time, so there has one real root and two complex roots. The well-known 

Cardano’s formula is applied to solve Eq. (3.66), then considering a general form of polynomial 

of degree three is given by 

𝜎ଷ ൅ 𝑎ଵ𝜎ଶ ൅ 𝑎ଶ𝜎 ൅ 𝑎ଷ ൌ 0, (3.67)

where, Eq. (3.66) and Eq. (3.67) are identical. According to the Cardano’s formula, three 

roots 𝑆ଵ, 𝑆ଶ, and 𝑆ଷ of Eq. (3.67) can be written as, 

𝑆ଵ ൌ 𝑆 ൅ 𝑇 െ
𝑎ଵ

3
, 𝑆ଶ ൌ െ

1
2

ሺ𝑆 ൅ 𝑇ሻ െ
𝑎ଵ

3
൅ 𝑖

√3
2

ሺ𝑆 െ 𝑇ሻ,  

𝑆ଷ ൌ െ
1
2

ሺ𝑆 ൅ 𝑇ሻ െ
𝑎ଵ

3
െ 𝑖

√3
2

ሺ𝑆 െ 𝑇ሻ, 

(3.68)

In Eq. (3.68), the used symbols 𝑆 and 𝑇 are real numbers, whereas 𝑖 is the complex number. 

The coefficient 𝑎ଵ, 𝑎ଶ, and 𝑎ଷ are bear the following values, 

𝑎ଵ ൌ
1 െ 𝑀௝

ଶ

𝛼
, 𝑎ଶ ൌ െ𝜆ଶ, 𝑎ଷ ൌ െ

𝜆ଶ

𝛼
. (3.69)
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Also, the real 𝑆 and 𝑇 in Eq. (3.68) holds the following formula to make the meaningful roots 

of Eq. (3.67) as, 

𝑆 ൌ ට𝑅 ൅ ඥ𝑄ଷ ൅ 𝑅ଶ
య

, 𝑇 ൌ ට𝑅 െ ඥ𝑄ଷ ൅ 𝑅ଶ
య

; (3.70)

where, the quantities 𝑄 and 𝑅 bear the below figures which are given by 

𝑄 ൌ
3𝑎ଶ െ 𝑎ଵ

ଶ

9
, 𝑅 ൌ

9𝑎ଵ𝑎ଶ െ 7𝑎ଷ െ 2𝑎ଵ
ଷ

54
. (3.71)

The general solution of Eq. (3.65) can be written with the three 𝑆ଵ,  𝑆ଶand 𝑆ଷ characteristics 

roots of the indicial Eq. (3.66) as, 

𝑍ሺ𝑧ሻ ൌ 𝐶ହ𝑒ௌభ௭ ൅ 𝐶଺𝑒ௌమ௭ ൅ 𝐶଻𝑒ௌయ௭ (3.72)

⇒ 𝑍ሺ𝑧ሻ ൌ 𝐶ହ𝑒ቀௌା்ି௔భ
ଷ ቁ௭ ൅ 𝐶଺𝑒

൭ିଵ
ଶሺௌା்ሻି௔భ

ଷ ା௜√ଷ
ଶ ሺௌି்ሻ൱௭

൅ 𝐶଻𝑒
൭ିଵ

ଶሺௌା்ሻି௔భ
ଷ ି௜√ଷ

ଶ ሺௌି்ሻ൱௭
, 

∴ 𝑍ሺ𝑧ሻ ൌ 𝐶ହ𝑒ቀௌା்ି௔భ
ଷ ቁ௭ ൅ 𝑒ቂିଵ

ଶሺௌା்ሻି௔భ
ଷ ቃ௭ ቊ𝐶଺𝑒௜√ଷ

ଶ ሺௌି்ሻ௭ ൅ 𝐶଻𝑒ି௜√ଷ
ଶ ሺௌି்ሻ௭ቋ. (3.73)

Since the postulation of isentropic flow is deemed the wave equation where damped oscillation 

has to demand by the system. Omitting the term with arbitrary constant 𝐶ହ, the asking solution 

(3.73) is formed where terms with arbitrary constant 𝐶଺, and 𝐶଻ are containing as,  

𝑍ሺ𝑧ሻ ൌ 𝑒ିቂଵ
ଶሺௌା்ሻା௔భ

ଷ ቃ௭ ቊ𝐶଺𝑒௜√ଷ
ଶ ሺௌି்ሻ௭ ൅ 𝐶଻𝑒ି௜√ଷ

ଶ ሺௌି்ሻ௭ቋ. (3.74)

The rearranging form of Eq. (3.74) yields the general solution of Eq. (3.65) is given by 

𝑍ሺ𝑧ሻ ൌ 𝑒ିఝ௭ሼ𝑐଺ cosሺ𝜔𝑧ሻ ൅ 𝑐଻ sinሺ𝜔𝑧ሻሽ, (3.75)

𝜑 ൌ ൤
1
2

ሺ𝑆 ൅ 𝑇ሻ ൅
𝑎ଵ

3
൨ , 𝜔 ൌ

√3
2

ሺ𝑆 െ 𝑇ሻ. (3.76)

Using Eqs. (3.28), (3.31) and (3.76), the general solution of Eq. (3.27) for case-II is made by 

𝑑𝑝ሺ𝑟, 𝑧ሻ ൌ ሾ𝐶ଵ𝐽଴ሺ𝜆𝑟ሻ ൅ 𝐶ଶ𝑌଴ሺ𝜆𝑟ሻሿ ൈ 𝑒ିఝ௭ሼ𝐶଺ cosሺ𝜔𝑧ሻ ൅ 𝐶଻ sinሺ𝜔𝑧ሻሽ. (3.77)

After attending the boundary conditions (3.16), Eq. (3.77) enhances as,  
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𝑑𝑝ሺ𝑟, 𝑧ሻ ൌ 𝐶ଵ𝐽଴ሺ𝜆𝑟ሻ ൈ 𝑒ିఝ௭ሼ𝐶଺ cosሺ𝜔𝑧ሻ ൅ 𝐶଻ sinሺ𝜔𝑧ሻሽ. (3.78)

Now imposing Eq. (31.7) in Eq. (3.78) where perturbated pressure gradient ሺ𝜕𝑑𝑝/𝜕𝑧ሻ ൌ 0 at 

𝑧 ൌ 0, then it is given by 

𝜕𝑑𝑝
𝜕𝑧

ሺ𝑟, 𝑧ሻ ൌ 𝐶ଵ𝐶଺𝐽଴ሺ𝜆𝑟ሻ ൈ ሺെ𝜑𝑒ିఝ௭ሻ ൜cosሺ𝜔𝑧ሻ ൅
𝐶଻

𝐶଺
sinሺ𝜔𝑧ሻൠ

൅ ൅𝐶ଵ𝐶଺𝐽଴ሺ𝜆𝑟ሻ ൈ 𝑒ିఝ௭ ൜െω𝑠𝑖𝑛ሺ𝜔𝑧ሻ ൅
𝐶଻

𝐶଺
𝜔𝑐𝑜𝑠ሺ𝜔𝑧ሻൠ, 

⇒
𝜕𝑑𝑝
𝜕𝑧

ሺ𝑟, 0ሻ ൌ 𝐶ଵ𝐶଺𝐽଴ሺ𝜆𝑟ሻ ൈ ሺെ𝜑ሻ ൅ 𝐶ଵ𝐶଺𝐽଴ሺ𝜆𝑟ሻ ൈ ൬
𝐶଻

𝐶଺
𝜔൰, 

⇒ 𝐶ଵ𝐶଺𝐽଴ሺ𝜆𝑟ሻ ൈ ൜െ𝜑 ൅
𝐶଻

𝐶଺
𝜔ൠ ൌ 0, 

∴
𝐶଻

𝐶଺
ൌ

𝜑
𝜔

. (3.79)

Eq. (3.79) can be reformed by the following way, 

𝑑𝑝ሺ𝑟, 𝑧ሻ ൌ 𝐶ଵ𝐶଺𝐽଴ሺ𝜆𝑟ሻ ൈ 𝑒ିఝ௭ ቄcosሺ𝜔𝑧ሻ ൅
𝜑
𝜔

sinሺ𝜔𝑧ሻቅ. (3.80)

 Now, according to the condition (3.18), the obtained Eq. (3.43) is used to fix the quantities 𝜑 

and 𝜔 of Eq. (3.76) which are depended on the eigen vales relation ሺ3.44ሻ as, 

𝜑௡ ൌ ൤
1
2

ሺ𝑆 ൅ 𝑇ሻ ൅
𝑎ଵ

3
൨, 𝜔௡ ൌ

√3
2

ሺ𝑆 െ 𝑇ሻ. (3.81)

In Eq. (3.78), all linked parameters are also replaced by Eq. (3.43), Eq. (3.80) is developed by 

𝑑𝑝ሺ𝑟, 𝑧ሻ ൌ ෍ 𝐴௡

ஶ

௠ୀଵ

𝐽଴ ቆ
2𝛽௠

𝐷௝
𝑟ቇ ൈ 𝑒ିఝ೘௭ ൜cosሺ𝜔௠𝑧ሻ ൅

𝜑௠

𝜔௠
sinሺ𝜔௠𝑧ሻൠ. (3.82)

Finally, Eq. (3.82) is satisfied by the condition (3.19) where the nozzle exit radius vector 𝑟 ∈

ቀ0, ஽೐

ଶ
ቁ , then the value of 𝐴௡  is replaced by Eq. (3.48). Therefore, the explicit particular 

solution has been derived as, 
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𝑑𝑝ሺ𝑟, 𝑧ሻ ൌ ෍
൬2∆𝑝 ൈ

𝐷௘
𝐷௝

൰ 𝐽ଵ ൬𝛽௠
𝐷௘
𝐷௝

൰

𝛽௠𝐽ଵ
ଶሺ𝛽௠ሻ

ஶ

௠ୀଵ

𝐽଴ ቆ
2𝛽௡

𝐷௝
𝑟ቇ ൈ 𝑍௖௢௠௣ሺ𝑧ሻ, (3.83)

where, 𝑍௖௢௠௣ሺ𝑧ሻ ൌ ൤𝑒ିఝ೙௭ ൜cosሺ𝜔௡𝑧ሻ ൅
𝜑௡

𝜔௡
sinሺ𝜔௡𝑧ሻൠ൨. (3.84)

Using Eqs. (3.50) to (3.52), the normalized pressure equation becomes form Eq. (3.83) as, 
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Again, by following Eqs. (3.53) to (3.63), the normalized density can be measured from 
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Consequently, the normalized pressure and density profile of fully expanded turbulent 

viscous jet has been analyzed by Eqs. (3.85) and (3.86) respectively. Then Eq. (3.26 becomes, 
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where, 𝑅௘ௗ ൌ
𝐷௘𝑈௝𝜌௝

𝜇௧
 (3.89)

Now applying Eq. (3.15) in Eq. (3.89), the modified Reynolds number ሺ𝑅௘ௗሻ becomes as, 
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 From Eqs. (3.90) and (3.88), the quantity 𝛼 is normalized by 
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Also, using Eq. (3.69), the normalized coefficients are, 
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Subsequentially, the center line pressure and density with mesh contour of viscous 

turbulent underexpanded jet can also be fitted with the appropriate values of 𝜂 through Eqs. 

(3.85) and (3.86) separately where the value of catalyzers 𝑁𝑃𝑅, 𝑀௘, and 𝛾 have to considered 

according to the flow field. The inbuilt outputs of this case-II are referenced from [53].  
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3.5 Results and Discussion 

3.5.1 Experimental Analysis 

3.5.1.1 Rainbow Schlieren Pictures 

Jets from a Mach 1.5 round Laval nozzle followed by a cylindrical duct were visualized 

using a rainbow schlieren system as shown in Fig. 3.6. The flow is from left to right. Schlieren 

pictures were taken at an exposure time of 1/8000 s with continuous schlieren light source. In 

addition, a rainbow filter was placed at the cut-off plane in parallel with respect to the z axis 

and its orientation is illustrated above Fig. 3.6(a) with the location of the background hue 

represented as the dashed line on the filter. The value of the nozzle pressure ratio (𝑁𝑃𝑅) is 

given in the upper right corner of each picture. It should be kept in mind that the jet issued from 

the duct exit is correctly expanded at 𝑁𝑃𝑅 ൌ  3.67 if the whole flow field through the Laval 

nozzle and duct obeys the isentropic process. In addition, the inviscid theory shows that the 

flow field is governed by three different flow features, namely, the flows with a stationary 

normal shock in the divergent portion of the Laval nozzle for a range of 𝑁𝑃𝑅s from 1.29 to 

1.49, overexpanded flows for a range of 𝑁𝑃𝑅s from 1.49 𝑡𝑜 3.67, and underexpanded flows 

for 𝑁𝑃𝑅s beyond 3.67. However, since the nozzle and duct flows are affected by wall friction, 

the schlieren pictures of Fig. 3.6 display an effect of the wall friction on jets from the duct exit.  

 

Fig. 3.6: Rainbow schlieren pictures of jet from Laval nozzle with long duct. 
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Figure 3.6(a) is in the overexpanded flow state ideally, but no regular shock or Mach stem 

appears in the jet. It presumably shows the flow behind a pseudo-shock wave in the straight 

duct [50]. Figure 3.6(b) indicates a conventional overexpanded jet because a shock with a Mach 

stem is present near the duct exit. As shown in Figure 3.6(c), when 𝑁𝑃𝑅 increases to 3.0, no 

significant shocks appear in the jet plume. It means that shocks change into Mach waves or 

weak shocks. This indicates the correctly expanded jet condition for the present Laval nozzle 

followed by the long duct. In this situation, the wall friction in the cylindrical duct causes the 

flow Mach number at the duct exit to be less than the isentropic exit Mach number of 1.5. In 

the case of 𝑁𝑃𝑅 ൌ  3.0, a simple estimation of the Mach number averaged over the cross-

section at the duct exit becomes 1.36. An increase in 𝑁𝑃𝑅 from 3.0 𝑡𝑜 3.5 contributes to the 

occurrence of expansion waves from the duct exit, as shown in Fig. 3.6(d) and the shock-cell 

structure is quasi-periodically repeated in the flow direction. Figures 3.6(e) and 3.6(f) show 

that a further increase of 𝑁𝑃𝑅 from 3.5 to 4.0 or 4.5 causes an intercepting shock to produce 

in the jet and the shock-cell spacing or the strength of the shock increase as NPR increases.   

3.5.1.2 Density Contour Plots 

The schlieren pictures of Fig. 3.6 show only qualitative flow features of the jet. 

Nevertheless, it sometimes utilizes as a comparison for a validation of the results obtained by 

CFD. However, the validation of simulations by comparisons with the geometrical shapes of 

shock waves from the schlieren pictures should be done with care, because the pictures display 

a line-of-sight imaging, or information averaged along the view direction about the first spatial 

derivative of density profile. In addition, the schlieren image can be changed easily by adjusting 

the contrast. On the contrary, the density field on a cross-section of the jet would be effective 

for reliable validation of simulated results. Figures 3.7(a) ~ 3.7(f) exhibit density contour plots 

of the jets normalized by the ambient density 𝜌௕  where the flow is from left to right. The 

contour levels with an interval of 0.0625 are shown at the top, and the spatial resolution in the 

experimental density map is around 13 𝜇𝑚. The schlieren picture can only provide integrated 

information about the density gradient along in the direction of the optical axis, but Figs. 3.7(a) 

~ 3.7(f) can clearly demonstrate the quantitative information of the density fields of the jets. 

The jet density fields are reconstructed using the convolution back-projection (CBP) method. 

Unlike the schlieren pictures of Fig. 3.6, the density contour plots shown in Fig. 3.7 illustrate 

the various flow features of the near-field shock structures quantitatively, such as the shape and 

size of the expansion and compression regions, shock cell intervals, jet boundaries and so on.  
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Fig. 3.7: Density contour plots of jet issued from Laval nozzle with duct. 

Figure 3.7(a) indicates a series of weak shocks arranged at almost equal spacings in the region 

less than 𝑧/𝐷௘  ൌ  around 1.0 . As shown in Fig. 3.7(b), an increase in 𝑁𝑃𝑅  results in 

strengthening the shocks and a shock with a Mach disk appears just downstream of the duct 

exit and followed by a series of shock-cells with weak shocks like compression waves. It shows 

a typical feature of the overexpanded flows. Further increase in 𝑁𝑃𝑅  causes all shocks 

including the Mach disk to disappear, as shown in Fig. 3.7(c). This nozzle pressure ratio 

(𝑁𝑃𝑅 ൌ 3.0) makes the correctly expanded flow with respect to the present nozzle. It should 

be noted that the theoretical nozzle pressure ratio based upon the assumption of the isentropic 

flow through the present nozzle is 3.671. As shown in Figs. 3.7(e) and 3.7(f), additional 

increases in 𝑁𝑃𝑅 cause the expansion waves at the duct exit to produce and the degree of 

expansion increase with increasing 𝑁𝑃𝑅.  

3.5.1.3 Density Profiles along Jet Centerline 

Effects of the nozzle pressure ratio on jet centreline density profiles are shown in Figs. 

3.8(a) ~3.8(f). The leftward arrow on the vertical axis in each figure indicates the theoretical 

density ratio at the duct exit when the isentropic flow is assumed through both the nozzle and 

duct. In addition, the value of the fully expanded jet density 𝜌௝ normalized by the ambient 

density 𝜌௕ for each nozzle pressure ratio is shown as the dashed horizontal line in the figure. 

All density data in Figs. 3.8(a) ~3.8(f) are normalized by the ambient density 𝜌௕.  
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Fig. 3.8: Centerline density profiles of jet issued from Laval nozzle with long duct. 

In case of 𝑁𝑃𝑅 ൌ  2.0, multiple weak shocks with a small amplitude of almost equal intervals 

can be observed faintly between the duct exit and 𝑧/𝐷௘ = around 1.0. The density fluctuations 

with a small amplitude just downstream of the duct exit are responsible for the shock-train [57]. 

For 𝑁𝑃𝑅 ൌ 2.5, a distinct spike in the density profile contributed to the Mach disk appears just 

downstream of the duct exit. The Mach disk has the maximum density rise and the subsequent 

shock-cells indicate density increments of almost the same order of magnitude. No significant 

shocks appear for 𝑁𝑃𝑅 ൌ 3.0 because of the correctly expanded flow condition. For 𝑁𝑃𝑅s 

beyond the 𝑁𝑃𝑅 ൌ 3.0, flow expansion and compression are repeated toward downstream due 

to the quasi-periodic shock-cell structure. Particularly, for 𝑁𝑃𝑅 ൌ 4.5 , the local density 

fluctuates about 𝜌௝/𝜌௕ and it decrease below 𝜌௝/𝜌௕ in the expansion region of each shock-cell 

and increases above 𝜌௝/𝜌௕ in the compression region. The sudden density increases at 𝑧/𝐷௘ ൌ

1.1 (around) due to the intercepting shock in the first shock-cell, as shown in Fig. 3.8(f).  

3.5.1.4 Effect of Cylindrical Duct 

Effects of the cylindrical duct on the density profile along the jet centreline for 𝑁𝑃𝑅 ൌ

4.0 are shown in Fig. 3.9. The black line indicates the same experimental data as Fig. 3.8(e) 

and the blue one shows the experimental results conducted by Maeda et al. [29]. The red line 

parallel to the abscissa shows the level of the normalized fully expanded density ሺ𝜌௝/𝜌௕ሻ and 

the leftward arrow on the vertical axis is the normalized exit density estimated based on the 
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assumption of the isentropic flow from the nozzle inlet to the duct exit. The effect of wall 

friction on the jet structure cannot be clarified from only the schlieren photographs in Fig. 3.6. 

However, it can predict the friction effect from a quantitative comparison between the density 

distributions from the Laval nozzles with and without a long duct as shown in Fig. 3.9. 

 

Fig.3.9: Effect of cylindrical duct on jet centerline density profile for 𝑁𝑃𝑅 ൌ  4.0. 

Both density profiles for the Laval nozzles with and without the cylindrical duct are very 

similar to each other in overall trend. The black line shows that the density values at the local 

minima and local maxima in the density profile are kept almost constant toward the 

downstream. While the blue line contains higher frequency components when compared to the 

black line. What needs to be emphasized is that the exit densities for both density profiles are 

approximately equal to the theoretical exit density. However, the Mach number averaged over 

the cross-section at the exit is lower in the Laval nozzle with the cylindrical duct than in the 

conventional Laval nozzle, i.e., the density profiles are affected by the Mach number 

distribution at the nozzle exit. The Fanno flow theory [58] states that the maximum possible 

length where the flow is not choked at the duct exit is 85 𝑚𝑚 for a constant-area duct with an 

inlet Mach number of 1.5, constant Fanning friction factor of 0.004 [59], and duct diameter of 

10 𝑚𝑚. So, the average Mach number over the cross-section of the duct exit is beyond unity. 

3.5.1.5 Three-Dimensional Jet Structure 

The three-dimensional structures of two typical shock-containing jets are illustrated in 

Figs. 3.10 with the respective isopycnic surface, which displays a surface of constant density 

inside the jet. These descriptions are useful in assessing the structure of density fields including 

shocks in which the flow properties change rapidly. The range of the density is shown as a 
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colour bar in the top of the figure. Fig. 3.10 shows overexpanded ( 𝑵𝑷𝑹 ൌ 𝟐. 𝟓 ) and 

underexpanded (𝑵𝑷𝑹 ൌ 𝟒. 𝟓) jet structures, respectively, and they correspond to Figs. 3.7(b) 

and 3.7(f). As shown in Fig. 3.10(a), the three-dimensional flow features of the Mach disk just 

downstream of the duct exit as well as the following downstream successive weak shocks with 

a circular shape each can be seen clearly with suddenly varying colour. Figure 3.10(b) shows 

that the oblique shocks in shock-cells are reflected at the opposite jet free boundaries to form 

bicone structure. The structure gradually becomes smaller in shape toward downstream.  

Fig. 3.10. Isopycnic surfaces of (a) overexpanded jets and (b) underexpanded jets. 

3.5.1.6 Concluding Remarks of Rainbow Schlieren Pictures 

The density fields of jets from a round Laval nozzle followed by a cylindrical duct were 

measured by the rainbow schlieren deflectometry. The three-dimensional density fields of the 

jets were reconstructed by the convolution back-projection (CBP) method to investigate the 

effects of the nozzle pressure ratio on the jet structure. A quantitative comparison between the 

centerline density profiles from the Laval nozzles with and without a cylindrical duct was 

performed. As a result, it was found that the jet from the Laval nozzle with the cylindrical duct 

reaches a shock-free state at a nozzle pressure ratio lower than the design condition because of 

the wall friction along the duct wall. However, the freestream Mach number at the cylindrical 

duct exit is almost the same as that calculated based upon the assumption of the isentropic flow. 

The cylindrical duct causes the average Mach number at the exit to be reduced, but not change 

the freestream Mach number at the duct exit and it smooths the density profile when compared 

with that for the jet issued from the conventional Laval nozzle. Two types of shock-containing 

jets showing overexpanded and underexpanded states were displayed with the respective 
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isopycnic surface and it was found that the overexpanded jet produces a Mach disk following 

by successive weak shocks with a circular shape, while the underexpanded jet forms a bicone 

structure composed of an oblique shock and expansion waves in each shock-cell, which 

gradually becomes smaller in shape toward downstream. The results are exemplified by the 

peer reviewed journal [15]. 

3.5.2 Theoretical Analysis 

3.5.2.1 Theoretical Density Profile along Jet Centerline  

A centerline density profiles of a free jet issued from an axisymmetric convergent 

nozzle are compared between theory and experiment [52] under a condition of 𝑁𝑃𝑅 ൌ 3.0 as 

shown in Fig. 3.11 where the black solid line is the experimental result [52] from the rainbow 

schlieren deflectometry, the green line is the Emami et al.[18] theoretical outcome, and the red 

and blue solid lines are ones calculated by using the modified theory. The solution of first mode 

ሺ𝑚 ൌ 1ሻ only is considered in the present study as a first stage. The abscissa is the normalized 

streamwise distance from the nozzle exit and the ordinate is the normalized density. The black 

leftward arrow on the vertical axis indicates the experimental density value (1.86) measured 

from RSD data sheet, whereas the pink leftward arrow specifies the theoretical density value 

(2.28) calculating upon the assumption of the isentropic flow from the nozzle inlet to exit.    

The experimental density profile shows that the density gradually decreases with 

downstream distance from the nozzle exit till the minimum value which is sufficiently lower 

than the ambient density before a gradual increase in the downstream direction, and then 

reaches the first local maximum to form the first shock-cell structure. A similar decrease and 

increase in density are quasi-periodically repeated in the downstream direction with a gradual 

decrease in the local maxima and minima of the density profile, while the modified theoretical 

density profiles (magenta curve) exhibit remarkably similar effects of attenuation due to the 

turbulent viscosity. In particularly, the theoretical blue one is significantly displayed a 

periodical curve for inviscid jet which is same as the Tam’s [16] flow model. So, the first case 

of modified model turns to Tam’s model when turbulent viscosity removes by using the value 

of variation term 𝜂 ൌ 0.00. Consequently, the theoretical red curve for 𝜂 ൌ 0.0026 is shown 

in qualitatively excellent agreement with the RSD experiment [52] where the attenuation of 

shock-cells significantly follow the experimental properties, while the green curve is calculated 

from the Emami’s original theory for the same values of 𝜂 where the shock-cells are attenuated 
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rapidly, and the number of the shock-cells are also overestimated due to the turbulence effects.  

Fig. 3.11: Comparison of theoretical centerline density profiles with experiment [52]. 

3.5.2.2 Theoretical Density Contour Plot  

The theoretical model with explicit solutions of underexpanded jet gives only 

hypothetical gross results about the specific flow prediction. Yet, it can be used as a comparison 

to verify the results obtained by the experiments. However, the validity of the simulation should 

be carefully compared to the geometry of the shock wave specially from the rainbow schlieren 

deflectometry which is discussed in experimental section. This studied normalized density also 

helps to gather a thorough ideas about newly unemployed jet flow systems, because near the 

nozzle exit valid theory can store qualitative density close to experiment. Moreover, there are 

numerous theories about flow components such as the size and shape of the expansion and 

compression zones, the spacing of the shock-cells and structures, and the jet boundaries can be 

known from the theory-based density contours Figures 3.12~3.15 where the flow is acting from 

left to right. Figure 3.12(a) is illustrated by the RSD data [52] for comparing the modified 

theoretical results shown in Figs. 3.12(b)~3.12(d) where 𝑁𝑃𝑅 ൌ 3.0, 𝑀ௗ ൌ 1.0 and the eigen 

value expansion first mode, 𝑚 ൌ 1 are considered into the MATLAB script. The specific heat 

constant, 𝛾 ൌ 1.4 for quiescent air is performed into the convergent-divergent circular cross-

section where radius is normalized by the exit diameter, 𝐷௘ with the effective values െ0.5 ~0.5 

0 1 2 3 4 5
z/De

0

0.5

1

1.5

2

2.5
/

b

1.86

2.28

Emami et al. [18] theory
 = 0.0026 Tam's [16] theory

Modified theory
 = 0.0026

Rainbow 
schlieren [52]



-78- 
 

𝑢𝑛𝑖𝑡𝑠 and normalized downstream distance, 𝑧/𝐷𝑒 ൌ ሺ0~5 𝑢𝑛𝑖𝑡𝑠ሻ are deemed.  

Figure 3.12(a) is assumed as a standard density distribution referenced from [52] where 

expansion and compression waves are spaced periodically, and local maxima-minima are 

decreased gradually along with the downstream direction from the exit, which implies that far 

distance shocks along the flow direction are less strong than the nearer of nozzle exit, because 

of back pressure, 𝑝௕  effects. Sequentially, Figs. 3.12(b) and 3.12(c) are illustrated by the 

modified theories for 𝜂 ൌ 0 and 𝜂 ൌ 0.0026 separately where first one obeys vortex sheet 

model [16] flow features and appearing equally spaced shocks, whereas second one displays 

qualitatively similar density distribution with Fig. 3.12(a) which is gradually diminishing along 

with the downstream distance. Also, Fig. 3.12(c) is shown the better density distribution than 

the Fig. 3.12(d) that is the Emam’s [18] original flow distribution where 𝜂 ൌ 0.0026  is 

imposed for qualitative comparison. According to the analysis of Figs. 3.13~3.15, the number 

of shock-cells are decreased, but the size of shock-cells is increased with increasing the 𝑁𝑃𝑅 

while the design Mach numbers (𝑀ௗ ) must be adjusted with fully expanded jet Mach numbers 

ሺ𝑀௝ሻ, though there has been revealed few inconsistent flow features in the Fig. 3.15(d) under 

the higher 𝑁𝑃𝑅 rather than other flow models. 

  

  

Fig. 3.12: Comparison of theoretical density contours with RSD experiment [52].  



-79- 
 

  

Fig. 3.13: Density contours variation of Tam’s theory.  

  

  

Fig. 3.14: Density contours variation of Modified theory. 
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Fig. 3.15: Density contours variation of Emami’s theory. 

3.5.2.3 Theoretical Density Mesh Plot with Contour 

Four distinct density mesh plots with contour plots of axisymmetric underexpanded jet 

have been illustrated by Figs.3.16(a)~3.16(d) where 3D dimensional jet is appeared with the 

surface. These types of flow visualization help easily to analysis the shock-cell structures where 

and how the fluid properties change according to their environments. Fig. 3.16(a) displays 

rainbow schlieren deflectometry data [52], Fig. 3.16(b) Tam’s theory, Fig. 3.16(c) modified 

theory, and Fig. 3.16(d) Emam’s theory where the nozzle pressure ratio, ሺ𝑁𝑃𝑅ሻ of 3.0 and 

design Mach number, ሺ𝑀ௗሻ of 1.0 are applied. The normalized streamwise distance (z/De), 

nozzle exits diameter (r/De) and normalized density profile ሺ/௕ሻ are stated by the length, 

width, and height, respectively. The expansion waves and compression waves of shock cell 

structures are characterized by the orange and green shapes, each, however the jet boundary 

based upon the assumption of the underexpanded flow from the inlet of the nozzle to the exit 

is specified through the shadow blue zone. Only the first mode is considered to describe the 

fully expanded jet density in the linearized present model with the Tam’s [16] and Emami’s 

[18] model  
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In Fig.3.16(a) demonstrates that the experimental [52] mesh density is gradually diminishes 

with downstream distance from the nozzle exit on the lower plat, while the state of being is 

configured by the contour at the upper plat. A three-dimensional schema of first shock-cell 

structure is built at the first local maximum belonging to the sufficiently minimum value which 

is underneath the ambient density instead of a progressive increase in the downstream direction. 

A comparable quasi-periodical expansion and compression waves are repeating itself along the 

downstream direction with a gradual reduction of the local maxima and minima in the mesh 

density. Finally, the jet boundary is affected by the ambient pressure when the expanded jet 

density closes to the ambient density.  

In Fig.3.16(b), the inviscid 3D jet distribution exhibits where the effect of turbulent viscosity 

is neglected upon with the flow characteristics.  The resulted mesh pairs with vortex-sheet 

model have been displayed on the bottom section, while the shock-cell structures are 

configured at the upper section as a contour plot. The calculated density mesh is agreed with 

the experimental mesh Fig. 3.16(a) quantitatively. However, the periodicity of the expansion 

and compression waves have quite variation with the experimental waves, whereas the jet 

boundary is demarcated hypothetically same as the rainbow schlieren deflectometry. 

The fully expanded modified and Emam’s density mesh plots are aligned at the bottom layer 

of Figs. 3.16(c) and 3.16(d) respectively where turbulent viscosity is counted for the same 

variation term, 𝜂 ൌ 0.0026 . Nevertheless, the modified mesh in Fig. 3.16(c) point out 

reasonable improved result than the Emam’s one. The effect of shock-cell structure can be 

measured by the contours which are displayed on the top layer of Figs. 3.16(c) and 3.16(d), 

where expansion is decreased dramatically after the first shocks in Fig. 3.17(d), whereas   the 

expansions and compressions are occurred in Fig. 3.16(c) similar pattern wise of Fig. 3.16(a) 

along with the downstream distance started from the exit circular cross-section of convergent-

divergent nozzle.  
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Fig. 3.16: Density Mesh plots with contours underneath of theory with experiment [52]. 

3.5.2.4 Conclusion Remarks of Theoretical Analysis 

The issued slightly underexpanded supersonic jet of convergent-divergent nozzle has 

been solved explicitly with some modifications of the theoretical model developing through 

the Emami et al. and Tam’s model. The modified model and results are performed qualitatively 

with experimental data by considering the mean Reynolds stress and the first mode of Fourier 

expansion. The theoretical density profile along the jet centerline is compared quantitatively 

with experimental density captured from the rainbow schlieren deflectometry. The obtained 

normalized mesh density function of axisymmetric fully expanded jet from cylindrical Laval 

nozzle has been developed and analysed explicitly by employing the modified kinetic and 

dynamical boundaries for the cases of turbulent viscosity and without viscosity.  The modified 

theoretical results are being forecasted satisfactorily with the experiment and also the renowned 

vortex-sheet theory of Tam’s, especially for the nozzle exit region flow characteristics with 

complex phenomena.  
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Chapter 4 

Shock Containing Elliptic Jet 

4.1 Introduction 

Much research on supersonic jets coming out of circular nozzles have been studied 

already in Chapter 3, to the best of perceptive knowledge, very little investigation has been 

done on the elliptic nozzle. Elliptical supersonic jets are an encouraging component for efficient 

blending in air breathing engines to enhance vehicle efficiency [60]. In the off-designed state, 

the elliptical jet creates a complex impact system in the jet plume, producing a strong noise 

called screech tone [61]. This plays an important role in advanced aircraft design as it can cause 

acoustic fatigue failure. Though, the internal shock wave formation of elliptical jets, including 

shock waves, has not been fully investigated due to its difficulties. Kinzie and McLaughlin [42] 

were concluded that elliptical jets emit less noise than each circular jet through the experimental 

investigation of aerodynamic and acoustic properties of impact-free supersonic jets obtained 

from elliptical and circular nozzles with a design Mach number of 1.5. Menon and Skews [43] 

have conducted extensive research on the shock wave composition and flow structure of under-

propagated sonic jets derived from non-axisymmetric nozzles such as rectangles, ellipses, and 

slot nozzles. For elliptic underexpanded jets, they experimentally and numerically found that 

the incident shock generated near the nozzle exit is not formed along the minor axis plane of 

the nozzle for aspect ratios larger than 2. Instead, it originates downstream from the nozzle exit 

in the major axis plane. The flow characteristics of underexpanded jets from an elliptic nozzle 

with a design Mach number and 𝐴𝑅 𝑜𝑓 2  each at the nozzle exit were investigated 

experimentally by Kumar and Rathakrishnan [8]; they conducted a Pitot probe survey and 

shadowgraph visualization to demonstrate the streamwise evolution of elliptic jets, such as the 



-84- 
 

axis-switching phenomena. However, traditional intrusive measuring probes, such as the Pitot 

tube and hot-wire anemometry, are obstructed by flow intrusion and signal interpretation 

problems in shock-containing flows. Moreover, the determination of flow properties for many 

spatial points using intrusive probes requires significant effort. In contrast, Yoon et al. [62] 

used stereoscopic particle image velocimetry to investigate the near-field structure of an 

underexpanded jet emerging from a sharp-edged elliptic orifice with an AR of 2. Traditionally, 

the conventional schlieren and shadowgraph optical techniques [21] provide simple tools to 

qualitatively investigate the characteristics of shock-dominated flows. Therefore, the primary 

sources of experimental methods for elliptic supersonic jets include flow visualizations using 

schlieren [63] or shadowgraph [43] techniques. Recently, Rao et al. [20] utilized time resolved 

schlieren imaging with near-field acoustic measurements to investigate the screech 

characteristics of an underexpanded elliptic jet with a high 𝐴𝑅 𝑜𝑓 7.72. Although the schlieren 

technique with a knife edge only presents the qualitative flow features, rainbow schlieren 

deflectometry, wherein the knife edge is replaced with a rainbow filter [31], can be used to 

obtain the internal structures of shocks qualitatively and quantitatively. 

 In this study, the focus is on to investigate the internal flow of supersonic elliptic jets 

with the modified linearize model addressing in Chapter 3 where the convergent-divergent 

nozzle is carried out at the off-designed condition, because of so far, the explicit evaluation of 

the elliptic analytical model is still required to analysis. The established model is modified by 

the two well-known models of Tam’s [17] and Emami et al. [18]. In Tam’s [17], a general 

solution of elliptic jet was provided where the thin layer of inviscid jet specified as vortex sheet 

through the shock-cell structure measurement theories, but he could not be provided complete 

solution with validity test. And in Emami’s et al. [18], the model was provided the mean flow 

characteristics of circular jets at the exit level where the turbulent viscosity was estimated by 

Witz [19] and the first Fourier mode of eigenvalues expansion was implemented. Therefore, 

the first aim is to develop the governing equations of motion by the elliptic co-ordinates flow 

surface according to the Chapter 3. Secondly, considering perturbated pressure gradient zero 

at the center of exit elliptic surface in Tam’s [17] boundary conditions instead of velocity 

condition. Thirdly, providing an explicit solution of this improved model for the case of (i) 

without and (ii) with turbulent viscosity separately. The explicit solution of first case would be 

become and obeyed by the behavior of vortex sheet flow model [17] and the solution of second 

case is explored for the first time. In the result and discussion section, a quantitative comparison 

among the elliptic centerline density profile along the downstream direction normalized by the 
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equivalent diameter ሺ𝐷௘௤ሻ same as the circular exit diameter 𝐷௘ with the circular experimental 

[52] and theoretical centerline density of Chapter 3 has been provided for the validity of elliptic 

results. For the more investigations, the density contour plots and density mesh plots with 

contours of fully expanded elliptic jets with circular contours have been illustrated through the 

various effects of the flow parameters. Moreover, the measurements of shock-cell spacing and 

shock size of fully expanded elliptic jet are also discussed according to their respective theories 

and graphical explanation where the arbitrary nozzle aspect ratios ሺ𝐴𝑅𝑠ሻ, arbitrary nozzle 

pressure ratios ሺ𝑁𝑃𝑅𝑠ሻ and arbitrary nozzle design Mach numbers ሺ𝑀ௗ𝑠ሻ are also considered  

It is noted that the shock-cells spacing, and size of shock-cell structures are provided the 

information about the strength of shock waves which are significantly related to the screech 

frequencies. Finally, the obtained shock-cell spacing are compared with the result at 𝐴𝑅 ൌ

7.72 of Rao et al. [20] for the betterment of the analysis of fully expanded elliptic jets.   

4.2   Elliptic Cylinder Co-ordinates System 

For the accessibility of the supersonic elliptic jet analysis, it is clearly significant to 

discuss the elliptic cylindrical co-ordinates ሺ𝜉, 𝜃, 𝑧ሻ system [64] where 𝜃 be the asymptotic 

angle of confocal hyperbolic cylinders symmetrical about y-axis and 𝜉 be the co-ordinate of 

confocal elliptic cylinder centred on the origin are stated in Figs. 4.1(a) and 4.1(b) by, 

𝑥 ൌ 𝑎𝑐𝑜𝑠ℎ𝜉𝑐𝑜𝑠𝜃, 𝑦 ൌ 𝑎𝑠𝑖𝑛ℎ𝜉𝑠𝑖𝑛𝜃, 𝑧 ൌ 𝑧, (4.1)

𝑥ଶ

𝑎ଶ𝑐𝑜𝑠ℎଶ𝜉
൅

𝑦ଶ

𝑎ଶ𝑠𝑖𝑛ℎଶ𝜉
ൌ 1, (4.2)

𝑥ଶ

𝑎ଶ𝑐𝑜𝑠ଶ𝜃
െ

𝑦ଶ

𝑎ଶ𝑠𝑖𝑛ଶ𝜃
ൌ 1. (4.3)

A bunch of confocal elliptic curves of major axes  (𝐿௠ ൌ 𝑎𝑐𝑜𝑠ℎ𝜉) and minor axes (𝐿௡ ൌ

𝑎𝑠𝑖𝑛ℎ𝜉) with the common foci 𝑥 ൌ േ𝑎, 𝑦 ൌ 0 be presented by Eq. (4.2) are illustrated in Fig. 

4.1(b) for the various values of 𝜉 and a set of confocal hyperbolas with the same foci are also 

presented by Eq. (4.3). Considering the jet is fully developed at 𝜉 ൌ 𝜉௝ as showing in Fig. 4.1 

where the major and minor axes of underexpanded elliptic shock-cell is defined by,   

𝐿௠ೕ
ൌ 𝑎𝑐𝑜𝑠ℎ𝜉୨ , 𝐿௡ೕ

ൌ 𝑎𝑠𝑖𝑛ℎ𝜉௝. (4.4)
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where, 𝑎 ൌ ට𝐿௠ೕ
ଶ െ 𝐿௡ೕ

ଶ . 𝜉௝ ൌ 𝑡𝑎𝑛ℎିଵ ቆ
𝐿௡ೕ

𝐿௠ೕ

ቇ. (4.5)

In Fig. 4.1(a), the nozzle outlet is elliptic cross-section where the eccentricity ሺ𝑒ሻ is defined as, 

𝑒 ൌ ሺ𝑎/𝐿௠ሻ ൌ ඥ1 െ ሺ𝐿௡/𝐿௠ሻଶ ൌ ඥ1 െ ሺ1/𝐴𝑅ሻଶ, (4.6)

where, 𝐴𝑅 ൌ 𝐿௠/𝐿௡. (4.7)

   

 

Fig. 4.1: The diagram of (a) an elliptic nozzle with (b) elliptic co-ordinates system. 

On the other hand, the nozzle exits cross-sectional surface ሺ𝑆௘ሻ whose equivalent diameter 

(𝐷௘௤), and area (𝐴௘) can also be expressed in terms of major axis and minor axis as:  

𝐷௘௤ ൎ 2ඥሺ𝐿௠𝐿௡ሻ, 𝐴௘ ൎ 𝜋ሺ𝐿௠𝐿௡ሻ. (4.8)

By using the transformation formula of Cartesian coordinates to elliptic cylindrical co-

ordinates system [64], then the elliptic coordinates express in terms of Cartesian form as, 

𝜉 ൌ coshିଵ ቂඥሺ𝑥 ൅ 𝑎ሻଶ ൅ 𝑦ଶ ൅ ඥሺ𝑥 െ 𝑎ሻଶ ൅ 𝑦ଶቃ /2𝑎, (4.9)

𝜃 ൌ cosିଵ ቂඥሺ𝑥 ൅ 𝑎ሻଶ ൅ 𝑦ଶ െ ඥሺ𝑥 െ 𝑎ሻଶ ൅ 𝑦ଶቃ /2𝑎, (4.10)

𝑧 ൌ 𝑧. (4.11)

where, 𝜉 ∈ ሾ0, ∞ሻ, 𝜃 ∈ ሾ0,2𝜋ሿ, and 𝑧 ∈ ሺെ∞, ∞ሻ  (4.12)
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 Again, by using the partial differential transformation formula, the vector differential operator 

can be transformed into the elliptic Laplacian operator as, 

∇ഥଶൌ
1

𝑎ଶሺsinhଶ 𝜉 ൅ sinଶ 𝜃ሻ
ቆ

𝜕ଶ

𝜕𝜉ଶ ൅
𝜕ଶ

𝜕𝜃ଶቇ ൅
𝜕ଶ

𝜕𝑧ଶ. (4.13)

The formulas and properties are pertaining to elliptic membrane experiencing to 

analyze the problems as dispersion of released fluid, thermal diffusion, electromagnetic wave, 

and so on which undergoes to the pulsation of the disturbance and intensity of wave. 

4.3 Modified Model for Elliptic Jet  

In an off-design setup, a slightly underexpanded supersonic elliptic jet issued from a 

convergent-divergent nozzle shown in Fig. 4.1 where the jet is free from outside disturbance 

and turbulent eddy viscosity is considered into the modified linearized model described in 

Chapter 3. Considering the flow is parallel to the axial z-direction of the elliptic nozzle pointing 

𝑂 the center at eixt surface, 𝑆௘ሺ𝑥, 𝑦ሻ whose equivalent diameter ሺ𝐷௘௤ሻ is shown in the Fig. 

4.2(b) where 𝐿௠  and 𝐿௡  are the major and minor axes repectivley. The mixing layer of jet 

regarded as the vortex sheet surfaces illustrated as in Fig. 4.2 (a) are being constructed in 

Cartesian shape for the fully developed jets. As a result, the shock-cell structures are also 

narrowed to the inside of the vortex sheet. Since the perturbation methods are required in the 

motion of fluid, so the velocity ሺ𝑉ሻ, pressure ሺ𝑝ሻ and density ሺ𝜌ሻ can be stated as the sum of 

mean quantities with perturbated quantities entire the flow field: 

𝑉௜ ൌ 𝑉పഥ ൅ 𝑑𝑉௜ , 𝑉ത௭ ൌ 𝑈௝, 𝑉ത௫ ൌ 𝑉ത௬ ൌ 0,  𝑝 ൌ 𝑝௝ ൅ 𝑑𝑝 and 𝜌 ൌ 𝜌௝ ൅ 𝑑𝜌, (4.14)

where, the notations 𝑑𝑉௜, 𝑑𝑝 , and 𝑑𝜌  are accustomed to perturbation associated velocity, 

pressure, and density in the shock-cell structures. Consequently,  𝑉ത௜  is the mean value of 

velocities where suffix ሺ𝑖ሻ bearing the 𝑥, 𝑦, 𝑧axes. The fully expanded density, pressure, and 

velocity are labelled by the notation 𝜌௝, 𝑝௝,and 𝑈௝  respectively. Therefore, the perturbation 

relations (4.14) are applied to extend the Navier-Stokes equation through Eqs. (2.35), (2.37), 

and (2.43) for the following equations of motion: 
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the equation of continuity, 𝜌௝
∂𝑑𝑉௜

𝜕𝑥௜
൅ 𝑈௝

𝜕𝑑𝜌
𝜕𝑧

ൌ 0, (4.15)

the momentum equation,  𝜌௝𝑈௝
𝜕𝑑𝑉௜

𝜕𝑧
൅

∂𝑑𝑝
𝜕𝑥௜

൅
4𝜇௧𝑈௝

3 𝜌௝

𝜕
𝜕𝑥௜

൬
𝜕𝑑𝜌
𝜕𝑧

൰ ൌ 0, (4.16)

the isentropic equation,  
𝑑𝑝
𝑑𝜌

ൌ 𝑎௝
ଶ, (4.17)

where, ሺ𝜕/𝜕𝑥௜ሻ  and 𝑎௝ represent the vector differential operator and fully expended speed of 

sound respectively. In Eq. (4.16), the turbulent viscosity ሺ𝜇௧ሻ is modified by the fully expanded 

qualities and measured form the below mentioned formula, since the eddy viscosity remains 

almost constant over the flow field of high-speed jet, based on this assumption the original 

formula [19] was explored by the exit characteristics where the variation term, 𝜂 was 0.01: 

𝜇௧ ൌ 𝜂𝜌௕
଴.ଶ଼𝜌௝

଴.଻ଶ𝑈௝𝐷௘௤௝
൫1 െ 0.16𝑀௝൯. (4.18)

In Eq. (4.18), the notation 𝜂 is using for the best data fitting with the RSD experiment of 

circular jet and 𝐷௘௤௝
 is the fully expanded equivalent diameter that’s major and minor axes 

dimensions are 𝐿௠ೕ
 and 𝐿௡ೕ

 respectively.  

 

Fig. 4.2: A schematic underexpanded flow of (a) the vortex sheet jets through (b) the 

elliptic nozzle exit cross-section. 
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According to the Tam’s [17] model, the vortex sheet surface in the Cartesian form 𝑆௝ሺ𝑥, 𝑦ሻ is 

bounded by the fully expanded jet where the surface is pertubated by the small change of 

∆𝑆ሺ𝑥, 𝑦, 𝑧ሻ, then the follwing forms are required to: 

   𝑆௝ሺ𝑥, 𝑦ሻ ൌ 0, (4.19)

and 𝑆௝ሺ𝑥, 𝑦ሻ ൅ ∆𝑆ሺ𝑥, 𝑦, 𝑧ሻ ൌ 0. (4.20)

Considering the jet has been fully expanded at 𝜉 ൌ 𝜉௝ where the asymptotic angle, 𝜃 ∈ ሾ0, 2𝜋ሿ 

and emitted jets features are aslo symmetrical about the flow direction ሺ𝑧ሻ, then the Cartesian 

surface Eq. (4.19) has to convert in elliptic surfac Φ௝ሺ𝜉, 𝜃ሻ ൅ ∆Φሺ𝑧, 𝜉, 𝜃ሻ whose eqivalent 

diameter is 𝐷௘௤ೕ
. According to the kinematic and dynamic conditions of the flow filed are 

referenced from Tam’s [17], the following homogeneous boundaries are constructed in 

Cartesian form for the requirements of the governing Eqs. (4.15) to (4.17) where the nozzle 

exit pressure ሺ𝑝௘ሻ is greater than the ambient pressure ሺ𝑝௕ሻ:  

𝑑𝑝 ൌ 0, at 𝑆௝ሺ𝑥, 𝑦ሻ ൌ 0; (4.21)

𝜕ሺ𝑑𝑝ሻ
𝜕𝑧

ൌ 0, at 𝑧 ൌ 0 and 𝑆௝ሺ𝑥, 𝑦ሻ ൏ 0; (4.22)

𝑑𝑝 ൌ 0, at 𝑧 ൌ 0 and 𝑆௘ሺ𝑥, 𝑦ሻ ൐ 0, 𝑆௝ሺ𝑥, 𝑦ሻ ൏ 0; (4.23)

𝑑𝑝 ൌ ∆𝑝 ൌ  𝑝௘ െ 𝑝௕, at  𝑧 ൌ 0 and 𝑆௘ሺ𝑥, 𝑦ሻ ൏ 0. (4.24)

The condition (4.21) is referred to as the continuity of perturbated pressure at the nozzle exit 

surface followed by Eq. (4.19). Since the perturbated pressure is uniform inside the surface of 

Eq. (4.19), so Eq. (4.22) is considerable as a perturbated pressure gradient condition. Also, Eq. 

(4.23) is formulated where the perturbated pressure is zero between the nozzle exit level up to 

fully expanded zone, while Eq. (4.24) is established due to the variation of exit and ambient 

pressure which is valid only for the nozzle inside region. 

Since the flow has to experience with the elliptic cross-sectional area, then Eqs. (4.21) ~ (4.24) 

must convert in elliptic co-ordinate systems which are associated with, 

𝑑𝑝 ൌ 0, at Φ௝ሺ𝜉, 𝜃ሻ ൌ 0; (4.25)

𝜕ሺ𝑑𝑝ሻ
𝜕𝑧

ൌ 0, at 𝑧 ൌ 0 and Φ௝ሺ𝜉, 𝜃ሻ ൏ 0; (4.26)

𝑑𝑝 ൌ 0, at 𝑧 ൌ 0 and Φ௘ሺ𝜉, 𝜃ሻ ൐ 0, Φ௝ሺ𝜉, 𝜃ሻ ൏ 0; (4.27)
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𝑑𝑝 ൌ ∆𝑝 ൌ  𝑝௘ െ 𝑝௕, at  𝑧 ൌ 0 and Φ௘ሺ𝜉, 𝜃ሻ ൏ 0. (4.28)

Using Eq. (4.17) in Eqs. (4.15) and (4.16), then the followings are found: 

𝜌௝𝑈௝
∂𝑑𝑉௜

𝜕𝑥௜
൅ 𝑀௝

ଶ 𝜕𝑑𝑝
𝜕𝑧

ൌ 0, (4.29)

 𝜌௝𝑈௝
𝜕𝑑𝑉௜

𝜕𝑧
൅

∂𝑑𝑝
𝜕𝑥௝

൅
4
3

𝜇௧𝑈௝

𝜌௝𝑎௝
ଶ

𝜕
𝜕𝑥௝

൬
𝜕𝑑𝑝
𝜕𝑧

൰ ൌ 0, (4.30)

where, 𝑀௝ ൌ
𝑈௝

𝑎௝
, (4.31)

here, 𝑀௝ is called the fully expanded jet Mach number. Now differentiating Eqs. (4.30) and 

(4.29) with respect to 𝑥௜ and 𝑧 respectively, then the followings are derived as, 

𝜌௝𝑈௝
∂ଶ𝑑𝑉௜

𝜕𝑧𝜕𝑥௜
൅

𝜕ଶ𝑑𝑝
𝜕𝑥௜

ଶ ൅
4
3

𝜇௧𝑈௝

𝜌௝𝑎௝
ଶ

𝜕ଶ

𝜕𝑥௝
ଶ ൬

𝜕𝑑𝑝
𝜕𝑧

൰ ൌ 0 (4.32)

𝜌௝𝑈௝
∂ଶ𝑑𝑉௜

𝜕𝑥௜𝜕𝑧
൅ 𝑀௝

ଶ 𝜕ଶ𝑑𝑝
𝜕𝑧ଶ ൌ 0. (4.33)

By subtracting Eq. (4.32) to (4.33), the perturbated pressure differential equation becomes as, 

𝜕ଶ𝑑𝑝
𝜕𝑥௜

ଶ ൅ Α
𝜕ଶ

𝜕𝑥௝
ଶ ൬

𝜕𝑑𝑝
𝜕𝑧

൰ െ 𝑀௝
ଶ 𝜕ଶ𝑑𝑝

𝜕𝑧ଶ ൌ 0, (4.34)

where, Α ൌ
4
3

𝜇௧𝑈௝

𝜌௝𝑎௝
ଶ. (4.35)

Using Eq. (4.13), the Laplacian operator Cartesian form can be transformed to elliptic 

cylindrical form, because of the nozzle exit is elliptic cross-section, then it is found as, 

Α ቈ
𝜕ଷ𝑑𝑝
𝜕𝑧ଷ ൅

1
𝑎ଶሺsinhଶ 𝜉 ൅ sinଶ 𝜃ሻ

ቆ
𝜕ଷ𝑑𝑝
𝜕𝜉ଶ𝜕𝑧

൅
𝜕ଷ𝑑𝑝

𝜕𝜃ଶ𝜕𝜉
ቇ቉

൅
1

𝑎ଶሺsinhଶ 𝜉 ൅ sinଶ 𝜃ሻ
ቆ

𝜕ଶ𝑑𝑝
𝜕𝜉ଶ ൅

𝜕ଶ𝑑𝑝
𝜕𝜃ଶ ቇ ൅ ሺ1 െ 𝑀௝

ଶሻ
𝜕ଶ𝑑𝑝
𝜕𝑧ଶ ൌ 0. 

(4.36)

Thus, Eq. (4.36) is called the perturbated pressure partial differential equation for the elliptic 

underexpanded jet. A method of separation of variables for the eigenfunction expansion is 

applied on Eq. (4.36) to find the explicit solution of the required linearized model. Thus, 
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considering the following form of perturbated pressure variable in terms of axial distance ሺ𝑧ሻ, 

asymptotic angle ሺ𝜃ሻ, and the confocal elliptic coordinate ሺ𝜉ሻ of jet: 

𝑑𝑝ሺ𝑧, 𝜉, 𝜃ሻ ൌ 𝑍ሺ𝑧ሻ ൈ Φሺ𝜉, 𝜃ሻ, (4.37)

where,  Φሺ𝜉, 𝜃ሻ ൌ Ξሺ𝜉ሻ ൈ 𝑇ሺ𝜃ሻ. (4.38)

By utilizing Eqs. (4.37) ~(4.38) in Eq. (4.36), the following form is obtained, 

1
ሺ𝑀௝

ଶ െ 1ሻ𝑎ଶሺsinhଶ 𝜉 ൅ sinଶ 𝜃ሻ
൬

Ξ"
Ξ

൅
𝑇"
𝑇

൰ ൌ

െ Α
ሺ𝑀௝

ଶ െ 1ሻ
𝑍ᇱᇱᇱ ൅ 𝑍"

Α𝑍ᇱ ൅ 𝑍
ൌ െ𝜆ଶ ,   (4.39)

where, 𝜆 is the eigenvalue, and the negative sign indicates that the shock-cells are decaying 

towards the flow direction from the nozzle exit. Using the first and third part of Eq. (4.39), then 

the following differential equations have been become, 

1
ሺ𝑀௝

ଶ െ 1ሻ𝑎ଶሺsinhଶ 𝜉 ൅ sinଶ 𝜃ሻ
൬

Ξ"
Ξ

൅
𝑇"
𝑇

൰ ൌ െ𝜆ଶ ,  (4.40)

⇒
2

ሺ𝑀௝
ଶ െ 1ሻ𝑎ଶሺ𝑐𝑜𝑠ℎ2𝜉 െ 𝑐𝑜𝑠2𝜃ሻ

൬
Ξ"
Ξ

൅
𝑇"
𝑇

൰ ൌ െ𝜆ଶ ,   

⇒
Ξ"
Ξ

൅
𝑇"
𝑇

ൌ െ
ሺ𝑀௝

ଶ െ 1ሻ𝑎ଶ𝜆ଶ

2
ሺ𝑐𝑜𝑠ℎ2𝜉 െ 𝑐𝑜𝑠2𝜃ሻ,  

∴ െ ቈ
Ξ"
Ξ

൅
൫𝑀௝

ଶ െ 1൯𝑎ଶ𝜆ଶ

2
𝑐𝑜𝑠ℎ2𝜉቉ ൌ ቈ

𝑇"
𝑇

െ
ሺ𝑀௝

ଶ െ 1ሻ𝑎ଶ𝜆ଶ

2
𝑐𝑜𝑠2𝜃቉ ൌ െ𝛽ଶ. (4.41)

where, 𝛽 is another eigenvalue which depends on the elliptic surface. Now Eq. (4.41) is the 

ordinary differential equation of order 2. Using the last two part of Eq. (4.41), 

𝑇"
𝑇

െ
൫𝑀௝

ଶ െ 1൯𝑎ଶ𝜆ଶ

2
𝑐𝑜𝑠2𝜃 ൌ െ𝛽ଶ.  

⇒ 𝑇"ሺ𝜃ሻ ൅ ቈ𝛽ଶ െ 2൫𝑀௝
ଶ െ 1൯ ൬

𝑎𝜆
2

൰
ଶ

𝑐𝑜𝑠2𝜃቉ 𝑇ሺ𝜃ሻ ൌ 0  

∴ 𝑇"ሺ𝜃ሻ ൅ ሾ𝜚 െ 2𝑞𝑐𝑜𝑠2𝜃ሿ𝑇ሺ𝜃ሻ ൌ 0. (4.42)

where, 𝜚 ൌ 𝛽ଶ  and 𝑞 ൌ ൫𝑀௝
ଶ െ 1൯ ൬

𝑎𝜆
2

൰
ଶ

. (4.43)
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Equation (4.42) is called a Mathieu differential equation of angular form referenced by [64]. 

The solution of Eq. (4.42) is called the angular Mathieu function or periodic Mathieu function 

which is defined as the sum of cosine series as, 

𝑐𝑒ଶ௡ሺ𝜃, 𝑞ሻ ൌ ෍ 𝐴ଶ௥
ଶ௡𝑐𝑜𝑠2𝑟𝜃,

ஶ

௥ୀ଴

where, 𝑛 ൌ 0,1,2 ….  (4.44)

where, the coefficients 𝐴ଶ௥
ଶ௡  depend on the quantities 𝑞  and 𝜚  where 𝑟  and 𝑛   indicate the 

coefficients position and order of the Mathieu function respectively. Eq. (4.44) is also known 

as even Mathieu function. 

Again, using the last two part of Eq. (4.41), then it is given by, 

Ξ"
Ξ

൅
൫𝑀௝

ଶ െ 1൯𝑎ଶ𝜆ଶ

2
𝑐𝑜𝑠ℎ2𝜉 ൌ 𝛽ଶ.  

⇒ Ξ"ሺ𝜉ሻ െ ቈ𝛽ଶ െ 2൫𝑀௝
ଶ െ 1൯ ൬

𝑎𝜆
2

൰
ଶ

𝑐𝑜𝑠ℎ2𝜉቉ Ξሺξሻ ൌ 0.  

∴ Ξ"ሺ𝜉ሻ െ ሾ𝜚 െ 2𝑞𝑐𝑜𝑠ℎ2𝜉ሿΞሺξሻ ൌ 0. (4.45)

Equation (4.45) is called a modified Mathieu differential equation of radial form linked with 

[64]. The solution of Eq. (4.45) is called the radial Mathieu function which is defined as the 

sum of hyperbolic cosine series as, 

𝐶𝑒ଶ௡ሺ𝜉, 𝑞ሻ ൌ ෍ 𝐴ଶ௥
ଶ௡𝑐𝑜𝑠ℎ2𝑟𝜉,

ஶ

௥ୀ଴

where, 𝑛 ൌ 0,1,2 ….  (4.46)

Using Eqs. (4.44) and (4.46), Eq. (4.38) is given by,  

Φሺ𝜉, 𝜃ሻ ൌ 𝑐𝑒ଶ௡ሺ𝜃, 𝑞ሻ ൈ 𝐶𝑒ଶ௡ሺ𝜉, 𝑞ሻ. (4.47)

Again, by using the first two terms of Eq. (4.39), the following form is obtained:  

െ Α
ሺ𝑀௝

ଶ െ 1ሻ
𝑍ᇱᇱᇱ ൅ 𝑍"

Α𝑍ᇱ ൅ 𝑍
ൌ െ𝜆ଶ,  
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∴ െ
Α

ሺ𝑀௝
ଶ െ 1ሻ

𝑍ᇱᇱᇱ ൅ 𝑍ᇱᇱ ൅ 𝜆ଶሾΑ𝑍ᇱ ൅ 𝑍ሿ ൌ 0. (4.48)

Equation (4.48) is a third order ordinary differential equation where the term Α depends on the 

turbulent viscosity ሺ𝜇௧ሻ that play an important rule on the flow model. There are two possible 

cases have been raised for the 𝜇௧ ൌ 0 and 𝜇௧ ് 0 which are described as follows: 

Case -I: When 𝜇௧ ൌ 0, the jet becomes an inviscid fluid which is free from Reynolds stress. 

Then flow model is turned into the vortex sheet shock-cell model where is neglecting outside 

disturbances and molecular interactions. So, Eq. (4.48) is given by 

𝑍" ൅ 𝜆ଶ𝑍 ൌ 0. (4.49)

Equation (4.49) is a second order homogeneous ordinary differential equation with constant 

coefficient, then its general solution become as, 

𝑍ሺ𝑧ሻ ൌ 𝐾ଵ cosሺ𝜆𝑧ሻ ൅ 𝐾ଶ sinሺ𝜆𝑧ሻ. (4.50)

In Eq. (4.50), the constant 𝐾ଵand 𝐾ଶ must be met up by the boundary conditions. Using Eqs. 

(4.47) and (4.50), the required general solution is formed as, 

𝑑𝑝ሺ𝑧, 𝜉, 𝜃ሻ ൌ ሾ𝑐𝑒ଶ௡ሺ𝜃, 𝑞ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞ሻሿ ൈ ሾ𝐾ଵ cosሺ𝜆𝑧ሻ ൅ 𝐾ଶ sinሺ𝜆𝑧ሻሿ. (4.51)

For the boundary condition (4.25), when 𝜉 ൌ 𝜉௝ , Φ௝ሺ𝜉, 𝜃ሻ ൌ 0, then 𝑑𝑝 ൌ 0, Eq. (4.51) is 

given the information about the zeros of radial Mathieu function by, 

𝐶𝑒ଶ௡൫𝜉௝, 𝑞൯ ൌ 0.  (4.52)

Since the quantity 𝑞 depends on the eigenvalue 𝜆 which conveys the expansion characteristics 

of jet, then 𝜆 is related with the order of Mathieu function 𝑛. Then again, the solution of Eq. 

(4.52) may provide infinite number of roots, then the root of Eq. (4.52) can be expressed as, 

𝑞௡௠ ൌ
൫𝑀௝

ଶ െ 1൯𝑎ଶ𝜆௡௠
ଶ

4
, where,  𝑚 ൌ 1,2,3 … .. (4.53)

In Eq. (4.53), the smallest root is 𝑞଴ଵ. Applying Eq. (4.53) in Eq. (4.51), then it is given by, 
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𝑑𝑝ሺ𝑧, 𝜉, 𝜃ሻ ൌ ሾ𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻሿ ൈ ሾ𝐾ଵ cosሺ𝜆௡௠𝑧ሻ ൅ 𝐾ଶ sinሺ𝜆௡௠𝑧ሻሿ (4.54)

 Again, applying the condition (4.26), the perturbated pressure gradient 𝜕ሺ𝑑𝑝ሻ/𝜕𝑧 ൌ 0 , at 𝑧 ൌ

0 and Φ௝ሺ𝜉, 𝜃ሻ ൏ 0 , then 𝐾ଶ ൌ 0. So, Eq. (4.54) can be written as, 

𝑑𝑝ሺ𝑧, 𝜉, 𝜃ሻ ൌ Kଵ𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ cosሺ𝜆௡௠𝑧ሻ  (4.55)

Now, applying the principles of supper position to express the solution (4.55) as a linear 

combination of all possible product of eigenfunctions summing over the range of 𝑛, 𝑚 as, 

𝑑𝑝ሺ𝑧, 𝜉, 𝜃ሻ ൌ ෍ ෍ 𝐴௡௠

ஶ

௠ୀଵ

ஶ

௡ୀ଴

𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ cosሺ𝜆௡௠𝑧ሻ  (4.56)

It is noted that constant 𝐾ଵ  turns to the constant 𝐴௡௠  in the series (4.56). Since all the 

eigenvalues bear the flow characteristics of jets sequentially, as though fluid particles extend 

significantly. Finally, Eq. (4.56) is satisfied by the condition (4.28) at the nozzle exit where the 

perturbated pressure, ∆𝑝 ൌ 𝑝௘ െ 𝑝௕, at 𝑧 ൌ 0 and inside the surface Φୣሺ𝜉, 𝜃ሻ, then followings 

formula has been derived, 

𝑑𝑝 ൌ ෍ ෍ 𝐴௡௠

ஶ

௠ୀଵ

ஶ

௡ୀ଴

𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ. (4.57)

Equation (4.57) is an expansion function where Mathieu function is expanded as a series. The 

Fourier transform can be applied to find the co-officiant 𝐴௡௠over the elliptic surface Φ௝ሺ𝜉, 𝜃ሻ 

where 𝜉  is varied with ሺ0~𝜉௝ሻ and 𝜃  varied with ሾ0,2𝜋ሿ. Applying the Fourier orthogonal 

properties on Eq. (4.57), the Fourier coefficient  𝐴௡௠ can be formulated as, 

𝐴௡௠ ൌ
∬ 𝑑𝑝 ൈ ሾ𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻሿ|𝐽|𝑑𝜉𝑑𝜃஍ೕ

∬ ሾ𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻሿଶ|𝐽|𝑑𝜉𝑑𝜃஍ೕ

. (4.58)

The quantity  𝑑𝑝  is required by the boundary conditions (4.27) and (4.28) and |𝐽|  is the 

Jacobian of elliptic co-ordinates system that is associated with: 

|𝐽| ൌ
𝑎ଶ

2
ሺ𝑐𝑜𝑠ℎ2𝜉 െ 𝑐𝑜𝑠2𝜃ሻ. (4.59)
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Using Eqs. (4.27) and (4.28) in Eq. (4.58), the required value of Α௡௠ is formulated by, 

Α௡௠ ൌ 2∆𝑝 ൈ 𝛼௡௠. (4.60)

where, 𝛼௡௠ ൌ
׬ ׬ 𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ 𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻሺ𝑐𝑜𝑠ℎ2𝜉 െ 𝑐𝑜𝑠2𝜃ሻ𝑑𝜉𝑑𝜃

ଶగ
଴

క೐

଴

2 ׬ ׬ 𝐶𝑒ଶ௡
ଶ ሺ𝜉, 𝑞௡௠ሻ 𝑐𝑒ଶ௡

ଶ ሺ𝜃, 𝑞௡௠ሻሺ𝑐𝑜𝑠ℎ2𝜉 െ 𝑐𝑜𝑠2𝜃ሻ𝑑𝜉𝑑𝜃
ଶగ

଴
కೕ

଴

, (4.61)

and, 𝜉௘ ൌ tanhିଵ ൬
1

𝐴𝑅
൰. (4.62)

To evaluate the coefficient 𝛼௡௠, the below assumptions are desired: 

න 𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝑑𝜃 ൌ 2𝜋𝐴଴
ଶ௡.

ଶగ

଴

 (4.63)

න 𝑐𝑒ଶ௡
ଶ ሺ𝜃, 𝑞௡௠ሻ𝑑𝜃 ൌ 𝜋 ൥2ሺ𝐴଴

ଶ௡ሻଶ ൅ ෍ሺ𝐴ଶ௥
ଶ௡ሻଶ

ஶ

௥ୀଵ

൩

ଶగ

଴

. (4.64)

න 𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ cos 2𝜃 𝑑𝜃 ൌ 𝜋𝐴ଶ
ଶ௡.

ଶగ

଴

 (4.65)

න 𝑐𝑒ଶ௡
ଶ ሺ𝜃, 𝑞௡௠ሻ cos 2𝜃 𝑑𝜃

ଶగ

଴

ൌ 𝜋 ൥𝐴଴
ଶ௡𝐴ଶ

ଶ௡ ൅ ෍ 𝐴ଶ௥
ଶ௡𝐴ଶ௥ାଶ

ଶ௡

ஶ

௥ୀ଴

൩. (4.67)

න 𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ𝑑𝜉 

క೐

଴

ൌ 𝜉௘𝐴଴
ଶ௡ ൅ ෍

𝐴ଶ௥
ଶ௡

2𝑟
sinhሺ2𝑟𝜉௘ሻ.

ஶ

௥ୀଵ

 (4.68)

                    න 𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ cosh 2𝜉 𝑑𝜉

క೐

଴

ൌ
1
2

𝐴ଶ
ଶ௡ ൅

1
4

𝐴଴
ଶ௡ sinh 2𝜉௘ ൅

1
4

෍
1
𝑟

ሺ𝐴ଶ௥ାଶ
ଶ௡ ൅ 𝐴ଶ௥ିଶ

ଶ௡ ሻ sinhሺ2𝑟𝜉௘ሻ .

ஶ

௥ୀଵ

 
(4.69)

By contrast, the integrations ׬ 𝐶𝑒ଶ௡
ଶ ሺ𝜉, 𝑞௡௠ሻ𝑑𝜉

కೕ

଴   and  ׬ 𝐶𝑒ଶ௡
ଶ ሺ𝜉, 𝑞௡௠ሻcosh2𝜉𝑑𝜉

కೕ

଴  have been 

evaluated by applying the numerical techniques where the maximum 25 eigen vectors 

coefficients of Mathieu function are taken in the MATLAB script to compute the coefficient 

Α௡௠. Consequently, according to the orthogonal normalization of angular Mathieu function 

referenced by [64], Eq. (4.64) can be written as,  
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න 𝑐𝑒ଶ௡
ଶ ሺ𝜃, 𝑞௡௠ሻ𝑑𝜃 ൌ 𝜋.

ଶగ

଴

 (4.70)

where, ൥2ሺ𝐴଴
ଶ௡ሻଶ ൅ ෍ሺ𝐴ଶ௥

ଶ௡ሻଶ

ஶ

௥ୀଵ

൩ ൌ 1. (4.71)

The value of normalization Eq. (4.70), ൫𝜋/√2൯ is convenient for the angular Mathieu functions 

over the interval ሾ0,2𝜋ሿ which is addressed by McLachlan [64].  

By using Eqs. (4.56), and (4.60), the required solution of Eq. (4.36) becomes, 

𝑑𝑝ሺ𝑧, 𝜉, 𝜃ሻ ൌ ෍ ෍ 2∆𝑝𝛼௡௠

ஶ

௠ୀଵ

ஶ

௡ୀ଴

𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ cosሺ𝜆௡௠𝑧ሻ.  (4.72)

Equation (4.72) is the complete solution of Eq. (4.36) for the Case-I where the turbulent 

viscosity 𝜇௧ ൌ 0 . Putting the value of Eq. (4.72) in the pressure term of Eq. (4.14), then the 

total pressure becomes as, 

𝑝 ൌ 𝑝௝ ൅ ෍ ෍ 2∆𝑝𝛼௡௠

ஶ

௠ୀଵ

ஶ

௡ୀ଴

𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ cosሺ𝜆௡௠𝑧ሻ.  

⇒ 𝑝 ൌ 𝑝௝ ൅ 2ሺ𝑝௘ െ 𝑝௕ሻ ෍ ෍ 𝛼௡௠

ஶ

௠ୀଵ

ஶ

௡ୀ଴

𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ cosሺ𝜆௡௠𝑧ሻ.  

∴
𝑝
𝑝௝

ൌ 1 ൅ 2 ቆ
𝑝௘

𝑝௝
െ

𝑝௕

𝑝௝
ቇ ෍ ෍ 𝛼௡௠

ஶ

௠ୀଵ

ஶ

௡ୀ଴

𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ cosሺ𝜆௡௠𝑧ሻ. (4.73)

Since the tendency of fully expanded pressure has to make balance with ambient pressure, then 

the ratio of ሺ𝑝/𝑝௝ሻ is equal to the ratio  ሺ𝑝/𝑝௕ሻ. In mathematically,  

𝑝
𝑝௝

ൌ
𝑝

𝑝௕
 (4.74)

Therefore, Eq. (4.73) becomes as the following required explicit form of normalized pressure, 

𝑝
𝑝௕

ൌ 1 ൅ 2 ൬
𝑝௘

𝑝௕
െ 1൰ ෍ ෍ 𝛼௡௠

ஶ

௠ୀଵ

ஶ

௡ୀ଴

𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ cosሺ𝜆௡௠𝑧ሻ.   (4.75)
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Again, the density of underexpanded jet can also be measured from the pressure equation (4.75). 

Applying Eq. (2.69) where the pressure and density are related as, 

𝑝
𝑝௝

ൌ
𝑝

𝑝௕
ൌ ቆ

𝜌
𝜌௝

ቇ
ఊ

,  (4.76)

The symbol 𝛾 is the specific heat ratio and the extended density is differed from the ambient 

density,  𝑖. 𝑒 𝜌௝ ് 𝜌௕, then Eq. (4.75) turns to, 

𝜌
 𝜌௝

ൌ 1 ൅
2
𝛾

൬
𝑝௘

𝑝௕
െ 1൰ ൈ 𝑑𝜌௘௟௟ሺ𝑧, 𝜉, 𝜃ሻ, (4.77)

where, 𝑑𝜌௘௟௟ሺ𝑧, 𝜉, 𝜃ሻ ൌ ෍ ෍ 𝛼௡௠

ஶ

௠ୀଵ

ஶ

௡ୀ଴

𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ cosሺ𝜆௡௠𝑧ሻ. (4.78)

But Eq. (4.77) can be rearranged as, 

𝜌 ൌ 𝜌௝ ൤1 ൅
2
𝛾

൬
𝑝௘

𝑝଴
ൈ 𝑁𝑃𝑅 െ 1൰ ൈ 𝑑𝜌௘௟௟ሺ𝑧, 𝜉, 𝜃ሻ൨. (4.79)

In Eq. (4.79), 𝑁𝑃𝑅 ൌ ሺ𝑝଴/𝑝௕ሻ is called nozzle pressure ratio between the stagnation pressure 

(𝑝଴) to ambient pressure ሺ𝑝௕ሻ. Using Eqs. (3.57) ~ (3.62) in Chapter 3, Eq. (4.79) becomes, 

𝜌
𝜌௕

ൌ 𝑁𝑃𝑅
ఊିଵ

ఊ ൤1 ൅
2
𝛾

൬
𝑝௘

𝑝଴
ൈ 𝑁𝑃𝑅 െ 1൰ ൈ 𝑑𝜌௘௟௟ሺ𝑧, 𝜉, 𝜃ሻ൨, (4.80)

which is the normalized density profile of the modified model for elliptic shock containing jet.  

Therefore, the theoretical pressure and density prediction of fully expanded inviscid jet 

can be performed by Eqs. (4.75) and (4.80) respectively where 𝐴𝑅, 𝑁𝑃𝑅, 𝑀௘, and 𝛾 have to be 

considered as the preassigned parameter. which are already presented as a proceeding [65]. 

Case-II: When 𝜇௧ ് 0, implies that the turbulent viscosity has to consider in the flow of jet 

and Eq. (4.48) is remain unchanged. To find the explicit solution of underexpanded elliptic jet 

for the Case-II where coefficient Α ് 0, Eq. (4.48) can be rearranged by, 

𝑍ᇱᇱᇱ െ ቆ
𝑀௝

ଶ െ 1

Α
ቇ 𝑍ᇱᇱ െ ሺ𝑀௝

ଶ െ 1ሻ𝜆ଶ𝑍ᇱ െ ቆ
𝑀௝

ଶ െ 1

Α
ቇ 𝜆ଶ𝑍 ൌ 0, (4.81)
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Equation (4.81) is a third order homogeneous ordinary differential equation with constant 

coefficient. Now, for a trail solution 𝑍ሺ𝑧ሻ ൌ 𝑒ఙ௭, the characteristics equation is given by, 

𝜎ଷ െ ቆ
𝑀௝

ଶ െ 1

Α
ቇ 𝜎ଶ െ ሺ𝑀௝

ଶ െ 1ሻ𝜆ଶ𝜎 െ ቆ
𝑀௝

ଶ െ 1

Α
ቇ 𝜆ଶ ൌ 0. (4.82)

Equation (4.82) is a third-degree polynomial that has three roots. Due to the Descartes' rule of 

signs for Eq. (4.82) where no change of sign has been occurred two times and change of sign 

occurred one time, so there has one real root and two complex roots. The well-known 

Cardano’s formula is applied to solve Eq. (4.82), then considering a general form of polynomial 

of degree three is given by 

𝜎ଷ ൅ 𝑎ଵ𝜎ଶ ൅ 𝑎ଶ𝜎 ൅ 𝑎ଷ ൌ 0, (4.83)

where, Eq. (4.82) and Eq. (4.83) are identical. According to the Cardano’s formula, three 

roots 𝑅ଵ, 𝑅ଶ, and 𝑅ଷ of Eq. (4.83) can be written as, 

𝑅ଵ ൌ 𝑃 ൅ 𝑄 െ
𝑎ଵ

3
, 𝑅ଶ ൌ െ

1
2

ሺ𝑃 ൅ 𝑄ሻ െ
𝑎ଵ

3
൅ 𝑖

√3
2

ሺ𝑃 െ 𝑄ሻ,  

𝑅ଷ ൌ െ
1
2

ሺ𝑃 ൅ 𝑄ሻ െ
𝑎ଵ

3
െ 𝑖

√3
2

ሺ𝑃 െ 𝑄ሻ, 

(4.84)

In Eq. (4.84), the used symbols 𝑃 and 𝑄 are real numbers, whereas 𝑖 is the complex number. 

The coefficient 𝑎ଵ, 𝑎ଶ, and 𝑎ଷ are bear the following values, 

𝑎ଵ ൌ െ
𝑀௝

ଶ െ 1

Α
, 𝑎ଶ ൌ െሺ𝑀௝

ଶ െ 1ሻ𝜆ଶ, 𝑎ଷ ൌ െ ቆ
𝑀௝

ଶ െ 1

Α
ቇ 𝜆ଶ. (4.85)

Also, the real 𝑃 and 𝑄 in Eq. (4.84) holds the following formula to make the meaningful roots 

of Eq. (4.83) as, 

𝑃 ൌ ටΩ ൅ ඥΨଷ ൅ Ωଶ
య

, 𝑄 ൌ ටΩ െ ඥΨଷ ൅ Ωଶ
య

; (4.86)

where, the quantities Ψ and Ω bear the below formulas are given by 
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Ψ ൌ ሺ3𝑎ଶ െ 𝑎ଵ
ଶሻ/9,  Ω ൌ ሺ9𝑎ଵ𝑎ଶ െ 7𝑎ଷ െ 2𝑎ଵ

ଷሻ/54. (4.87)

The general solution of Eq. (4.81) can be written with the three 𝑅ଵ,  𝑅ଶand 𝑅ଷ characteristics 

roots of the indicial Eq. (4.82) as, 

𝑍ሺ𝑧ሻ ൌ 𝐾ଷ𝑒ோభ௭ ൅ 𝐾ଵ𝑒ோమ௭ ൅ 𝐾ଶ𝑒ோయ௭ (4.88)

⇒ 𝑍ሺ𝑧ሻ ൌ 𝐾ଷ𝑒ቀ௉ାொି௔భ
ଷ ቁ௭ ൅ 𝐾ଵ𝑒

൭ିଵ
ଶሺ௉ାொሻି௔భ

ଷ ା௜√ଷ
ଶ ሺ௉ିொሻ൱௭

൅ 𝐾ଶ𝑒
൭ିଵ

ଶሺ௉ାொሻି௔భ
ଷ ି௜√ଷ

ଶ ሺ௉ିொሻ൱௭
, 

∴ 𝑍ሺ𝑧ሻ ൌ 𝐾ଷ𝑒ቀ௉ାொି௔భ
ଷ ቁ௭ ൅ 𝑒ିቂଵ

ଶሺ௉ାொሻା௔భ
ଷ ቃ௭ ቊ𝐾ଵ𝑒௜√ଷ

ଶ ሺ௉ିொሻ௭ ൅ 𝐾ଶ𝑒ି௜√ଷ
ଶ ሺ௉ିொሻ௭ቋ. (4.89)

Since the postulation of isentropic flow is deemed the wave equation where damped oscillation 

has to demand by the system. Omitting the term with arbitrary constant 𝐾ଷ, the asking solution 

(4.89) can be written with other two arbitrary constants 𝐾ଵ and 𝐾ଶ as,  

𝑍ሺ𝑧ሻ ൌ 𝑒ିቂଵ
ଶሺ௉ାொሻା௔భ

ଷ ቃ௭ ቊ𝐾ଵ𝑒௜√ଷ
ଶ ሺ௉ିொሻ௭ ൅ 𝐾ଶ𝑒ି௜√ଷ

ଶ ሺ௉ିொሻ௭ቋ. (4.90)

The rearranging form of Eq. (4.90) yields the general solution of Eq. (4.81) is given by 

𝑍ሺ𝑧ሻ ൌ 𝑒ିఝ௭ሼ𝐾ଵ cosሺ𝜔𝑧ሻ ൅ 𝐾ଶ sinሺ𝜔𝑧ሻሽ, (4.91)

𝜑 ൌ ൤
1
2

ሺ𝑃 ൅ 𝑄ሻ ൅
𝑎ଵ

3
൨ , 𝜔 ൌ

√3
2

ሺ𝑃 െ 𝑄ሻ. (4.92)

Using Eqs. (4.37), (4.47), and (4.91), the general solution of Eq. (4.36) is written as, 

𝑑𝑝ሺ𝑧, 𝜉, 𝜃ሻ ൌ ሾ𝑐𝑒ଶ௡ሺ𝜃, 𝑞ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞ሻሿ ൈ 𝑒ିఝ௭ሼ𝐾ଵ cosሺ𝜔𝑧ሻ ൅ 𝐾ଶ sinሺ𝜔𝑧ሻሽ. (4.93)

Using Eqs. (4.52) and (4.53) which are derived by utilizing Eq.  (4.25), Eq. (4.93) is given by, 

𝑑𝑝ሺ𝑧, 𝜉, 𝜃ሻ ൌ ሾ𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻሿ𝑒ିఝ೙೘௭ሾ𝐾ଵ cosሺ𝜔௡௠𝑧ሻ ൅ 𝐾ଶ sinሺ𝜔௡௠𝑧ሻሿ (4.94)

 In Eq. (4.95), 𝜑௡௠ and 𝜔௡௠depends on the eigenvalues 𝜆௡௠ which is applicable in Eq. (4.81). 

Again, applying the condition (4.26) in Eq. (4.94), Eq. (4.94) is simplified by, 

𝑑𝑝 ൌ Kଵ𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ𝑒ିఝ೙೘௭ ൤cosሺ𝜔௡௠𝑧ሻ ൅
𝜑௡௠

𝜔௡௠
sinሺ𝜔௡௠𝑧ሻ൨   (4.95)
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Now, applying the principles of supper position to express the solution (4.95) as a linear 

combination of all possible product of eigenfunctions summing over the range of 𝑛, 𝑚 as, 

𝑑𝑝 ൌ ෍ ෍ 𝐴௡௠

ஶ

௠ୀଵ

ஶ

௡ୀ଴

𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ

ൈ 𝑒ିఝ೙೘௭ ൤cosሺ𝜔௡௠𝑧ሻ ൅
𝜑௡௠

𝜔௡௠
sinሺ𝜔௡௠𝑧ሻ൨  

(4.96)

Finally, Eq. (4.96) is satisfied by the condition (4.28), then the following complete solution of 

Eq. (4.36) is obtained by using Eqs. (4.57) ~ (4.71),  

𝑑𝑝ሺ𝑧, 𝜉, 𝜃ሻ ൌ ෍ ෍ 2∆𝑝𝛼௡௠

ஶ

௠ୀଵ

ஶ

௡ୀ଴

𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ

ൈ 𝑒ିఝ೙೘௭ ൤𝑐𝑜𝑠ሺ𝜔௡௠𝑧ሻ ൅
𝜑௡௠

𝜔௡௠
𝑠𝑖𝑛ሺ𝜔௡௠𝑧ሻ൨. 

(4.97)

Using Eqs. (4.73) and (4.74), Eq. (4.97) can be written as,  

𝑝
𝑝௕

ൌ 1 ൅ 2 ൬
𝑝௘

𝑝௕
െ 1൰ ෍ ෍ 𝛼௡௠

ஶ

௠ୀଵ

ஶ

௡ୀ଴

𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ

ൈ 𝑒ିఝ೙೘௭ ൤𝑐𝑜𝑠ሺ𝜔௡௠𝑧ሻ ൅
𝜑௡௠

𝜔௡௠
𝑠𝑖𝑛ሺ𝜔௡௠𝑧ሻ൨,   

(4.98)

where, 𝛼௡௠ is measured from Eq. (4.61). Thus, Eq. (4.98) is the required explicit normalized 

pressure profile for the modified elliptic model where turbulent viscosity is utilized. 

Finally, applying Eqs. (4.76) ~ (4.80), the explicit viscous normalized density is derived as,  

𝜌
𝜌௕

ൌ 𝑁𝑃𝑅
ఊିଵ

ఊ ൤1 ൅
2
𝛾

൬
𝑝௘

𝑝଴
ൈ 𝑁𝑃𝑅 െ 1൰ ൈ 𝑑𝜌௘௟௟ሺ𝑧, 𝜉, 𝜃ሻ൨, (4.99)

where, 

𝑑𝜌௘௟௟ ൌ ෍ ෍ 𝛼௡௠

ஶ

௠ୀଵ

ஶ

௡ୀ଴

𝑐𝑒ଶ௡ሺ𝜃, 𝑞௡௠ሻ𝐶𝑒ଶ௡ሺ𝜉, 𝑞௡௠ሻ

ൈ 𝑒ିఝ೙೘௭ ൤cosሺ𝜔௡௠𝑧ሻ ൅
𝜑௡௠

𝜔௡௠
sinሺ𝜔௡௠𝑧ሻ൨ 

(4.100)
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Consequently, the normalized pressure and density profile of fully expanded turbulent 

viscous elliptic jet has been analyzed by Eqs. (4.98) and (4.99) respectively. Then using the Eq. 

(4.35), the following formulas are required, 

Α/𝐷௘௤ ൌ
4
3

ൈ ቆ
𝑈௝

ଶ

𝑎௝
ଶ ቇ / ൬

𝑈௝𝜌௝𝐷௘௤

𝜇௧
൰ ൌ

ሺ4/3ሻ ൈ 𝑀௝
ଶ

𝑅௘ௗ
, (4.101)

where, 𝑅௘ௗ ൌ 𝑈௝𝜌௝𝐷௘௤/𝜇௧ (4.102)

Now applying Eq. (4.18) in Eq. (4.102), the modified Reynolds number ሺ𝑅௘ௗሻ becomes as, 

𝑅௘ௗ ൌ
ቀ𝐷௘௤/𝐷௘௤ೕ

ቁ ൈ ൫𝜌௝/𝜌௕൯
଴.ଶ଼

𝜂൫1 െ 0.16𝑀௝൯
 (4.103)

 From Eqs. (4.103) and (4.101), the quantity Α is normalized by equivalent diameter 𝐷௘௤ as, 

A/𝐷௘௤ ൌ ൬
4𝜂
3

൰ ൈ
𝑀௝

ଶሺ1 െ 0.16𝑀௝ሻ

൫𝜌௝/𝜌௕൯
଴.ଶ଼

ቀ𝐷௘௤/𝐷௘௤ೕ
ቁ

, (4.104)

where, ∴
𝐷௘௤

𝐷௘௤௝

ൌ ඩ𝑀௝

𝑀௘
ቈ
ሺ 𝛾 െ 1ሻ 𝑀௘

ଶ ൅ 2
ሺ 𝛾 െ 1ሻ 𝑀௝

ଶ ൅ 2
቉

ఊାଵ
ଶሺఊିଵሻ

. (4.105)

Also, using Eq. (4.85), the normalized coefficients are given by, 

𝑎ଵ ൌ െ
𝑀௝

ଶ െ 1

Α/𝐷௘௤
, 𝑎ଶ ൌ െ

4𝑞௡௠

൫𝑎/𝐷௘௤൯
ଶ , 𝑎ଷ ൌ െ

4𝑞௡௠

൫𝑎/𝐷௘௤൯
ଶ /ሺΑ/𝐷௘௤ሻ   (4.106)

Therefore, the modified pressure and density prediction of fully expanded viscous jet 

can be performed by Eqs. (4.98) and (4.99) respectively. Centre line measures and mesh 

contours of pressure and density can also be demonstrated through these assumptions where 

𝐴𝑅, 𝑁𝑃𝑅, 𝑀ௗ, and 𝛾 have to be considered as the preassigned parameter. 
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4.4 Shock-cell Spacing 

It is truism that the shock-cell spaces of waves or preiodic structures depend on the smallest 

eigenvalue of the corresponding phenomenas related with pulsation. Using the smallest root 

(𝑞଴ଵ) of Eq. (4.53), the smallest eigenvalue (𝜆଴ଵ) is associated by   

𝜆଴ଵ ൌ
൫2ඥ𝑞଴ଵ൯

𝑎ට𝑀௝
ଶ െ 1

, (4.107)

According to the Tam’s [17] model, the shock-cell spacing (𝐿௦) is defined as  

𝐿ௌ ൌ
2𝜋

Smallest Eigenvalue
ൌ ൬𝜋𝑎ට𝑀௝

ଶ െ 1൰ /ඥ𝑞଴ଵ (4.108)

The shock-cell spacing can be normalized by the equivalent diameter ൫𝐷௘௤൯ of the nozzle exit. 

Then Eq. (4.108) is simplified as, 

𝐿ௌ

𝐷௘௤
ൌ 𝜋ට𝑀௝

ଶ െ 1 ቆ
𝑎

𝐷௘௤ඥ𝑞଴ଵ
ቇ, (4.109)

where, 
𝑎

𝐷௘௤
ൌ

𝑎
𝐿௠ೕ

ൈ
𝐿௠ೕ

𝐷௘௤
. (4.110)

The following useful postulates of estimation zeros (𝑞଴ଵ) of Eq. (4.53) depend on the 𝐴𝑅 of the 

elliptic nozzle exit cross-section which have been carried out theoretically by evaluating the 

distinct scales eccentricities and the coordinate 𝜉௝ integrated with Eqs. (4.5) ~ (4.7): 

Postulate-I: When 𝐿௡ೕ
/𝐿௠ೕ

ൎ 1 that imples small 𝑞  and large 𝜉௝  and the following 

asymptotical formula in Mores and Feshbach,[66] is considered to evalute the quantity 𝑞଴ଵ: 

ඥ𝑞଴ଵ ൎ 1.2025𝑒௝൫1 ൅ 0.250𝑒௝൯, 𝑒௝ ൌ
𝑎

𝐿௠ೕ

. (4.111)

Using Eq. (4.5) ~ (4.7) and (4.111), the required normalized shock-cell spacing that is almost 

equal to a jet with circular shape is given by, 
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𝐿ௌ

𝐷௘௤
ൎ

0.8316𝜋ට𝑀௝
ଶ െ 1

1 ൅ 0.125𝑒
ൈ

𝐿௠ೕ

𝐷௘௤
. (4.112)

Postulate-II: When 𝐿௡ೕ
/𝐿௠ೕ

ൎ 0 , then the appeared large 𝑞  and small 𝜉௝  can be 

measured by expandin Eq. (4.5) which are expressed as  

𝑎
𝐿௠௝

ൎ 1 െ
1
2

ቆ
𝐿௡ೕ

𝐿௠ೕ

ቇ
ଶ

, 𝜉௝ ൎ ቆ
𝐿௡ೕ

𝐿௠ೕ

ቇ ൅
1
3

ቆ
𝐿௡ೕ

𝐿௠ೕ

ቇ
ଷ

.  (4.113)

The following asymptotic formula for large 𝑞 is provided by McLachlan [64]: 

𝐶𝑒௝ሺ𝜉, 𝑞ሻ ൎ 𝐶௝ඥ2/𝑐𝑜𝑠ℎ𝜉 ൈcosቂ2ඥ𝑞଴௠𝑠𝑖𝑛ℎ𝜇 െ tanିଵ ቀ௧௔௡௛ఓ

ଶ
ቁቃ. (4.114)

The first zero of Eq. (4.53) can be calculated by setting the cosine function (𝐶௝ሻ equal to ሺ𝜋/2ሻ 

and small 𝜉௝ in Eq. (4.114) that can be shown as 

ඥ𝑞଴ଵ ൎ ቆ
𝜋

4𝜉௝
൅

1
4

ቇ. (4.115)

In this case, using Eqs. (4.115) and (4.109) where neglecting the higher power of ሺ𝐿௡ೕ
/𝐿௠ೕ

ሻ, 

the normalized shock-cell spacing which is equivalent for rectangular jets is given by,    

𝐿ௌ

𝐷௘௤
ൎ

4ට𝑀௝
ଶ െ 1

ቆ
𝐿௠ೕ

𝐿௡ೕ

൅ 1
𝜋ቇ

ൈ
𝐿௠ೕ

𝐷௘௤
. (4.116)

where, 
𝐿௠ೕ

𝐷௘௤
ൌ ඨቆ

𝐿௠ೕ

𝐿௠
ൈ

𝐿௡ೕ

𝐿௡
ቇ /4 ቀ𝐿௡ೕ

/𝐿௠ೕ
ቁ. (4.117)

Finally, all other cases of ሺ𝐿௡ೕ
/𝐿௠ೕ

ሻ are generally accepted to compute the normalized 

shock-cell spacing through the Eq. (4.109) and (4.5). 

A theoretical consequential parameter ൬
ୟ

ୈ౛౧ඥ୯బభ
൰  of Eq. (4.109) depends on the 

𝑁𝑃𝑅, 𝑀ௗ and 𝐴𝑅. The effect of this parameter has been shown in Fig. 4.3 for several values of 
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𝐴𝑅 against the arbitrary 𝑁𝑃𝑅 with the corresponding values of 𝑀ௗ specified by the condition 

(3.59). The vertical red bar at 𝑁𝑃𝑅 ൌ  2.23 and blue bar at 𝑁𝑃𝑅 ൌ  5.77 are indicated the 

barrier satisfying by the condition (3.59) which is directly allied with the shock-cell spacing. 

 

Fig. 4.3: The parametric effects of shock-cell spacing for arbitrary 𝑁𝑃𝑅 with several 𝐴𝑅. 

4.5 Size of Fully Expanded Jets  

Since the shape and size of the jet resulting from the high-speed jet flow closely depends on 

the nozzle structure, the difference between fully expanded and the nozzle exit jet size observed 

is clearly understood through the work [9]. Due to which, in describing the critical flow area 

where the velocity of jet equal to the critical speed of sound, Chapter 2 is already introduced 

the following relation between the Mach number 𝑀 and the critical area ratio 𝐴/𝐴∗: 

൬
𝐴
𝐴∗൰

ଶ

ൌ
1

𝑀ଶ ൤
2

𝛾 ൅ 1
൬1 ൅

𝛾 ൅ 1
2

𝑀ଶ൰൨

ఊାଵ
ఊିଵ

, 
(4.118)

where, 𝐴∗ termed the critical flow area same as the throat of the convergent divergent nozzle 

working system. Applying the rule (4.118) to the elliptic nozzle exit area (𝐴௘ሻ with the exit 

Mach number  ሺ𝑀௘ሻ and the fully expanded jet area ൫𝐴௝൯ with the fully expanded Mach number 

ሺ𝑀௝ሻ, then the elliptic area ratio ሺ𝐴௝/𝐴௘ ሻ in Fig. 4.4 is formed by  
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൬
𝐴௝

𝐴௘
൰

ଶ

ൌ
𝑀௘

ଶ

𝑀௝
ଶ ൤൬1 ൅

1 െ 𝛾
2

𝑀௝
ଶ൰ / ൬1 ൅

1 െ 𝛾
2

𝑀௘
ଶ൰ ൨

ఊାଵ
ఊିଵ

 (4.119)

Due to Fig. 4.4, the perimeter 𝑙 and major axis ሺ𝐿௠ሻ at the nozzle exit can be expressed as  

ሺ𝑙∆𝐿/2ሻ ൎ ሺ𝐴௝ െ 𝐴௘ሻ (4.120)

𝐿௠ ൌ 𝐿௠௝ െ ∆𝐿, (4.121)

where, the used symbol ∆𝐿 is the length increment between the characteristics length of nozzle 

exit major axis 𝐿௠ and fully expanded jets major axis ሺ𝐿௠௝ሻ respectively. Also, considering 

that the shape size of all the emitted jets is almost similar based on Fig. 4.4; hence, the following 

required form is to estimate by combing Eq. (4.115) and (4.121): 
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∴
𝐿௠௝

𝐿௠
ൌ ൬

𝐴௝

𝐴௘
െ 1൰ ൈ ൬

2𝐴௘

𝑙 ൈ 𝐿௠
൰ ൅ 1. (4.122)

If the area of the elliptic nozzle exit is adjusting with Eq. (4.8), then the perimeter ሺ𝑙ሻ can be 

expressed with the complete elliptic integral of second kind as, 

𝑙 ൌ 4𝐿௠ න ඥ1 െ 𝑒ଶ sinଶ 𝜃

గ
ଶ

଴

𝑑𝜃  (4.123)

where, 𝑒  is the eccentricity of the nozzle exit is measured from Eq. (4.6). Thus, the 

approximated size of fully expanded elliptic jets major axis wise can be able to measure through 

Eqs. (4.122), and (4.123) are given by, 

𝐿௠௝

𝐿௠
ൌ ൬

𝐴௝

𝐴௘
െ 1൰ ൈ ቌ

𝜋/𝐴𝑅

2 ׬ √1 െ 𝑒ଶ sinଶ 𝜃
గ
ଶ

଴ 𝑑𝜃
ቍ ൅ 1. (4.124)

The similar expression of ሺ𝐿௡௝/𝐿௡ሻ for the minor axis case is also abided by the preceding 

rules to measure the size of fully developed jets which is given as, 
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ൌ ൬

𝐴௝

𝐴௘
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𝜋

2 ׬ √1 െ 𝑒ଶ sinଶ 𝜃
గ
ଶ

଴ 𝑑𝜃
ቍ ൅ 1. (4.125)

Therefore, the shock size measuring formula provides the related information of shock 

effects and strength of shock-cell structure. Wave propagations, expansion, frequency tone and 

noise intensity can be measured through the size and shape of shock-cell structures.     

 

Fig. 4.4: A display of fully expanded jet size in comparison with nozzle exit jet size. 

4.6 Results and Discussion 

4.6.1 Theoretical Analysis of Elliptic Jets 

4.6.1.1 Elliptic Centerline Density with Circular Profile 

A modified theoretical centerline density outlines of supersonic jet issued from a 

convergent-divergent elliptic nozzle of 𝐴𝑅 ൌ 2.0 are compared with the equivalent circular 

diameter (1 𝑚𝑚) of experiment under the condition of 𝑁𝑃𝑅 ൌ 3.0, 𝑀ௗ ൌ 1.0 illustrating in 

Fig. 4.5. The black solid line is the rainbow schlieren deflectometry result, the green line Tam’s 

[16] circular theory, the magenta line modified circular theory for 𝜂 ൌ 0.0026  are presented 

in Fig. 4.5 for the accuracy of modified elliptic theories which are applied to explore the pink 

and blue solid lines instead of 𝜂 ൌ 0.00, and 𝜂 ൌ 0.0026 respectively. In the explicit elliptic 

solution, the first order ሺ𝑛 ൌ 0 ) even Mathieu function and first zero ሺ𝑚 ൌ 1ሻ  of radial 

Mathieu function have been considered significantly. The necessary scripts of MATLAB have 

been executed to evaluate the coefficients of Mathieu functions up to 25th position of eigen 

vectors by using the recurrence formulas and orthogonal properties. The abscissa ሺ𝑧ሻ is the 
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normalized by the equivalent diameter ሺ𝐷௘௤ሻ of elliptic nozzle exit and the ordinate is the 

density ሺ𝜌ሻ normalized by the ambient density ሺ𝜌௕ሻ. The magenta and black leftward arrows 

on the vertical axis indicate the centerline density values of circular modified theories 2.28 and 

experimental [52] 1.86 respectively, whereas the blue leftward arrow is specified by the 

modified elliptic theories value 2.19 calculating upon the assumption of the flow field. 

The blue line of modified elliptic theory for 𝜂 ൌ 0.0026 shows that a similar decrease 

and increase in density are quasi-periodically repeated in the downstream direction with a 

gradual decrease in the local maxima and minima of the density profile. Instead, the modified 

elliptic density for 𝜂 ൌ 0.00 (pink curve) exhibits a periodical curve alike Tam’s [16] circular 

theory for inviscid jet, but the green line shows more deviation than the pink one. Consequently, 

both the modified circular magenta curve and elliptic blue curve for 𝜂 ൌ 0.0026 are shown in 

qualitatively excellent agreement with the circular black curve where the attenuation of shock-

cells significantly follow the experimental properties, while the blue curve is fitted more 

precisely than the magenta curve. These theories conclude that an elliptical jet can emit less 

noise than each circular jet which is consistent with the experimental result of [42]. 

 

Fig. 4.5: Comparison of elliptic centerline density with RSD circular profiles [52]. 
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4.6.1.2 Theoretical Elliptic Density Contour Plots  

Theoretical elliptic models, including the complete solution of the underlying jet, 

provide only speculative rough results for the prediction of a particular flow. Still, it can be 

used as a comparison to validate the results obtained in the test. However, the validity of the 

simulation should be compared to the shock wave shape, especially the rainbow schlieren 

deflectometry described in Chapter 3. The calculated modified densities help collecting 

complete ideas about the elliptic flow components, such as the size and shape of expansion and 

compression, the spacing between shock cells and structures, and jet boundaries which are 

illustrated as the contour plots through Figs. (4.6 ~ 4.8) where jet flows from left to right 

direction. Figure 4.6(c) of experimental circular contour is taken to compare the modified 

elliptic results of major axis plane view showing in Figs. 4.6(a) to 4.6(b) where 𝐴𝑅 ൌ

2.0, 𝑁𝑃𝑅 ൌ 3.0, 𝑀ௗ ൌ 1.0 , and eigenvalue expansion of the first mode, ሺ𝑚 ൌ  1ሻ  are 

considered in MATLAB scripts. The specific heat constant, 𝛾 ൌ 1.4  for quiescent air is 

performed from elliptic exit geometry where the axes are normalized by the exit equivalent 

diameter, 𝐷௘௤ and the field of densityሺ𝜌ሻ is normalized by the ambient density ሺ𝜌௕ሻ.  

Figure 4.6(c) is assumed as a standard density distribution where expansion and 

compression waves are spaced periodically, and local maxima-minima are decreased gradually 

along with the downstream direction from the exit, which implies that far distance shocks along 

the flow direction are less strong than the nearer of nozzle exit, because of back pressure, 𝑝௕ 

effects. Sequentially, Figs. 4.6(a) and 4.6(b) are illustrated by the modified theories for 𝜂 ൌ

0.00 and 𝜂 ൌ 0.0026 separately where the first one is appearing equally spaced shocks for 

inviscid jet, whereas second one displays qualitatively similar density distribution with Fig. 

4.6(c) which is gradually diminishing along with the downstream distance, because of turbulent 

viscous effect. According to the analysis of Figs. 4.7(a1) ~ 4.7(b2) and Figs. 4.8(a1) ~ 4.8(b2), 

the number of shock-cells are increased on major and minor axis, but the length and size of 

shock-cells is slightly decreased with increasing the design Mach number 𝑀ௗ while 𝐴𝑅 and 

𝑁𝑃𝑅 are remain unchanged. Again, in Figs. 4.7(b1) ~ 4.7(c2) and Figs. 4.8(b1) ~ 4.8(c2), the 

shock-cells are decreasing on both major and minor axis, while length and size of shocks are 

increasing with the increasing of 𝑁𝑃𝑅, but fixing 𝐴𝑅, 𝑀ௗ. Sequentially,  Figs. 4.7(c1) ~ 4.7(d2) 

and Figs. 4.8(c1) ~ 4.8(d2) shows that the shock-cells increase, but length and  size decrease 

remarkably with the increase of aspect ratio ሺ𝐴𝑅ሻ in both axes, whereas 𝑁𝑃𝑅, and 𝑀ௗ keeps 

same value. It should be noted that the changes of 𝐴𝑅s closely relate with 𝑁𝑃𝑅, while changes 
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of 𝑁𝑃𝑅 depend on the condition [Eq. (3.59)] of 𝑀௝ and 𝑀ௗ for getting feasible flow features. 

 

 

 

Fig. 4.6: Comparison of density contour plots of elliptic theories with circular RSD [52].  
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Fig. 4.7: Density contours variation of Modified elliptic theory for 𝜂 ൌ 0.00. 
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Fig. 4.8: Density contours variation of Modified elliptic theory for 𝜂 ൌ 0.0026. 



-112- 
 

4.6.1.3 Theoretical Elliptic Density Mesh Plots with Contour  

The mesh plots of three different densities, including the contour plot of the under-

extended elliptical jet, are shown on a 3D jet surface, as shown in Figs. 4.9 (a) ~ 4.9 (c). The 

change of fluid properties with the environment may impact on the flow features which can 

predicted by analyzing the hypothetical mesh density plots. Figure 4.9(a) modified density 

theory for inviscid elliptic jet, Fig. 4.9(b) modified theory for elliptic turbulent viscous jet, and 

Fig. 4.9(c) displays RSD circular data while 𝐴𝑅 ൌ 2.0, 𝑁𝑃𝑅 ൌ 3.0,  𝑀ௗ ൌ 1.0 are used where 

is required. The normalized streamwise distance ሺ𝑧/𝐷௘௤ሻ, normalized major axis൫𝑦/𝐷௘௤൯, and 

normalized density ሺ/௕ሻ  are stated by the length, width, and height, respectively. The 

expansion waves and compression waves of shock cell structures are characterized by the 

orange and green shapes, each, however the jet boundary based upon the assumption of the 

underexpanded flow from the inlet of the nozzle to the exit is specified through the shadow 

blue zone. The associate transformation between Cartesian with elliptic co-ordinates and the 

first Fourier mode are considered to describe the fully expanded jet mesh density by the 

modified theories of elliptic model.  

Figure 4.9(c) demonstrates that the experimental mesh density is gradually diminishes 

with downstream distance from the nozzle exit on the lower plat, while the state of being is 

configured by the contour at the upper plat. A three-dimensional schema of first shock-cell 

structure is built at the first local maximum belonging to the sufficiently minimum value which 

is underneath the ambient density instead of a progressive increase in the downstream direction. 

A comparable quasi-periodical expansion and compression waves are repeating itself along the 

downstream direction with a gradual reduction of the local maxima and minima in the mesh 

density. Finally, the jet boundary is affected by the ambient pressure when the expanded jet 

density closes to the ambient density.  

The fully expanded modified density mesh plots of elliptic jets are aligned at the bottom 

layer of Figs. 4.9(a) and 4.9 (b) respectively where the first one is free from turbulent viscosity 

and the second one has the viscous effect by 𝜂 ൌ 0.0026 . The modified inviscid mesh in Fig. 

4.9(a) points out quantitatively similar agreement with circular experiment Fig. 4.9(c), whereas 

the modified mesh in Fig. 4.9(b) shows qualitatively parallel pattern with round mesh Fig. 

4.9(c).  
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Fig. 4.9: Density Mesh plots with contours underneath of elliptic theory with circular 

experiment. 
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4.6.1.4 Analysis of Shock-cell Spacing  

It is very important to know the shock-cell spacing, which is significantly related with 

the shock associated noises [67]. Figure 4.10 shows the variation of the shock-cell spacing for 

various 𝐴𝑅𝑠 against the arbitrary 𝑁𝑃𝑅 with multiple 𝑀ௗ. The embodied black, red, blue, green, 

purple, and magenta colour shocks spacing are signified by the 𝐴𝑅 ൌ  1, 2, 3, 4, 7.72, and ver 

big 𝐴𝑅 respectively. Also, two vertical bars at 𝑁𝑃𝑅 ൌ  3.23 and 𝑁𝑃𝑅 ൌ  5.77 are partitioned 

into three different effective zones which are convinced by Eq. (3.59) for the 𝑀ௗ ൌ  1.0, 1.5, 

and 2.0. In Fig. 4.10, the shock-cell spacing is normalized by the equivalent diameter of elliptic 

nozzle exit which is gradually increasing with increases of 𝑁𝑃𝑅. The most striking feature is 

that the shock-cell spacing can be expressed by a single curve. As result, the shock-cell spacing 

purple line for 𝐴𝑅 ൌ 7.72 is compared with the available Rao [20] experimental pink data for 

the first time, very good agreement has been shown in Fig. 4.10. In addition, the analytical 

curve can be clearly classified by design Mach numbers in such a manner that the shock-cell 

spacing is longer for a higher 𝑁𝑃𝑅 𝑜𝑟 𝑀ௗ. 

 

Fig. 4.10: Effect of normalized shock-cell spacing for various 𝐴𝑅 against arbitrary 𝑁𝑃𝑅 

with several 𝑀ௗ . 
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4.6.2 Conclusion Remarks of Elliptic Theories 

Flow structures of underexpanded jets issued from convergent-divergent nozzles have 

been studied analytically using the modified elliptic model of shock containing jet. Tam’s [17] 

model has been modified by considering the Reynolds eddy viscosity in momentum equation 

and imposing perturbated pressure gradient boundary condition. Two distinct explicit solution 

have been derived for the inviscid and viscous jet respectively for the first time. Effects of 

aspect ratio ሺ𝐴𝑅ሻ, nozzle pressure ratio ሺ𝑁𝑃𝑅ሻ, and design Mach number ሺ𝑀ௗሻ on the jet 

structures are demonstrated with the static pressure mesh plots and the contour plots on the 

cross-section at the major axis plane whereas the maximum 25 eigen vectors coefficients of 

Mathieu function are induced numerically. All the results are compared with equivalent 

diameter of circular rainbow schlieren deflectometry (RSD) experimental results for the 

validity of the model and the solutions. In addition, the shock-cell spacings of underexpanded 

elliptic jets are set out against the 𝑁𝑃𝑅  for three different significant values of 𝑀ௗ  and 

compared with Rao [20] data for the accuracy of the shock-cell. It is found that the shock-cell 

spacings for different design Mach numbers can be expressed by a single curve against arbitrary 

𝑁𝑃𝑅 and particular 𝐴𝑅 as a pioneer work. 
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Chapter 5 

Conclusion 

The experimental and analytical results of shock containing circular and elliptic jets were 

described in previous chapters which lead the following conclusions:  

Experimental investigation  

1) By using the rainbow schlieren deflectometry, a density field of jet emerging from round 

Laval nozzle followed by a cylindrical duct was measured. To investigate the effect of the 

nozzle pressure ratio on the jet structure, the three-dimensional density field of jet was 

reconstructed by the convolution back-projection (CBP) method. 

2) By an investigation on the centerline density profiles presence of wall friction of round 

Laval nozzles with and without cylindrical duct, the Laval nozzle with the cylindrical duct 

exhibited shock-free state at the lower nozzle pressure ratio than the design condition. Also, 

the freestream Mach number at the exit of duct was almost the same as that calculated based 

upon the assumption of the isentropic flow.  

3) The cylindrical duct causes the average Mach number at the exit to be reduced, but not 

change the freestream Mach number at the duct exit and it smooths the density profile when 

compared with that for the jet issued from the conventional Laval nozzle. 

4) To get a three-dimensional flow structure, isopycnic surfaces of overexpanded and 

underexpanded jets were constructed. It was found that the overexpanded jet produces a 

Mach disk following by successive weak shocks with a circular shape, while the 

underexpanded jet forms a bicone structure composed of an oblique shock and expansion 

waves in each shock-cell, which gradually becomes smaller in shape toward downstream.  
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Theoretical investigation  

1. To get a quantitative theoretical characteristic of an isentropic gas flow, a modified 

vortex sheet model taking viscosity into account was proposed where circular and 

elliptic boundary surfaces were examined by the propagated pressures of nozzle exit 

and fully expanded stream.  

2. To calculate the explicit solutions of circular and elliptic jet with and without viscosity 

separately, the first Fourier mode of eigenvalues expansion, and recurrence relations 

with orthogonal properties of Bessel’s functions for circular jet and Mathieu functions 

for elliptic jet were executed.  The 25 eigenvectors coefficients were also applied in 

MATLAB scripts to calculate the Mathieu function first time. It was clarified in the 

explicit solution that square length of Mach numbers of fully extended stream and 

nozzle exit stream were less than unity and flow properties were normalized by the 

nozzle exit diameter. 

3. The behavior of circular and elliptic jets with viscous and without viscous regimes 

were examined by the centerline density, density contours, density mesh contours 

significantly. From the results of the model, it was clarified that the inlet conditions of 

nozzle influenced to the behavior of flow. 

4. To simplify the efficacy of the theoretical results, a comparison among the Tam’s [16, 

17] theory, Emami’s [18] theory with the modified present theory with viscous and 

without viscous effect of the circular and elliptic jets was executed where the rainbow 

schlieren deflectometry was as a standard measure.  The results of modified theory 

were exhibited quantitatively excellent agreements with the experiment rather than 

other models by changing aspect ratios ሺ𝐴𝑅ሻ , nozzle pressure ratios ሺ𝑁𝑃𝑅ሻ , and 

design Mach numbers ሺ𝑀ௗሻ arbitrarily. 

5. To examine the accuracy of the model, the shock-cell spacing with its parametric 

effects, and size measuring formulas of elliptic jets were also discussed theoretically 

and graphically according to normalized fluid properties arbitrarily. By comparing the 

derived results with the Rao’s [20] experiment for the 𝐴𝑅 ൌ 7.72 , a satisfactory 

outcome was found in favor of the modified model. Finally, it was theoretically 

discovered by the comparison that the modified elliptic jet performed better flow 

features than the circular one. 
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Because the purpose of this study is to provide an advanced analytical model with explicit 

solutions, findings, and reliable experiment data about elliptic and circular phenomena in 

the shock containing flow field. Various contents were focused on the experiment where the 

jet was issued through the convergent-divergent nozzle, and the theoretical investigation 

were also restricted by various assumption for simplification. Therefore, many objects 

remain unresolved for further clarification and validity. The following recommendations 

based on this analysis can be concise by, 

 To investigate and get more findings, the underexpanded and overexpanded jet 

phenomenon in an experimental flow should be conducted through the elliptic duct, 

elliptic nozzle, and so on. Because lack of reliable data on this field.   

 The effect of molecular interaction and outside disturbances weren’t considered in the 

present model. Therefore, a complete analytical method should be needed, and a great 

deal of experimental data should be accumulated by considering the normal and shear 

stress.  

 The first Fourier mode was considered in the present model for the simple flow 

visualization of the jets at the nozzle exit region. Therefore, the model could be 

developed by considering the other modes of Fourier series for the distant jet from the 

nozzle exit. 
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