
Doctoral Dissertation

A Study on Clustering Schemes
for Efficient Information Distribution

in Information-Centric Networking

Mikiya Yoshida

March, 2024

Graduate School of Environmental Engineering
The University of Kitakyushu

Preface

The primary usage of today’s network is for delivering video content, such as
Video on Demand (VoD), which constitutes approximately 80% of the total net-
work traffic. It is anticipated that in the near future, the proliferation of IoT
(Internet of Things) services will lead to the influx of a large volume of IoT
content into the network. Therefore, solutions are needed to support the cur-
rent network usage, which revolves around content distribution. A new network
architecture called Information-Centric Networking (ICN) has attracted atten-
tion as a potential solution. ICN is designed with a focus on the concept that,
when consumers access content, they are indifferent to the identity of the content
provider. This design allows for directly exploring content in the network without
being dependent on the content provider by changing the destination of a content
request from the traditional Internet protocol (IP) address to the content name.
To take advantage of this design concept, content routers (CRs), which are inter-
mediate routers, are assigned the roles of both forwarding and caching content.
This allows replicated content to be distributed into the network while acting as
substitutes for content providers. Therefore, ICN can handle the content requests
by using CRs without the intervention of content providers, which contributes to
balancing server and network loads and reducing content delivery latency.

However, the cache size of CR is significantly smaller than the huge amount of
content worldwide, so it is naturally impossible to cache all content. Therefore,
an important issue to be addressed by ICN is to consider how to use these cashes,
since they significantly affect the performance of content retrieval. In recent years,
to address this issue, clustering schemes have been proposed. These schemes
group several CRs (i.e., a cluster) in the network and apply efficient content
placement and routing within each cluster. This allows for resolving the majority
of consumer content requests by utilizing a near cluster. However, I believe that

i

we can achieve higher efficiency by focusing on two points, which are still open
for discussion: 1. How to efficiently use surrounding clusters, and 2. How to adapt
to changes in content demand trends.

Therefore, in this dissertation, as one solution for efficiently using caches in
ICN to meet the recent demand for content distribution, I propose a clustering
scheme that considers issues 1 and 2. This proposed scheme efficiently delivers
content by making clusters that are efficiently clustered and distributed content
in accordance with the network situation and by flexibly exploring valuable con-
tent from the clusters. Furthermore, the effectiveness of the proposed scheme is
demonstrated through simulation evaluations.

The dissertation consists of six chapters. Chapter 1introduces the background,
objectives, and structure of the dissertation.

Chapter 2 provides an overview of the inception of ICN, its fundamental oper-
ations, related works, and the two specific issues addressed in this dissertation.

Chapter 3 focuses on issue 1 and proposes an efficient content distribution and
exploration scheme for clustering schemes. This scheme uniformly distributes
content to each cluster in a distributed caching manner and dynamically updates
the routing table on the basis of collaboration among CRs across the cluster
boundary. As a result, consumers can explore the nearest content from surround-
ing clusters. In simulation evaluations, the proposed scheme demonstrated higher
cache efficiency and lower content delivery latency than conventional schemes by
using surrounding clusters/caches.

Chapter 4 focuses on issue 2 and proposes a dynamic clustering scheme to
adjust the cluster size in accordance with fluctuations in content demand trends.
This scheme effectively estimates the appropriate cluster size by using a simple
threshold-based algorithm on the basis of the frequency of cache updates in the
cluster. As a result, it enables the construction of consistently appropriate clusters
to adjust to shifting content demand trends. Simulation evaluations indicate that
the proposed scheme reduces delivery latency while consistently maintaining a
high cache efficiency in an environment with changing content demand trends.

Chapter 5 delves into the adaptability of the proposed scheme in practical
networks. While the design and effectiveness of the proposed scheme are discussed
on the basis of the simple topology in Chapters 3 and 4, applying the scheme to

ii

practical networks requires establishing a clustering scheme for their networks and
evaluating its performance regarding topology dependence. Therefore, I propose
a clustering scheme for practical networks, and in simulation evaluations, the
proposed scheme indicated sufficient applicability in practical networks.

Chapter 6 concludes the study and addresses future work. By deploying the
proposed scheme on the network, clusters automatically formed on the basis of
content demand trends among consumers will contribute to improving quality of
service regarding diverse content distribution in the future.

iii

Acknowledgements

I would like to acknowledge the support and encouragement received from a
number of peoples for several years.

First of all, I wish to express my sincere appreciation to Associate Professor
Hiroyuki Koga of the University of Kitakyushu. His constant encouragement,
guidance through this research, invaluable discussions and advice have greatly
helped in accomplishing the research. I also thank him for his careful reading of
all papers on the research.

I would also like to express my gratitude to Associate Professor Yurino Sato
of the National Institute of Technology, Sasebo College, and Lecturer Yusuke Ito
of the University of Kitakyushu for their valuable comments, time and help in
completing the research. Their steady support has greatly helped my study.

I wish to thank Professor Takeshi Ikenaga and Associate Professor Daiki Nobayashi
of the Kyushu Institute of Technology for their valuable comments, time and help
in completing the research.

I am very grateful to Professor Satoshi Uehara, Professor Yasushi Yamazaki,
and Associate Professor Hiroki Cho of the University of Kitakyushu for their
advice and comments.

I extend thanks to all other members of the Network Engineering Research
Group at the University of Kitakyushu for their kindly supports and valuable
discussions.

Finally, my greatest appreciation goes to my family. They perpetually helped
me whenever I faced various problems. Their long standing has enabled me to
complete my degree.

iv

Contents

Preface i

Acknowledgements iv

1 Introduction 1
1.1 Information-Centric Networking (ICN) 2
1.2 Issues with ICN . 3
1.3 Overview of this dissertation . 5

2 Related works 7
2.1 Inception of ICN . 7
2.2 Operation of ICN . 9
2.3 Caching and routing schemes in ICN 10

2.3.1 Simple caching scheme . 10
2.3.2 Off-path caching scheme 11

2.4 Clustering scheme . 12
2.4.1 Issues with clustering schemes 12

3 Content distribution/exploration scheme for clustering schemes 14
3.1 Introduction . 14
3.2 Proposed scheme . 16

3.2.1 Cluster-based Distributed Caching 16
3.2.2 Advertisement-based routing for cluster-based caching . . . 18

3.3 Simulation model . 20
3.4 Simulation results . 23

3.4.1 Effect of cluster size . 23
3.4.2 Effect of ratio of assigned space 25
3.4.3 Effect of Zipf α . 26

v

3.4.4 Effect of FloodingTTL . 27
3.5 Conclusion . 29

4 Popularity-aware dynamic clustering scheme 30
4.1 Introduction . 30
4.2 Proposed scheme . 32
4.3 Simulation model . 34
4.4 Simulation results . 37

4.4.1 Evaluation of Effectiveness 37
4.4.2 Effect of Thresholds . 40
4.4.3 Effect of Reclustering Intervals 42
4.4.4 Effect of Change Intervals of Zipf 43

4.5 Conclusion . 45

5 Evaluation of clustering schemes in practical environment 46
5.1 Introduction . 46
5.2 Proposed scheme . 47
5.3 Simulation model . 49
5.4 Simulation results . 52
5.5 Conclusion . 53

6 Conclusion and future work 55
6.1 Conclusion . 55
6.2 Future work . 57

vi

List of Figures

1.1 IP communication model . 2
1.2 ICN communication model . 3

2.1 An overview of the ICN communication 9

3.1 Inefficient content retrieval . 15
3.2 Distributed caching operation . 16
3.3 Cache replacement operation . 17
3.4 Cache information advertisement 19
3.5 Simulation topology . 21
3.6 Effect of cluster size . 24
3.7 Effect of ratio of assigned space 25
3.8 Effect of Zipf α . 26
3.9 Effect of FloodingTTL . 28

4.1 Operation of dynamic clustering 33
4.2 Simulation topology . 35
4.3 Fluctuation of zipf α . 35
4.4 Estimation of adequate thresholds 37
4.5 Effectiveness of the proposed scheme 38
4.6 Effect of thresholds . 40
4.7 Estimated and adequate thresholds 41
4.8 Effect of reclustering intervals . 43
4.9 Effect of change intervals of Zipf α 44

5.1 Simulation topologies . 50
5.2 Fluctuation of zipf α . 51
5.3 Effect of Interoute . 52

vii

5.4 Effect of Sinet . 52
5.5 Effect of Missouri . 53
5.6 Effect of Geant . 53

6.1 An overview of the proposed cluster-based ICN 58

viii

List of Tables

3.1 Simulation parameters . 22

4.1 Simulation parameters . 34

5.1 Simulation parameters . 49
5.2 Simulation parameters for each scheme 51
5.3 Advertisement rate on each topology 54

ix

1 Introduction

It has been almost 60 years since the birth of ARPANET, the prototype of the
Internet [1]. It was initially designed for host-to-host communication, which was
primarily used for email. In 1990, the World Wide Web system was released,
making the Internet widely availability to the general public [2]. Since then,
network technology has advanced significantly, and network usage patterns have
shifted dramatically. The primary usage of today’s network is for delivering video
content, such as Video on Demand (VoD), which constitutes approximately 80%
of the total network traffic [3]. In the near future, Internet of Things (IoT)
services, including big data analysis and artificial intelligence (AI), are expected
to proliferate significantly to realize self-driving cars, industrial robots, etc [4].

With these shifts in network usage patterns, the current network design of host-
to-host communication using Internet protocol (IP) addresses faces challenges to
satisfying the quality demands for modern services. For example, VoD services,
which consist of communication between many consumers and a single producer,
cause issues with not only the processing load on the producer side for managing
the large number of connections but also the network load from the concentrated
flows generated by these connections, as shown in Fig. 1.1. In IoT services such as
automated driving, a server collects and processes a large amount of information
and provides processed results as control information to vehicles. This service
has the problem of communication between the server and a large number of IoT
devices that occurs when collecting large amounts of data, i.e., similar to the VoD
service, as well as the problem of completing the whole process in an extremely
short time (a few milliseconds). Therefore, while communication latency needs to
be reduced, the latency caused by the physical distance between the server and
the device makes the problem even more difficult. In recent years, the former
problem has been solved by Content Delivery Network (CDN) technology [5] and

1

Networks

Consumers

Producers

Figure 1.1: IP communication model

the latter by Edge Computing technology [7]. Both solutions commonly deploy
additional servers nearby consumers. However, considering the increasing content
distribution as various services are introduced in the future, the approach of
placing servers for problem resolution on the basis of IP-based architecture each
time may not be wise. Therefore, solutions are needed to support the current
network usage, which revolves around content distribution.

1.1 Information-Centric Networking (ICN)
A new network architecture called Information-Centric Networking (ICN) has
attracted attention as a potential solution [8, 9]. ICN is designed with a focus
on the concept that, when consumers access content, they are indifferent to the
identity of the content provider. This design allows for directly exploring content
in the network without being dependent on the content provider by changing the
destination of a content request from the traditional IP address to the content
name. To take advantage of this design concept, content routers (CRs), which
are intermediate routers, are assigned the roles of both forwarding and caching
content. This allows for reducing communication delays caused by physical dis-

2

Networks

Consumers

Producers

Figure 1.2: ICN communication model

tance, as the requested content from the consumer is responded to using caches
at nearby CRs along the route to the producer, as shown in Fig. 1.2. Addition-
ally, CRs distribute the server and network loads by replicating the content on
the network (i.e., essentially increasing the number of producers). Specifically,
ICN represents a significant departure from conventional approaches by entrust-
ing the network layer (L2) with the resolution of challenges related to content
distribution, without the need for additional functionalities such as edge servers
or CDN servers. This marks a distinctive paradigm shift, and it is considered a
technology that should be realized.

1.2 Issues with ICN
However, the cache size of CR is significantly smaller than the huge amount of
content worldwide, so it is naturally impossible to cache all content. Therefore,
an important issue to be addressed by ICN is to consider how to use these cashes,
since they significantly affect the performance of content retrieval, and many
efficient content-caching schemes have been proposed [10–12].

The first step in these schemes is retaining the popular content, i.e., content

3

frequently requested by consumers, in the cache of a single CR. However, the
single-CR approach cannot take into account the cache status of neighboring
CRs, which causes cache redundancy. This problem leads to a heavy duplication
of popular content in the network and decreases the efficiency of cache utiliza-
tion. To solve this problem, several schemes have been proposed that organize the
caches on the shortest path between the consumer and producer by using prob-
ability when determining what to cache. While the above schemes can achieve
significant improvements, the cache size (even including caches on the shortest
path) is still tiny compared to the huge amount of content worldwide. As a result,
off-path caching schemes have been proposed to search caches outside the shortest
path by extending the cache exploration range with an additional routing table.
However, simply combining it with the caching schemes described above does not
achieve sufficient improvement because of redundant caches within the extended
cache exploration range.

Therefore, routing and caching should be considered in an integrated manner,
and the cache should be placed efficiently within the cache exploration range. In
recent years, the exploration range has been replaced by the term “cluster”, and
clustering schemes [13–16] have been proposed. These schemes group several CRs
(i.e., a cluster) in the network and apply efficient content placement and routing
within each cluster. This allows for resolving the majority of consumer content
requests by utilizing a near cluster. However, I believe that we can achieve higher
efficiency by focusing on two points, which are still open for discussion:

1. How to efficiently use surrounding clusters. The routing design of these
clustering schemes has not allowed forwarding outside the cluster for request
resolution. Specifically, the cache exploration range is restricted to the cluster
boundaries, and the requests for non-cached content within the cluster are for-
warded directly to the producer. However, although a cluster has a large cache
size, it cannot cache the huge amount content worldwide, so the caches in neigh-
boring clusters should also be made available. Therefore, routing that is not
restricted by cluster boundaries is necessary.

2. How to adapt to changes in content demand trends. The design of these
clustering schemes aims to improve cache utilization and reduce delivery latency
by retaining a sufficient amount of the main popular content in the caches of a

4

cluster. However, in a practical environment, the content demand trends, i.e.,
the amount of the main popular content, will change over time [17]. Therefore,
the cluster size needs to be determined depending on the situation.

1.3 Overview of this dissertation
In this dissertation, as one solution for efficiently using caches in ICN to meet
the recent demand for content distribution, I propose a clustering scheme that
considers issues 1 and 2. This proposed scheme efficiently delivers contents by
making clusters that are efficiently clustered and distributed content in accor-
dance with the network situation and by flexibly exploring valuable content from
the clusters. Furthermore, I demonstrate the effectiveness of the proposed scheme
through simulation evaluations.

In Chapter 2, I provide an overview of the inception of ICN, its fundamental
operations, related works, and the two specific issues addressed in this disserta-
tion.

In Chapter 3, I discuss how to solve issue 1. I propose an efficient distributed
caching and exploration scheme for clustering schemes. This scheme uniformly
distributes content to each cluster in a distributed caching manner and dynam-
ically updates the routing table on the basis of collaboration among CRs across
the cluster boundary. Furthermore, I discuss the effectiveness of the proposed
scheme through a simulation evaluation.

In Chapter 4, I discuss how to solve issue 2. I propose a dynamic clustering
scheme to adjust the cluster size in accordance with fluctuations in content de-
mand trends. This scheme effectively estimates the appropriate cluster size by
using a simple threshold-based algorithm on the basis of the frequency of cache
updates in the cluster. Furthermore, I discuss the effectiveness of the proposed
scheme through a simulation evaluation that assumes a network with fluctuating
content demand trends.

In Chapter 5, I delve into the adaptability of the proposed scheme in practical
networks. While the design and effectiveness of the proposed scheme are discussed
on the basis of the simple topology in Chapters 3 and 4, applying the scheme to
practical networks requires establishing a clustering scheme for their networks and

5

evaluating its performance regarding topology dependence. Therefore, I propose
a clustering scheme for practical networks and discuss its applicability in practical
networks through simulation evaluations.

In Chapter 6, I conclude this study and address future work.
The results discussed in Chapter 3 are mainly taken from [18] and those in

Chapter 4 and 5 from [19–21].

6

2 Related works

In this chapter, I provide an overview of the inception of ICN, its fundamental
operations, related works, and the two specific issues 1 and 2 addressed in this
dissertation.

2.1 Inception of ICN
Today’s network usage patterns have changed dramatically from the host-to-host
communication of email-like information exchange to the distribution and re-
trieval of large volumes of content such as Video on Demand (VoD). Since the
current network is designed for host-to-host communication, this gap between
usage patterns has caused various negative effects [4, 10–12]. When delivering
content on the host-to-host communication model on the basis of the IP address,
known as IP-network architecture, numerous consumers centrally connect to a
single producer, which often causes server load and network congestion. In ad-
dition, while delay-sensitive services such as automated driving are expected to
be realized, they face a problem related to latency caused by physical distance
between producer and consumer. These indicate that the communication model
in which performance related to content delivery is highly dependent on the loca-
tion of the producer and consumer is not appropriate for current network usage
patterns.

There have been several technologies to solve this problem on the host-to-host
communication model, such as Contents Delivery Network (CDN) [5], Peer-to-
Peer (P2P) [5,6], and edge computing [7]. CDNs serve content such as web pages
and videos to consumers from servers that are physically close to the consumers,
aiming to distribute loads on the servers and enable large data transfers. The
fundamental concept of a CDN is that content providers replicate their content

7

on distributed servers. Based on the physical location of consumers, the request
is forwarded through the CDN provider’s DNS to the nearest server that holds
a replica of the requested content. P2P efficiently distributes content without
content providers through a mechanism that allows consumers to easily share
downloaded content with others. Namely, it is on the basis of content exchange
between consumers, where each consumer can be a consumer as well as a producer.
The content requests in P2P networks are resolved by multiple transfers from
numerous consumers who already have the content. Edge computing is a solution
using edge servers located at the edge of a network to satisfy the requirements
of delay-sensitive services. In edge computing, edge servers physically located in
the neighborhood process delay-sensitive requests that cloud processing cannot
handle. The common idea of these technologies is to place additional servers
that can perform the role of producers in the neighborhood of the consumers,
i.e., the solutions are on the basis of the application layer. However, considering
the increasing content distribution with the deployment of various services in the
future, the approach of placing servers for problem resolution each time may not
be wise. Therefore, there is a need for solutions to support the current network
usage, which revolves around content distribution.

Therefore, Information-Centric Networking (ICN) has been proposed as a new
network architecture that solves the location dependent problem in accordance
with the current network usage patterns [8]. ICN is designed with a focus on the
concept that, when consumers access content, they are indifferent to the iden-
tity of the content provider. This design allows for directly exploring content
in the network without being dependent on the content provider by changing
the destination of a content request from the traditional IP address to the con-
tent name. To take advantage of this design concept, content routers (CRs),
which are intermediate routers, are assigned the roles of both forwarding and
caching content. This allows for reducing communication delays caused by phys-
ical distance, as the requested content from the consumer is responded to using
caches at nearby CRs along the route to the producer. Additionally, CRs dis-
tribute the server and network loads by replicating the content on the network
(i.e., essentially increasing the number of producers). Specifically, ICN represents
a significant departure from conventional approaches by entrusting the network

8

A

B

C

D

�

�

�

�

Send Interest

Reply Data from Producer

Reply Data from CR(B)

Send Interest

Interest flow

Data flow

Cache

Figure 2.1: An overview of the ICN communication

layer (L2) with the resolution of challenges related to content distribution, with-
out the need for additional functionalities such as edge servers or CDN servers.
This marks a distinctive paradigm shift, and it is considered a technology that
should be realized.

2.2 Operation of ICN
This section describes the operation of ICN. The design concept of ICN has
existed for a while, and it has been derived into various types since then. Content-
centric networking (CCN) [8] / Named data networking (NDN) [9], Pursuing
a pub/sub internet (PURSUIT) [22], and Data-oriented network (DONA) [23]
have been proposed are typical ICN architectures. I focus on a representative
NDN environment in this study. Figure 2.1 shows the overview on the ICN
communication. In NDN, a consumer requests content by sending an Interest
packet that contains the name of the desired content. Note that an Interest
packet is a request for a chunk of content called a Data packet. The CR that
receives the Interest packet forwards it to a producer on the basis of the forwarding

9

information base (FIB) routing table. The producer then returns Data packets
of requested content on the reverse path to the consumer. The CRs cache Data
packets in their content store (CS) during forwarding, so they can return caches
to the consumer instead of the producer if they store the requested Data. This
in-network caching can satisfy the future requests of consumers, significantly
reducing the network load and delivering content more efficiently.

2.3 Caching and routing schemes in ICN
However, the cache size of CR is significantly smaller than the huge amount of
content worldwide, so it is naturally impossible to cache all content. In recent
studies, the cache size of CR has been evaluated by assuming approximately
0.1–1.0% of the amount of total content. Therefore, an important issue to be
addressed by ICN is to consider how to use these cashes, since they significantly
affect the performance of content retrieval, and many efficient content- caching
schemes have been proposed [10].

2.3.1 Simple caching scheme

The caching scheme is to consider what to cash and what to discard within a finite
resource. The first step in these schemes was to resolve requests with a single
CR. There have been three well-known cache-discard algorithm policies since long
ago, such as LRU, LFU, and FIFO [24]. The purpose of these is to retain the
content that is most likely to be used by consumers, i.e., the popular content
that is frequently requested. However, a single CR does not take into account
the caches on nearby CRs, which causes a cache redundancy problem in which
only highly popular content is more replicated in the network, and thus cache
utilization efficiency may be reduced. To solve this problem, several schemes have
been proposed that organize the caches on the shortest path between consumer
and producer. The major idea is to use a probabilistic factor when making cache
decisions, such as RND [25] and UniCache [29]. In UniCache, for example, if there
are four CRs on the shortest path and each CR caches content with a probability
of 1/4, the content is approximately uniformly distributed among the CRs, thus
preventing redundant caching. With these ideas, the cache redundancy problem

10

has been nearly solved. The next major discussion point is where and what to
cache. ProbCache [26] controlled the cache location of the content by probability.
The main idea of this scheme is that the probability of caching is adjusted for
each content accounting with the distance to the producer. However, there is a
limit to strictly control the placement of content by the probability of caching.
In contrast, Leave Copy Down (LCD) [27], Move Copy Down (MCD) [28], and
WAVE [29] have been proposed. These schemes take into account the popularity
of the content, the centrality of the node, etc., and the CR explicitly moves the
cache to the appropriate location. The key idea of these schemes is that each
CR moves requested caches to downstream CRs. Namely, the CR caching the
requested content sends its cache to the downstream CR, which can efficiently
place popular content in the neighborhoods of consumers.

Consequently, these studies showed that it is important to consider the cache
redundancy, the content popularity, and the placement of content in order to
improve the cache efficiency. While the above schemes can achieve significant
improvements, the amount of cache (even including caches on the shortest path)
is still tiny compared to the huge amount of content worldwide. As a result, we
believe that improvements in these ideas have nearly reached their limits.

2.3.2 Off-path caching scheme

Therefore, some schemes have been proposed to use the surrounding CRs instead
of constraining to the shortest path. Such schemes that enable to search the
cache outside of the shortest path by using additional FIBs are called off-path
caching schemes, i.e., the above described schemes are called on-path cashing
schemes. As the simplest off-path caching scheme, breadcrumb [30, 31] has been
proposed. CRs maintain content delivery trail information and use it to directly
forward requests. These schemes are on the basis of the idea that caches can
be found through the interface that previously forwarded the content. Namely,
requests are forwarded to the interface to be expected cache hit. This design
concept has the problem that content delivery trail information becomes a false
positive when content is discarded due to cache updates. This causes significant
delays because the CR would forward the request on a large detour route. To
improve accuracy regard to forwarding, some recent schemes use reinforcement

11

learning [32]. However, even with these schemes, the improvement in accuracy
is still insufficient, so Scope-flooding [33], MuNCC [34], and SCAN [35] have
been proposed. Scoped-Flooding gets caches from the nearest CRs by flooding
requests that actively explore caches. In contrast, MuNCC and SCAN adequately
maintain the routing table for nearby caches by exchanging cache information
among CRs that passively update cache statuses.

2.4 Clustering scheme
Off-path caching extends the exploration range on the basis of an additional rout-
ing table, but simply combining it with the caching scheme described above does
not achieve sufficient improvement because of redundant caches when consider-
ing between caches on shortest-paths. Therefore, routing and caching should be
considered in an integrated manner, and the cache should be placed efficiently
within the cache exploration range. In recent years, the exploration range has
been replaced by the term “cluster”, and clustering schemes [13, 14] (referred to
as HRC and VDHTC hereafter, respectively), PoolCache [15], and HCC [16] have
been proposed. These schemes group CRs into clusters in a domain and retain
the main popular content in each cluster using a Hash-routing-like distributed
caching manner [39]. The delivery latency can thus be controlled by cluster size,
enabling consumers to retrieve content efficiently from the originating clusters.
As a scheme similar to the aforementioned ones, the HCC [16] scheme has also
been proposed. It centrally manages the distributed caches by a cluster header
constructed in each cluster. The cluster header calculates the content popular-
ity and importance of each node on the basis of information collected from the
cluster, and then assigns the more popular content to the more important node
to improve cache efficiency and delivery latency.

2.4.1 Issues with clustering schemes

This allows for the resolution of the majority of consumer content requests by
utilizing a near cluster that allows for the retention of a large amount of popular
content. However, I believe that we can achieve higher efficiency by focusing on
two points, which are still open for discussion:

12

1. How to efficiently use surrounding clusters. The routing design of these
clustering schemes has not allowed forwarding outside the cluster for request
resolution. Specifically, the cache exploration range is restricted to the cluster
boundaries, and the requests for non-cached content within the cluster are for-
warded directly to the producer. This is the result by considering the risk that
when using out-of-cluster to resolve requests, the paths tend to be larger due to
mainly false positives, which may cause significant delays in content retrieval.
However, although a cluster has a large cache size, it cannot cache the huge
amount content worldwide, so the caches in neighboring clusters should also be
made available. Therefore, routing that is not restricted by cluster boundaries is
necessary.

2. How to adapt to changes in content demand trends. The design of these
clustering schemes aims to improve cache utilization and reduce delivery latency
by retaining a sufficient amount of the main popular content in the caches of a
cluster. However, in a practical environment, the content demand trends, i.e.,
the amount of the main popular content, will change over time [17]. A too-small
cluster size compared with the current amount of main popular content decreases
cache utilization and causes delivery delays due to the delivery from producers,
while a too-large cluster size increases cache utilization but may cause delivery
delays due to long cache delivery. Therefore, I believe that the adequate cache
distribution range should be determined in accordance with content popularity
on the basis of such trade-off factors. Therefore, the cluster size needs to be
determined depending on the situation.

13

3 Efficient content distribution
and exploration scheme for
clustering schemes

In this chapter, I discuss how to solve the issue 1. I propose an efficient dis-
tributed caching and exploration scheme for clustering schemes to address the
issue 1. Furthermore, I discuss the effectiveness of the proposed scheme through
simulation evaluations.

3.1 Introduction
I will first reorganize the issue 1 as described in Chapter 2. Various cluster-
ing schemes [13–16] have been proposed to reduce content delivery latency and
improve cache efficiency.

HRC [13], VDHTC [14], and PoolCache [15] group several CRs into clusters
in the network and apply Hash-routing into each cluster. These schemes enable
to explore content from CRs using a hash function that maps content identifiers
to each CR, i.e., the assignment location of the content, within a cluster. In
particular, when a CR in a cluster receives a request, it calculates the hash value
from the identifier of the received content and forwards it to the responsible CR in
the cluster. If the content is not cached in the responsible CR, the request is then
forwarded to the direction of the producer, in other words, the off-path routing
is performed only in the originating cluster where the request is generated from
the consumer. In HCC [16], the central management node, which manages the
content assignment for each CR in the cluster, has the role of forwarding requests
within the cluster. In particular, when the central management node receives a

14

�� ��

Producer

CR

Consumer

A

Cluster

Figure 3.1: Inefficient content retrieval

request, it calculates the CRs in the cluster where the requested content may be
cached and multicasts the requests in the direction of all CRs obtained from the
calculation.

These approaches commonly cannot resolve the requests by using outside the
clusters because they mainly perform intra-cluster routing to explore the con-
tents. This design is the result by considering the risk that when using outside
the clusters to resolve the requests, it may cause significant delays in content
retrieval due to the paths for content exploration tend to be larger [13]. How-
ever, although a cluster has a large cache size, it cannot cache all content in the
world, so the caches in neighboring clusters should also be available, as shown in
Fig. 3.1. Therefore, routing approach that is not restricted by cluster boundaries
is necessary.

I therefore propose an efficient distributed caching and exploration scheme for
clustering schemes. The proposed scheme distributes contents uniformly to CRs
in each cluster similarly to conventional clustering-based hash-routing. Moreover,
it dynamically updates routing tables to enable consumers to retrieve distributed
contents from anywhere regardless of cluster boundaries. I evaluate the effec-
tiveness of the proposed scheme compared with conventional schemes through

15

1 � 2

� � 4

1 2 2

3 4 4

Producer CR Consumer

��

ChunkID (Keys)

�� �� �� ��

1 2 3 4

�� �� �� ��

Hash function

Incoming chunk

Is it assigned?
Yes

��

CRID (Hashes)

ChunkID
CRID

Cluster size

Cache it
in assigned space

1

3

1

3

Original spaceAssigned space

Figure 3.2: Distributed caching operation

simulations.

3.2 Proposed scheme
To improve content delivery latency and cache efficiency, I propose the cluster-
based cache distribution and routing scheme. It groups CRs into clusters in a
domain and retains the main popular content in each cluster using a distributed
caching manner, enabling consumers to retrieve content from the originating clus-
ters. Furthermore, it can also retrieve caches from closer CRs regardless of cluster
boundaries by advertising cache information among CRs. In the following, I ex-
plain two functions of cluster-based distributed caching and advertisement-based
routing.

3.2.1 Cluster-based Distributed Caching

The distributed caching approach uniformly distributes chunks of individual con-
tent to all CRs in each cluster, as shown in Fig. 3.2. This approach improves
cache efficiency by avoiding cache duplication in the cluster, leading to more

16

��

�� �� �� �� ��

��

Responsible chunk Irresponsible chunk

��

��

�� �� �� �� ��

�� �� �� �� ��

Figure 3.3: Cache replacement operation

cached content in it. Furthermore, transmission efficiency can also be improved
by multi-path cache delivery from multiple CRs (i.e., load balancing).

As another aspect of the proposed scheme, I can expect a synergistic effect on
content delivery latency by performing distributed caching while retaining the
advantages of the original ICN’s caching feature such as LCE, which uniformly
caches received content during forwarding. This mechanism improves delivery
latency by potentially retrieving requested chunks on the path to distributed
caches, especially for popular content, as shown in Fig. 3.2 (green-colored arrow)
where a consumer requests a chunk distributed cached in CR1 and retrieves the
chunk from closer CR3 if cached.

Furthermore, the content placement is designed to maximize the benefits of
the proposed routing scheme, which is not restricted by cluster boundaries. The
conventional clustering schemes also assign contents with no duplication of caches
within a cluster. However, when considering the range including the neighbor-
hood clusters, the same contents may be assigned near the boundaries of each
cluster, leading to redundant caches around consumers in the vicinity of these
boundaries. In this case, content delivery latency may be longer due to unfair-
ness of content retrieval by consumer’s location, i.e., the consumer at the edge
of a cluster is farther away from the caches than the consumer at the center of a
cluster. Therefore, the proposed scheme uniformly distributes content with equal
distance between the same content by separating clusters with the same size and
the same content placement. As a result, contents in any CR does not duplicate
with surrounding caches, and thus achieves fair content retrieval and high cache

17

utilization regardless of the consumer’s location.
To uniformly distribute chunks in a cluster, this scheme partitions a domain

into clusters of the same size and assigns unique identifiers (CRIDs) to each CR
in advance, as shown in Fig. 3.2. To avoid cache redundancy among CRs in a
cluster, the proposed scheme uses a hash function that maps chunk identifiers
(ChunkIDs) to CRIDs. Specifically, when a CR receives a chunk, it caches the
chunk with priority if the hash value calculated from the received chunk identifier
matches its own CRID. To achieve this operation, the CS of each CR is divided
into areas where responsible chunks are cached in an assigned space and other
chunks are cached in the original space. In an example shown in Fig. 3.2, chunk
A1 requested by consumer is cached in the assigned space on CRs of CRID 1,
which is the hash value of it, and in the original space on other CRs.

The Least Recently Used (LRU) cache replacement algorithm is used for both
spaces on CS. Figure 3.3 illustrates an example cache replacement operation with
three assigned spaces on CS. When a responsible chunk D1 is received, it is cached
in the assigned space and the oldest chunk A1 in the space is discarded. After
that, when an irresponsible chunk D2 is received, it is cached in the original space
and chunk C2 is discarded.

Each cluster is square-shaped in this study. The cluster size is defined as the
number of hops on one side (example in Fig. 3.2 is 2), which is a parameter that
can control the cache placement range. This may affect the amount of content
that can be placed. As another parameter, the ratio of the responsible chunk area
and the original area on CS may affect the content redundancy and the possibility
of retrieving chunks on the path to the responsible CR.

3.2.2 Advertisement-based routing for cluster-based
caching

Even if caches are uniformly distributed within a cluster, consumers may not ef-
ficiently retrieve all chunks of the requested content from the originating cluster.
This is because not all chunks will be cached due to the limitation of total cache
capacity in a cluster, or there may be caches on closer CRs in neighboring clusters
than those in the originating cluster. Therefore, requests should be forwarded to

18

B A

Advertise
cache information

When B caches the same chunk already cached in nearby A

Flooding range

B does not advertise to C
when smaller metric FIB already stored

C

Figure 3.4: Cache information advertisement

the nearest caches even those not in the originating clusters regardless of cluster
boundaries for efficient content delivery, so the advertisement-based routing ap-
proach is used, which forwards Interest packets to nearby caches on the basis of
the advertised cache information.

Through this distributed caching manner, consumers can retrieve content from
their own cluster where caches are uniformly distributed. However, it may not
efficiently retrieve all chunks of the requested content from the originating cluster.
Because not all chunks will be cached due to the limitation of total cache capacity
in a cluster, or there may be caches on closer CRs in neighboring clusters than
those in the originating cluster. Therefore, requests should be forwarded to the
nearest caches even in not the originating clusters regardless of cluster boundaries
for efficient content delivery, so the advertisement-based routing approach is used,
which forwards Interest packets to nearby caches on the basis of the advertised
cache information.

To achieve this behavior, each CR informs neighboring CRs of responsible
cache status. Specifically, CRs that newly cache or discard responsible chunks
advertise the cache information (newly cached/discarded) in the flooding manner
regardless of cluster boundaries, as shown in Fig. 3.4. The CR receiving the

19

advertised packet updates its FIB entry with the received cache information.
Therefore, CRs in the flooding range can forward Interest packets to the nearest
CR caching responsible chunks.

Considering the overhead of this operation, the flooding range should be limited
but would affect the content retrieval efficiency, which is defined as the flooding
limit parameter (as shown in Fig. 3.4 is 2). This operation is performed only when
responsible chunks are cached or discarded, thereby reducing the overhead com-
pared with conventional schemes flooded for all cached chunks such as proposed
in [36]. Moreover, to reduce the load caused by flooding, the proposed scheme
simply discards and does not forward the flooding packets when it can be deter-
mined that neighboring CRs do not need to update their FIB. Let me explain
this process using the example shown in Fig. 3.4. When CR A caches responsi-
ble chunks, it advertises its cache information to neighboring CRs (gray-colored
range). After that, when CR B caches the same chunk, it can decide not to flood
to CR C and advertises the cache information to neighboring CRs except it (red-
colored range). This is because CR B has an FIB entry with metric of 2 hops for
the chunk by advertised information from CR C and it indicates that CR C al-
ready has a valid metric of 1 hop that does not need updating. Namely, if the CRs
already have FIB entries of plus 2 hops or fewer metrics than the flooding one, it
does not need to advertise it in that direction. Note that this scheme increases
overheads including cache information sharing and FIB entry increases to improve
acquisition efficiency compared to on-path routing schemes as an inherent issue
of off-path routing schemes. To resolve this issue (overheads caused by off-path
extension), several solutions (e.g., a Bloom filter approach [34,37,38]) have been
proposed, while I focus on reducing delivery latency by adjusting cache distribu-
tion range while considering only communication overheads caused by flooding
in this study so that I will leave this issue for future work.

3.3 Simulation model
I evaluated the proposed scheme’s effectiveness in retrieving content from nearby
clusters/caches in a large domain environment using Network Simulator ns-3
ver. 3.30.1 [40] with the implementation of the proposed scheme. I used a simple

20

Producer CRConsumer

…

…

…

… … …

…

12
 n

od
e

s

12 nodes

Figure 3.5: Simulation topology

grid topology with multiple paths to eliminate the effects of cluster shapes and
content cache placement within clusters as shown in Fig. 3.5, which enable us to
focus on the effect of distributed caching without strict cluster boundaries. This
simulation topology formed an 12 × 12 grid of CRs with multiple paths. In this
grid, 12 consumers were located on the lower side and one producer was located
on the upper side. The parameters I used in the simulation are summarized in
Table 1. The cluster is formed in squares, whose size is defined as the number of
hops on one side. The ratio of the CS size on CR to the amount of content was
set to approximately 1.5% on the basis of comparative papers [10,13].

In this topology, each consumer sent Interest packets to request content toward
the producer at normal distribution intervals with an average value of 0.3 seconds.
The requested content was determined on the basis of the content popularity, in
which P2P content was generally known to follow a Zipf-mandelbrot distribu-
tion [41]. In this distribution, the degree of bias depends on the parameters α

and q. α is the skewness factor that controls the slope of a curve, while q(≥ 0)
is the plateau factor that decides the flatness of the curve. I define the top 15%
of all content (All) as highly popular content (High). In this simulation, I gave

21

Table 3.1: Simulation parameters
Link bandwidths 1 [Gb/s]

Propagation delay time 5 [ms]
Amount of content 300

Content size 100 [chunk]
Chunk size 1,000 [Byte]

CS size on CR 500 [chunk]
Zipf α 0.4–2.0

Cluster size 2, 3, 4, 6, 12
Assigned space size on CS 50–500 [chunk]

FloodingTTL 2–16

q a fixed value of 5 and changed the content popularity with α for simplicity.
Furthermore, I assumed no packet loss occurs so that I could focus on the funda-
mental characteristics when consumers retrieve content distributed within each
cluster. The simulation was performed for 50 seconds, but 30–50 seconds was
considered to avoid the effect of the transient period cached from empty to full
in all the CSs.

In this simulation, I compared and evaluated the effectiveness of four repre-
sentative schemes: LCE, Hash-routing (HR) [39], HRC [13], and proposed. The
LRU cache replacement algorithm was used in each scheme. Note that, in HRC,
if the requested content is not found on responsible CRs in a cluster, they for-
ward Interest packets to a producer through the shortest path. This is because
the requested content may not be found in any other clusters and thus exploding
the content retrieval time should be avoided [13].

As mentioned in the previous Section 3.2, I considered three parameters (cluster
size, ratio of assigned space and original space, and FloodingTTL) that affect
performance, so I set each parameter in the following ranges and will clarify the
characteristics. The cluster size was provided from 2, 3, 4, 6, to 12. The ratio of
the assigned space is that divided by the CS size, which was provided from 10 to
100%. The FloodingTTL was provided from 2 to 16.

Furthermore, the average number of hops needed to retrieve content, the cache

22

hit rate, and the advertisement rate were used as evaluation indices to discuss
the effectiveness of the proposed scheme. The average number of hops that fo-
cused on content retrieval time was defined as the total number of hops when all
consumers retrieved content, divided by the total number of consumer requests.
The cache hit rate focused on cache efficiency and was the total number of cache
hits on all CRs divided by the total number of requests for all consumers. I calcu-
lated it separately inside and outside the cluster to determine if consumers used
caches outside clusters effectively. This was defined as the total number of cache
hits out/in a cluster divided by the total number of requests for all consumers.
The advertisement rate focused on overhead and was defined as the number of
advertisement packets received per second in each CR.

3.4 Simulation results
In this section, first, I show the effectiveness of the proposed scheme compared
with conventional schemes. Next, I investigate how parameters such as cluster
sizes, ratios of assigned space, and FloodingTTL affect the proposed scheme.
Finally, I clarify the scalability of the proposed scheme through various network
scale evaluations.

3.4.1 Effect of cluster size

In this section, first, I show simulation results and discuss the effectiveness of
the proposed scheme compared with conventional schemes. Figure 3.6 shows the
average number of hops, the cache hit rate, and the cache hit rate out/in a cluster
when the cluster size (Cs) varies from 2, 3, 4, 6, to 12. Here, Zipf α was set to
0.8, the grid size was set to 12, the ratio of assigned space was set to 100%, and
the FloodingTTL was set to 12 for the cluster size of 12 (w/o clustering) and 6
for other cluster sizes. The LCE scheme shows the worst performance among the
other schemes because it causes duplicate caches on nearby CRs. The HR scheme
attains better performance, especially cache efficiency, than the LCE scheme due
to no duplicate cache occurrence, but the average number of hops, i.e., delivery
latency is not good because the caches are distributed widely. The HRC scheme
improves the performance compared with the HR scheme due to controlling the

23

 6

 7

 8

 9

 10

 11

 12

 13

 2 4 6 8 10 12

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Cluster size

LCE
HR

HRC
Proposed

(a) Average number of hops

 0

 20

 40

 60

 80

 100

 2 4 6 8 10 12

C
ac

he
 h

it
ra

te
 [

%
]

Cluster size

LCE
HR

HRC
Proposed

(b) Cache hit rate

 0

 20

 40

 60

 80

 100

HRC-C
s 2

Pro
po

se
d-

Cs 2

HRC-C
s 3

Pro
po

se
d-

Cs 3

HRC-C
s 4

Pro
po

se
d-

Cs 4

HRC-C
s 6

Pro
po

se
d-

Cs 6

C
ac

he
 h

it
ra

te
 [

%
]

Server hit
out-Cluster hit

in-Cluster hit

(c) Cache hit rate out/in cluster

Figure 3.6: Effect of cluster size

cache distribution range at the cost of a little cache efficiency. The proposed
scheme further improves the performance compared with the HRC scheme. One
reason for this improvement is that consumers can utilize nearby caches outside
the cluster in addition to those inside one. Figure 3.6(c) shows that the proposed
scheme significantly improves the cache hit rate outside the cluster. The other
reason is that the proposed scheme can solve the false positive cache problem of
Hash-routing [39]. the proposed scheme reduces the number of hops so that extra
detours can be avoided from dynamic FIB updates.

Next, I focus on the effect of cluster sizes. the proposed scheme can improve
cache efficiency with larger cluster sizes such as 12 (Fig. 3.6(b)) because larger

24

 3

 4

 5

 6

 7

 8

 9

 10

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Ratio of assigned space [%]

Proposed α=0.8 (All)
Proposed α=0.8 (High)

Proposed α=1.0 (All)
Proposed α=1.0 (High)

(a) Average number of hops

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

C
ac

he
 h

it
ra

te
 [

%
]

Ratio of assigned space [%]

Proposed α=0.8 (All)
Proposed α=0.8 (High)

Proposed α=1.0 (All)
Proposed α=1.0 (High)

(b) Cache hit rate

Figure 3.7: Effect of ratio of assigned space

clusters can hold a greater variety of content. However, the content retrieval time
increases (Fig. 3.6(a)) because the exploration range is extensive. However, the
proposed scheme can reduce the content retrieval time in smaller cluster sizes such
as 2, 3, 4 and 6 (Fig. 3.6(a)) because the exploration range is narrowed. However,
if the cluster size is too small, the caches in the cluster may not satisfy requests
alone, so content retrieval time eventually increases (Fig. 3.6(b)). Therefore, the
adequate cluster size in this environment is 6. However, the cluster size must be
set appropriately for the situation in the domain. A more detailed investigation
is shared in Section 3.4.3.

3.4.2 Effect of ratio of assigned space

Next, I investigate the effect of the ratio of assigned space. Figure 3.7 shows
the average number of hops and cache hit rate when the ratio of assigned space
varies. Here, α was set to 0.8 or 1.0, the cluster size was set to 6 (optimal in this
environment), the grid size was set to 12, and the FloodingTTL was set to 6. As
Fig. 3.7(a) shows, when the assigned space is moderately small, the retrieval time
for highly popular content (High) becomes shorter at the cost of increased retrieval
time for all content (All). This tendency becomes especially apparent when α is
large such as 1.0 and, thus, the requested content becomes more concentrated.
This occurs because the original space running in the LRU cache retains the most
popular content. Therefore, the original spaces of CRs on the path are utilized

25

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Zipf α

Proposed-Cs 2
Proposed-Cs 3
Proposed-Cs 4
Proposed-Cs 6

Proposed-Cs 12

(a) Average number of hops

 40

 50

 60

 70

 80

 90

 100

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

C
ac

he
 h

it
ra

te
 [

%
]

Zipf α

Proposed-Cs 2
Proposed-Cs 3
Proposed-Cs 4
Proposed-Cs 6

Proposed-Cs 12

(b) Cache hit rate

Figure 3.8: Effect of Zipf α

effectively when retrieving highly popular content. However, a smaller assigned
space increases the overall retrieval time because it increases cache redundancy
and decreases the cache hit rate as shown in Fig. 3.7(b). Namely, the ratio of
assigned space has a trade-off between the retrieval efficiency of highly popular
content and content overall.

Based on the above, the ratio of assigned space should be set on the basis of
the requirements of service users and network administrators. For example, a
large assigned space should be set if I want to develop a service that requires a
variety of content on the domain. Conversely, a larger original space should be
created if I want to mainly focus on delivering highly popular content.

3.4.3 Effect of Zipf α

In Section 3.4.1, I showed that a cluster size of 6 is suitable for this environment.
However, the adequate cluster size in a practical network may vary on the basis of
the situation in the domain. In this section, I investigate the effects of varying the
distribution of content popularity. Figure 3.8 shows the average number of hops
and the cache hit rate when α varies from 0.4 to 2.0. Here, the grid size was set
to 12, the ratio of assigned space was set to 100%, and the FloodingTTL was set
to 6. Figures 3.8(a) and 3.8(b) show how the cache hit rate tends to increase and
the content retrieval time tends to decrease as α increases. However, the most
important thing to note is that the adequate cluster shrinks as α grows. I can

26

see that the adequate cluster size is 6 when α is less than 0.8, 4 for α of 0.8–1.0,
3 for α of 1.0–1.4, and 2 for α of 1.4 or larger, respectively, since these cluster
sizes achieve the smallest number of hops for each content popularity. This is
because the amount of main popular content decreases as α increases. Therefore,
these contents can be placed in smaller cluster sizes. This allows consumers to
retrieve content over a small range of exploration. Conversely, the amount of
main popular content increases as α decreases, so I should maintain a high cache
hit rate by increasing cluster sizes.

Therefore, in this environment, I can expect to maximize the improvement of
content retrieval time by setting the cluster size to achieve a cache hit rate of
about 80%. In a practical environment, the cluster size should be adjusted on
the basis of an estimation of the degree of bias of the requested content.

3.4.4 Effect of FloodingTTL

I investigate the effects of FloodingTTL. Figure 3.9 shows the average number
of hops, the cache hit rate, and the advertisement rate when the FloodingTTL
varies. Here, α was set to 0.8, the grid size was set to 12, and the ratio of
assigned space was set to 100%. These results show that the cache hit rate
and the content retrieval time improve as FloodingTTL increases, although the
overhead increases. This occurs because the CRs in a wider range can share
cache information by a large FloodingTTL, so that they can forward Interest
packets directly to the CR storing caches at the cost of increasing the number
of advertisement packet transfers. Moreover, the advertisement rates gradually
reach the upper limit regardless of cluster size as FloodingTTL increases. This
occurs because larger FloodingTTL is more likely to find the same chunks, where
CRs will not wastefully forward advertisement packets (recall the operation to
reduce overhead described in Section 3.2.2).

However, I should note the disadvantages of setting FloodingTTL too large. the
proposed graphs show that the degree of improvement of the cache hit rate and
the average number of hops gradually decreases as the FloodingTTL increases.
Therefore, a large FloodingTTL should not be set from a viewpoint of overheads.
This occurs because the proposed cache placement scheme tends to make each
cluster cache the same content (because each consumer tends to request the same

27

 6

 6.5

 7

 7.5

 8

 8.5

 9

 2 4 6 8 10 12 14 16

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

FloodingTTL

Proposed-Cs 2
Proposed-Cs 3
Proposed-Cs 4
Proposed-Cs 6

(a) Average number of hops

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16

C
ac

he
 h

it
ra

te
 [

%
]

FloodingTTL

Proposed-Cs 2
Proposed-Cs 3
Proposed-Cs 4
Proposed-Cs 6

(b) Cache hit rate

 0

 500

 1000

 1500

 2000

 2500

 2 4 6 8 10 12 14 16

A
dv

er
tis

em
en

t r
at

e
[p

ac
ke

t/s
]

FloodingTTL

Proposed-Cs 2
Proposed-Cs 3
Proposed-Cs 4
Proposed-Cs 6

(c) Advertisement rate

Figure 3.9: Effect of FloodingTTL

thing in this environment), so consumers are hard to find content that is not
available in their own cluster from any other clusters even if the exploration
range is expanded.

Finally, Fig. 3.9(c) shows that the proposed scheme with the cluster size of
6 achieves the lowest advertisement rate, i.e., overhead. This is because the
adequate cluster size can sufficiently cache the main popular content in each
cluster as well as cache updates rarely occur. Therefore, I should set the cluster
size to 6 taking into account overhead (affected by FloodingTTL) in addition to
the discussion in the previous Section 3.4.3, although the cluster size of 4 with
sufficient FloodingTTL attains the same performance in terms of content retrieval
time.

Based on the above, in this environment, I recommend setting the FloodingTTL

28

to about 4 or 6, considering the degree of improvement against the overhead.
However, in a practical environment, the caches in each cluster may differ de-
pending on the request locality of each consumer. I will investigate this point in
the future.

3.5 Conclusion
A network clustering schemes have been proposed to improve cache efficiency and
delivery latency in ICN. These schemes group CRs into clusters in the network
and apply intra-cluster routing into each cluster. However, it may not fully ex-
ploit distributed network caches because the content exploration range is strictly
bounded within a corresponding cluster. Therefore, I proposed an efficient dis-
tributed caching and exploration scheme for cluster-based ICN. the proposed
scheme distributes content to each cluster in a distributed caching manner. In
addition, it dynamically updates the FIB on the basis of collaboration among CRs
across the cluster boundary. Through simulations, the proposed scheme demon-
strated more efficient caching and faster retrieval than conventional schemes by
using nearby clusters/caches.

29

4 Popularity-aware dynamic
clustering scheme

In this chapter, I discuss how to solve the issue 2. I propose the extended scheme
of the proposed scheme in Chapter 3 to address the issue 2. This extension
involves dynamically adjusting the cluster size according to fluctuations in content
demand trends. Furthermore, I discuss the effectiveness of the proposed scheme
through simulation evaluations.

4.1 Introduction
I will reorganize the issue 2 as described in Chapter 2. To reduce the content
delivery latency and improve the cache efficiency, clustering schemes have been
proposed [13–16,18]. As aforementioned in Chapter 2, these schemes group CRs
into clusters in a domain. Each cluster aims to avoid cache duplication among
CRs and to cache a sufficient amount of the main popular content within it. As
a result, these schemes enable consumers to retrieve content efficiently from the
originating cluster. However, the amount of content that can be cached in the
cluster depends on the cluster size, i.e., cache distribution range. In other words,
a smaller cluster size is insufficient to reduce delivery latency since it cannot cache
the main popular contents sufficiently in the cluster. I therefore believe that it
is necessary to determine the adequate cluster size in accordance with content
popularity on the basis of the following trade-off factors. A too-small cluster size
against the amount of main popular content will not retain sufficient caches, so
it decreases cache utilization and causes delivery delays due to the delivery from
producers. A too-large cluster size can satisfy most requests within the cluster
but causes delivery delays due to the delivery from widely distributed caches. In

30

a practical environment, the distribution of content popularity, i.e., the amount
of main popular content, will change over time [17], so it is necessary to determine
the cluster size adequately depending on the situation.

Several studies have also focused on similar issues related to content popularity
with static clustering schemes that do not adjust cluster size in real time. In
HRC [13], a bin-packing algorithm have been proposed to determine the location
of content in a cluster. The algorithm outputs content placement that assigns even
load to each node on the basis of previously studied network characteristics, taking
into account node importance, content popularity, and tendency of requests. In
addition, it places each content into CRs that provide the most average latency
gain, starting with the most popular content. As a result, it not only shows an
efficiency improvement in content delivery latency while distributing the link load,
but also nearly adapts to fluctuations in popularity. HCC [16] determines content
placement by calculating a probability matrix on the basis of node importance
and content popularity. The design of probability matrix is that more important
nodes should cache more popular contents and less important nodes should cache
more less popular contents. In addition, the content placement is periodically
calculated and updated to account for fluctuations in content popularity over
time.

These approaches address the problem of fluctuations in content popularity
within static clusters. However, although it is necessary to calculate in real
time for adapting the fluctuations of content popularity, the volume of these
calculations faces a challenge in terms of feasibility. Moreover, when the static
clusters are too small compared to the amount of main popular content, the above
problem may not be solved, even if the placement of content within the clusters
is efficient.

I therefore propose a dynamic clustering scheme to adjust the cluster size, in
accordance with the change in content popularity, considering cache utilization
and delivery latency. The proposed scheme controls the cluster size effectively
using a simple threshold-based algorithm on the basis of the number of cache
updates on CRs in a cluster. Moreover, I evaluate the effectiveness of the proposed
scheme compared with conventional schemes through simulation in a situation
where content popularity changes.

31

4.2 Proposed scheme
As previously mentioned, the cluster size, i.e., cache distribution range, should
be adequately determined in accordance with content popularity. In a practical
environment, the distribution of content popularity changes over time, so it is
necessary to determine the cluster size depending on the situation. I therefore
propose a dynamic clustering scheme to adjust the cluster size in accordance
with the change in content popularity, considering cache utilization and delivery
latency. The proposed scheme controls the cluster size effectively using a simple
threshold-based algorithm on the basis of the number of cache updates in the
cluster.

To discuss the adequate cluster size, I focus on the frequency of cache updates
in a cluster. This is because this metric is useful to estimate whether the current
cluster size is suitable to cache the main popular content. When the frequency
of cache updates is high, it indicates that caches are updated by incoming data
packets from outside the cluster. Namely, requested content cannot be retrieved
inside the cluster as well as the cluster size is too small. A low frequency of cache
updates indicates that caches are not updated since requested content can be
retrieved inside the cluster. Namely, the cluster size may be decreased to reduce
delivery latency. Thus, I consider that the frequency of cache updates in a cluster
would fall into a certain range with the appropriate cluster size.

From the aforementioned strategy, the proposed scheme adjusts the cluster size
using a simple threshold-based algorithm on the basis of the frequency of cache
updates. Specifically, it uses the number of cache updates in a cluster as a metric,
and decreases/increases the cluster size when the metric falls below or exceeds
lower/upper thresholds. Figure 4.1 explains how the proposed scheme migrates
to the adequate cluster size in accordance with the change in content popularity.
Let us consider a t-second scenario when the content popularity will disperse
after x seconds, and then heavily concentrate after y seconds. In phase 1 until x

seconds, I assume that each cluster, which represents the domain divided into four
parts, can store most of the popular content, so the frequency of cache updates
fits between the upper and lower thresholds. Namely, the current cluster size is
adequate. In phase 2 from x to y seconds when the content popularity disperses,
the frequency of cache updates increases and exceeds the upper threshold because

32

Phase 1 Phase 2 Phase 3

t

t

C
on

te
nt

po
pu

la
ri

ty
C

ac
he

up

da
te

s

x y

Lower threshold

Concentrate

Domain

Cluster

Upper threshold
High

Figure 4.1: Operation of dynamic clustering

the current cluster size cannot retain the popular content sufficiently. Therefore,
the cluster size is increased by one level to store them, and therefore the frequency
of cache updates decreases and falls within the upper and lower thresholds. In
phase 3 after y seconds when the content popularity is heavily concentrated, the
cache update frequency decreases and falls below the lower threshold because
the current large cluster size has exceeded the sufficient cache capacity compared
with the amount of main popular content. Therefore, it attempts to improve the
delivery latency by decreasing the cluster size by one level. However, this cluster
size still has an excessive cache capacity, so the frequency of cache updates remains
below the lower threshold. Therefore, the cluster size is decreased by one more
level, and therefore the frequency of cache updates increases and falls within the
upper and lower thresholds. Through these procedures, the cluster size can be
migrated to the adequate cluster size in accordance with the change in content
popularity.

To achieve this function, I assume that a controller is located in a domain
and each CR notifies the controller with the number of cache updates. The
controller calculates the total number of cache updates separately in each cluster
by the information received from each CR. When at least one of the calculated
values falls below or exceeds lower/upper thresholds, it reassigns a new CRID

33

Table 4.1: Simulation parameters
Link bandwidth 1 [Gb/s]

Propagation delay time 5 [ms]
Amount of Contents 128

Content size 64 [chunk]
Chunk size 1000 [Byte]

CS size on CR 128 [chunk]
Zipf α 0.6, 1.0, 1.4, 1.8

Cluster size 2, 3, 4, 6, 12
Upper threshold 70–280
Lower threshold 10–150

Reclustering interval 1–24 [s]

and hash function to each CR to decrease/increase cluster size. The cluster size
is not changed for a certain period, which is defined as the reclustering interval
parameter, immediately after reclustering to mitigate the effect of the heavy
fluctuation of cache updates. I believe that such information sharing between
the controller and CRs can be achieved by a mechanism like software defined
networking (SDN) and the detailed design of the scheme will be left as future
work.

4.3 Simulation model
I evaluated the proposed scheme focusing on the effectiveness of retrieving content
from nearby clusters/caches in a large domain environment where content popu-
larity changes through simulations using Network Simulator ns-3 ver. 3.30.1 [40]
with the implementation of the proposed scheme. I used a simple grid topology
with multiple paths to eliminate the effects of cluster shape and content cache
placement within clusters as shown in Fig. 4.2 to enable us to focus on the essen-
tial effect of dynamically changing cluster size. One producer and 12 consumers
were located on the upper and lower sides of the grid (12 x 12) of CRs, respec-

34

Producer CRConsumer

…

…

…

… … …

…

12
 n

od
e

s

12 nodes

Figure 4.2: Simulation topology

Z
ip

f

�

Time [s]1.0

0.6

1.4

1.8

30 90 150 210 270

Figure 4.3: Fluctuation of zipf α

tively. The parameters used in the simulation are summarized in Table 4.1. The
ratio of the CS size on CR to the amount of content was set to approximately
1.5% on the basis of comparative papers [10, 13]. The flooding limit was set to
6, which was the best value in terms of cost performance between overhead and
efficiency in a preliminary evaluation. As mentioned before, the proposed scheme
needs to share information among CRs via the controller, which can be achieved
by a number of mechanisms like SDN, and I ignore its effect in this simulation
since the exchange of shared information is very infrequent and small compared
with data delivery. Each CR notifies the controller of the number of cache updates
at 1 second intervals.

Each consumer sent interest packets to request content toward the producer at

35

normal distribution intervals with an average value of 0.3 seconds. The requested
content was determined on the basis of the content popularity, in which P2P
content was generally known to follow a Zipf-mandelbrot distribution [41], and I
gave q a fixed value of 5 and changed the content popularity with α to avoid the
complexity of the discussion. Furthermore, I assumed no packet loss occurs so we
can focus on the fundamental characteristics of the dynamic clustering approach.
The simulation was performed for 270 seconds. I set the Zipf parameter α to 1.0
at the start of the simulation as shown in Fig. 4.3. α changed to 0.6 at 30 seconds
after the simulation started, in which a wider range of content is requested, to
1.8 at 90 seconds, to concentrate on the requested content, and after that, it
decreases by 0.4 every 60 seconds back to 1.0.

In this simulation, I compared and evaluated the effectiveness of five represen-
tative schemes: LCE, HR [39], HRC [13], Static [18], and the proposed scheme
in this chapter (Dynamic). Note that the HRC scheme uses the k-split algorithm
with the number of hops as similarity metrics for clustering and forms k clusters,
and the Static scheme is the proposed scheme in Chapter 3. Furthermore, the
average number of hops needed to retrieve content, cache hit rate, and adver-
tisement rate were used as evaluation indices to discuss the effectiveness of the
proposed scheme. The average number of hops focused on content retrieval time,
which was defined as the total number of hops during the time when all consumers
retrieved content divided by the total number of requests for all consumers. The
cache hit rate focused on cache efficiency, which was defined as the total number
of cache hits on all CRs divided by the total number of requests for all consumers.
The advertisement rate focused on communication overhead, which was defined
as the amount of advertisement packets divided by the total amount of traffic.
In this study, I assumed the average name length is 30 bytes, and the size of the
advertisement packet which includes the content name, the flooding limit, and
the flag bit that indicates the cache information (newly cached/discarded), is the
same as the Interest packet.

36

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Zipf α

Cluster size 2
Cluster size 3
Cluster size 4
Cluster size 6

(a) Average number of hops

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0.6 0.8 1 1.2 1.4 1.6 1.8 2N
um

be
r

of
 c

ac
he

 u
pd

at
es

 [
up

da
te

s/
s]

Zipf α

Cluster size 2
Cluster size 3
Cluster size 4
Cluster size 6

(b) Number of cache updates

Figure 4.4: Estimation of adequate thresholds

4.4 Simulation results
In this section, I first show the effectiveness of the proposed scheme compared
with the conventional schemes. Then, I investigate how each parameter including
the lower/upper thresholds and reclustering interval affects the proposed scheme.
Finally, I investigate the effect of the change interval of Zipf α and network
topology to reveal the environmental tolerance and practicality of the proposed
scheme.

4.4.1 Evaluation of Effectiveness on the basis of
Estimation of Adequate Thresholds

In this section, I first discuss the basis for determining threshold values of the
proposed scheme through quantitative evaluations and estimate the effective
lower/upper threshold values, which is a key point of the proposed scheme. As
mentioned in Section 4.2, given an adequate cluster size, the number of cache up-
dates in the cluster falls into a certain range. I believe that the adequate cluster
size can be determined in accordance with the distribution of content popularity.
Figure 4.4 shows the average number of hops and cache updates in the cluster
when α varies from 0.5 to 2.0. From Fig. 4.4(a), we can see that the adequate
cluster size is 6 when α is less than 0.9, 4 for α of 1.0–1.1, 3 for α of 1.2–1.6, and

37

 0

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Time [s]

LCE
HR

HRC
Static

Dynamic

(a) Average number of hops

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250

C
ac

he
 h

it
ra

te
 [

%
]

Time [s]

LCE
HR

HRC
Static

Dynamic

(b) Cache hit rate

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250

C
lu

st
er

 s
iz

e

Time [s]
Static Dynamic

(c) Cluster size

Figure 4.5: Effectiveness of the proposed scheme

2 for α of 1.7 or larger, respectively, since these cluster size achieve the small-
est number of hops for each content popularity. Correspondingly, the number of
cache updates in the cluster falls into a certain range when the adequate cluster
size is given as shown in Fig. 4.4(b). Specifically, it is approximately 50 or more
for the adequate cluster size of 6 (α = 0.9 or less), 90–280 for the size of 4 (α =
1.0–1.1), 50–270 for the size of 3 (α = 1.2–1.6), and 250 or less for the size of 2
(α = 1.7 or above), respectively. From the aforementioned results, if the number
of cache updates in the cluster is approximately 50 and more or 280 and less, the
given cluster size will be adequate. Namely, the lower/upper threshold values can
be set on the basis of the number of cache updates.

On the basis of the aforementioned discussion, I now show the simulation re-
sults and discuss the effectiveness of the proposed scheme as compared with the

38

conventional schemes. Here, the lower/upper threshold values were set to 50/280,
the reclustering interval was set to 3 seconds, and the initial cluster size of HRC,
Static, and proposed (Dynamic) schemes was set to 4, which was the appropri-
ate value for an α of 1.0 at the start of the simulation. Figure 4.5 shows the
average number of hops, cache hit rate, and cluster size as a function of time.
From Figs. 4.5(a) and (b), the LCE scheme shows the worst performance among
the other schemes because it causes duplicate caches on nearby CRs. The HR
scheme improves the performance, especially cache efficiency, compared with the
LCE scheme due to no duplicate cache occurrences, but the average number of
hops, i.e., delivery latency is not good because the caches are distributed widely.
The HRC scheme improves the performance compared with the HR scheme due
to controlling the cache distribution range at the cost of a little cache efficiency.
The Static scheme using advertisement-based routing improves the performance
compared with the HRC scheme due to the avoidance of detour routing caused by
the false-positive problem with the HR scheme as well as the effect of retrieving
nearby caches regardless of cluster boundaries. The proposed (Dynamic) scheme
further improves the delivery latency while maintaining the cache hit rate com-
pared with the Static scheme in almost all ranges of time because it adjusts the
cluster size to an adequate value.

Next, let us take a look at adjusting the cluster size of the Dynamic scheme
focusing on three periods where the content popularity changes. First, in the
period of 30–90 seconds, a wider range of content becomes to be requested, so
that the cluster size is adjusted to a larger value (it is 6, which is an adequate
value when α = 0.6 (Fig. 4.4(a))) due to the high frequency of cache updates as
shown in Fig. 4.5(c). It improves the cache hit rate as well as delivery latency,
although it takes time to distribute new caches in the cluster. Second, in the
period of 90–150 seconds, the requested content becomes to be concentrated, so
that the cluster size is adjusted to a smaller value (it is 2, which is an adequate
value when α = 1.8) due to the low frequency of cache updates. It improves the
delivery latency, although it takes time to discard unnecessary caches from the
cluster, and comes at the cost of a slight decrease in cache hit rate. Finally, in
the period of 150–270 seconds, similar to 30–90 seconds the requested content
becomes to be a wider range gradually, so that the cluster size is adjusted to

39

4.5

4.6

4.7

4.8

4.9

5.0

5.1

5.2

5.3

5.4

5.5

 20 40 60 80 100 120 140

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Lower threshold

Static
Upper 50

Upper 100
Upper 150
Upper 200
Upper 250
Upper 280

(a) Average number of hops

 88

 89

 90

 91

 92

 93

 94

 95

 96

 20 40 60 80 100 120 140

C
ac

he
 h

it
ra

te
 [

%
]

Lower threshold

Static
Upper 50

Upper 100
Upper 150
Upper 200
Upper 250
Upper 280

(b) Cache hit rate

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20 40 60 80 100 120 140

A
dv

er
tis

em
en

t r
at

e
[%

]

Lower threshold

Static
Upper 50

Upper 100
Upper 150
Upper 200
Upper 250
Upper 280

(c) Advertisement rate

Figure 4.6: Effect of thresholds

larger values (they are 3 and 4, which are adequate values when α = 1.4 and
1.0, respectively). It improves delivery latency while maintaining a high cache
hit rate. This adjustment of cluster size is performed by searching for the cluster
size that keeps the number of cache updates in the range of 50 to 280. Therefore,
the proposed scheme can adapt effectively to the environment where content
popularity changes.

4.4.2 Effect of Thresholds

Next, I investigate the effect of the thresholds. Figures 4.6(a), (b), and (c) show
the average number of hops, cache hit rate, and advertisement rate, respectively,
when the lower/upper thresholds vary. Here, the reclustering interval was set to

40

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Time [s]

Static
Dynamic 50/280
Dynamic 70/100

(a) Average number of hops

 70

 75

 80

 85

 90

 95

 100

 0 50 100 150 200 250

C
ac

he
 h

it
ra

te
 [

%
]

Time [s]

Static
Dynamic 50/280
Dynamic 70/100

(b) Cache hit rate

 2

 4

 6

 8

 10

 12

 0 50 100 150 200 250

C
lu

st
er

 s
iz

e

Time [s]
Static

Dynamic 50/280
Dynamic 70/100

(c) Cluster size

Figure 4.7: Estimated and adequate thresholds

3 seconds. Figures 4.6(a) and (b) indicate that the upper and lower threshold
values should be set to an appropriate range (neither too large nor too small) to
reduce delivery latency and maintain the high cache hit rate. When the upper
threshold value is too large, it is difficult to migrate to a larger cluster size despite
high frequent cache updates. As a result, it worsens cache efficiency as well
as delivery latency. When the upper threshold value is too small, it is easy
to migrate to a larger cluster size despite low frequent cache updates. As a
result, it improves cache efficiency but increases delivery latency because the
caches are widely distributed. The lower threshold observes a similar trend.
Consequently, the adequate threshold values should be determined on the basis of
the delivery latency and cache hit rate considering these trade-offs. The adequate
lower/upper thresholds are 70/100 in this simulation environment, which achieves

41

the lowest number of hops (Fig. 4.6(a)) and the high cache efficiency (Fig. 4.6(b)).
Furthermore, the adequate cluster size does not cause frequent cache updates
and reduces the flooding of advertisement packets for dynamic FIB updates,
so the proposed (Dynamic) scheme with adequate thresholds also improves the
advertisement rate, i.e., communication overhead, to approximately 2% of the
total amount of traffic (Fig. 4.6(c)).

Here, it is noted that the estimated threshold values and adequate ones are
largely different. This indicates that it should aggressively migrate to various
sizes of clusters with the setting of larger/smaller lower/upper threshold values
to maintain cache hit rates in the environment where the content popularity
changes significantly. Figure 4.7 shows the average number of hops, cache hit
rate, and change of cluster size in the Static scheme and proposed (Dynamic)
scheme with the estimated (50/280) and adequate (70/100) threshold values.
Figure 4.7(c) clearly shows that the proposed scheme with adequate thresholds
can more frequently migrate closer to the appropriate cluster size than that with
estimated thresholds. Moreover, Fig. 4.7(a) and (b) show that such migration
quickly improves the delivery latency and cache hit rate when the content pop-
ularity changes. Consequently, although the proposed scheme with estimated
thresholds achieves good performance, it can be further improved by setting ade-
quate thresholds on the basis of the aforementioned trade-offs as well as detecting
sensitive changes in content popularity to quickly adjust the cluster size with ap-
propriate cache distribution. However, the adequate threshold values may need
to be adjusted dynamically in accordance with network conditions (the topology,
frequency of requests, etc.), which will be tackled in future work.

4.4.3 Effect of Reclustering Intervals

I investigate the effect of reclustering intervals. Figure 4.8 shows the average
number of hops, cache hit rate, and advertisement rate when the reclustering
interval varies. Here, the lower/upper thresholds were set to 70/100 (adequate
values in this environment). Figure 4.8(a) shows that shorter reclustering in-
tervals improve delivery latency except for too-short ones. This is because the
shorter intervals can quickly migrate to the adequate cluster size and improve
cache hit rates as shown in Fig. 4.8(b). However, too-short intervals inhibit mi-

42

4.4

4.6

4.8

5.0

5.2

5.4

5.6

 0 5 10 15 20 25

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Reclustering interval [s]

Static
Dynamic

(a) Average number of hops

 90

 90.5

 91

 91.5

 92

 92.5

 0 5 10 15 20 25

C
ac

he
 h

it
ra

te
 [

%
]

Reclustering interval [s]

Static
Dynamic

(b) Cache hit rate

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 0 5 10 15 20 25

A
dv

er
tis

em
en

t r
at

e
[%

]

Reclustering interval [s]

Static
Dynamic

(c) Advertisement rate

Figure 4.8: Effect of reclustering intervals

gration to the adequate cluster size due to heavy cache updates immediately after
reclustering. In addition, Fig. 4.8(c) shows that shorter reclustering intervals im-
prove the overhead. This is because unnecessary cache updates are reduced by
quickly migrating to the adequate cluster size. Consequently, the reclustering
interval should be set to an adequately short value, which is 3 seconds in this
environment.

4.4.4 Effect of Change Intervals of Zipf

I investigate the effect of change intervals of Zipf α to show the environmen-
tal tolerance. For example, when the change intervals are set to 20 seconds, 30
seconds after the simulation starts with Zipf α of 1.0 and a cluster size of 4,

43

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

 0 10 20 30 40 50 60

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Change interval [s]

Static
Dynamic

(a) Average number of hops

 88

 89

 90

 91

 92

 93

 0 10 20 30 40 50 60

C
ac

he
 h

it
ra

te
 [

%
]

Change interval [s]

Static
Dynamic

(b) Cache hit rate

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60

A
dv

er
tis

em
en

t r
at

e
[%

]

Change interval [s]

Static
Dynamic

(c) Advertisement rate

Figure 4.9: Effect of change intervals of Zipf α

Zipf α sequentially changes to 0.6, 1.4, 1.8, and 1.0 every 20 seconds, and these
changes are repeated for 240 seconds (until the end of simulation). Figure 4.9
shows the average number of hops, cache hit rate, and advertisement rate when
the change intervals of Zipf α vary. Here, the thresholds of lower/upper were set
to 70/100, and the reclustering interval was set to 3 seconds (adequate values in
this environment). From Fig. 4.9, the proposed (Dynamic) scheme always im-
proves the delivery latency, cache hit rate, and overhead compared with the Static
scheme in a wide range of change intervals. This is because the proposed scheme
can adapt cluster sizes smoothly to environments where the content popularity
changes frequently.

44

4.5 Conclusion
A network clustering schemes have been proposed to improve cache efficiency
and delivery latency in ICN. The design of these schemes aims to improve cache
utilization and reduce delivery latency by retaining a sufficient amount of the main
popular content in the caches of a cluster. However, in a practical environment,
the content demand trends, i.e., the amount of main popular content, will change
over time. In other words, if cluster size is static such as these schemes, it may
be impossible to cache enough content in a cluster to reduce delivery delays
due to fluctuations in the amount of content. I therefore proposed a dynamic
clustering scheme to adjust the cluster size in accordance with the change in
content popularity. The proposed scheme adjusts the cluster size effectively using
a simple threshold-based algorithm on the basis of the number of cache updates
in the cluster. Simulation evaluations have indicated that the proposed scheme
can reduce the delivery latency while consistently maintaining a high cache hit
rate in a large domain environment where content popularity changes.

45

5 Evaluation of clustering
schemes in practical
environment

In this chapter, I delve into the adaptability of the proposed scheme in practi-
cal networks. I propose a clustering scheme for practical networks, and discuss
the adaptability of the proposed scheme in actual networks through simulation
evaluations.

5.1 Introduction
Throughout Chapters 3 and 4, I have presented the proposed schemes and their
effectiveness in addressing issues 1 and 2. However, the design and evaluation of
the proposed schemes were on the basis of the shape of a simple grid topology.
When considering to apply the proposed schemes to practical topologies with
complex shapes, it is difficult to partition the network into square clusters as in
the proposed scheme. Therefore, it is necessary not only to find ways to apply the
proposed scheme to practical topologies but also to evaluate how the performance
and characteristics may depend on the shape of the topology/cluster.

In the clustering schemes such as HRC [13] and VDHTC [14], the network clus-
tering approaches for practical topology are performed offline by precomputing
well-known clustering algorithms such as k-split, k-means, or k-medoids. These
algorithms aim to partition a domain network consisting of V nodes into K clus-
ters that satisfy any given objective function using similarity metrics. These
similarity metrics can be flexibly defined by network administrators, considering
not only simple hop count or delay between node to node but also factors like

46

content popularity, bandwidth, and cache size. This flexibility enables the adjust-
ment of cluster shapes to achieve the objective. In contrast, HCC [16] clusters the
practical topology using a unique clustering approach on the basis of the Waited-
based clustering algorithm. In this approach, any K central management nodes
selected from within the network perform the online clustering. The selection
is on the basis of the consideration of node degree, average delay, or hop count
in the network/cluster, choosing the node that maximizes benefits as the central
management node. The selected central management nodes form the clusters
with the nearest N nodes through the exchange of control packets.

However, the shape of the clusters and the content placement (refer to Section
3.1) within each cluster formed by these schemes differ from the design concept of
the cluster in the proposed scheme. Therefore, applying these approaches directly
to the proposed scheme may not achieve sufficient performance.

In this chapter, to ensure the feasibility of the proposed scheme to practical
topologies, I propose a clustering algorithm in a practical topology. Moreover, I
investigate the effectiveness of the proposed scheme and its dependence on the
shape of topology/cluster through simulation evaluations using actual topologies.

5.2 Proposed scheme
In the aforementioned Section 3.2, the proposed scheme uniformly distributes con-
tent with equal distance between the same content by separating clusters with
the same size and the same content placement. As a result, fair content retrieval
latency and high cache utilization are achieved regardless of the consumer’s loca-
tion, because the cached contents in the consumer’s exploration range, i.e., cluster
size, do not duplicate regardless of the consumer’s location. In other words, in
the design of the proposed clustering approach, content is distributed without
redundancy into a constant range around each CR, so that each CR logically
behaves as the center of the cluster such as a circular shape. Hence, the problem
is to determine a hash value assignment that achieves this content placement
on the practical topology, and I propose the clustering algorithm to address this
problem.

I consider a certain topology of ICN, denoted by the graph G = (V, E). Let

47

V denote the set of CRs and E the set of communication links connecting them.
Each CR is assigned one CRID k (i.e., hash value) from a set of CRIDs K

(K = 1, 2, ..., K). Note that the number of CRIDs represents the cluster size.
The assignment of CRIDs to each CR is represented as V = vk

1 , vk
2 , ..., vk

V . The
proposed clustering algorithm aims to find the assignment that minimizes a cer-
tain Cost. The Cost is defined by the total sum of Dist for each CR and is
expressed in Equation 5.1.

Cost =
∑
v∈V

Distv (5.1)

Here, Dist is given by Equation 5.2.

Distvk =
∑

n∈K,n ̸=k

Dn (5.2)

where D is the distance from CR v assigned CRID k to the closest CR assigned
CRID n (n ̸= k, n ∈ K), and Dist for CR v is defined by the sum of D. Conse-
quently, minimizing Cost leads to minimizing the distance between CRs assigned
with different CRIDs, thus forming a circular cluster centered on each CR.

There are various ways to minimize this cost. In the exhaustive search ap-
proach, it is necessary to consider from V K possible combinations (to assign one
CRID chosen from the set of CRID K to each CR). Since this approach incurs im-
practical computational costs, I recommend using techniques such as simulated
annealing or genetic algorithms to solve this minimization problem. However,
even then, it may still take some computation time, so it is impractical to run
the proposed algorithm in real time. To address this issue, network administra-
tors should assume and preprocess clustering patterns in advance. This proposed
algorithm, which does not strictly divide the network, i.e., the clusters are not
uniform in shape and overlap, is applicable to any network regardless of any clus-
ter size. Moreover, the distance D between CRs used in Equation 5.2 can be
applied to various clustering scenarios by adopting similarity metrics proposed in
other studies.

48

Table 5.1: Simulation parameters
Link bandwidth 100 [Mbps]

Propagation delay time 5 [ms]
Amount of Contents 128

Content size 64 [chunk]
Chunk size 1000 [Byte]

CS size on CR 128 [chunk]
Zipf α 0.6, 1.0, 1.4, 1.8

5.3 Simulation model
I evaluate the proposed and conventional schemes comparatively in a practical
network topology where content popularity changes through simulations using
Network Simulator ns-3 ver. 3.40 [40] with the implementation of the proposed
scheme. I used the actual topologies of various shapes such as the Interoute
topology of 110 nodes, the Sinet topology of 74 nodes, the Missouri topology
of 67 nodes, and the Geant topology of 40 nodes, from the Internet Topology
Zoo [42], as shown in Fig. 5.1. Interoute consists of a large number of nodes,
which is similar to the grid topology used in Chapters 3 and 4. In contrast,
Geant consists of fewer nodes. Additionally, Sinet and Missouri were chosen for
their medium-sized nodes and distinct characteristics. The former mainly con-
nects nodes in a star configuration, which shortens the average distance between
reachable nodes. The latter mainly connects nodes in a ladder configuration,
which lengthens the average distance between reachable routers. Since Fig. 5.1
shows the relationship of pop-level routers, I defined each node as CR and placed
producers and consumers on each CR. The content was randomly placed on each
producer. The parameters used in the simulation are summarized in Table 5.1.
Each consumer sent Interest packets requesting content toward the producer at
normal distribution intervals with an average value of 1.0 seconds. The requested
content was determined on the basis of the content popularity, in which P2P
content was generally known to follow a Zipf-mandelbrot distribution [41], and I
gave q a fixed value of 5 and changed the content popularity with α to avoid the

49

(a) Interoute (b) Sinet

(c) Missouri (d) Geant

Figure 5.1: Simulation topologies

complexity of the discussion. Furthermore, I assumed no packet loss occurs so we
can focus on the fundamental characteristics of the dynamic clustering approach.
The simulation was performed for 270 seconds. I set the Zipf parameter α to 1.0
at the start of the simulation as shown in Fig. 5.2. α changed to 0.6 at 30 seconds
after the simulation started, in which a wider range of content is requested, to
1.8 at 90 seconds, to concentrate on the requested content, and after that, it
decreases by 0.4 every 60 seconds back to 1.0.

In this simulation, I compared and evaluated the effectiveness of five represen-
tative schemes: LCE, HR [39], HRC [13], Static [18], and proposed (Dynamic).
Note that the HRC scheme uses the k-split algorithm with the number of hops

50

Z
ip

f

�

Time [s]1.0

0.6

1.4

1.8

30 90 150 210 270

Figure 5.2: Fluctuation of zipf α

Table 5.2: Simulation parameters for each scheme
Scheme Parameter Interoute Sinet Missouri Geant
HRC

Cluster size
5 4 4 3

Static 16

Dynamic
Initial cluster size 16

Migratable cluster size 4, 9, 16, 36
Lower/upper threshold 70/100 70/80 50/60 40/50

as similarity metrics for clustering and forms k clusters. The Dynamic and Static
scheme used the clustering algorithm described in Sec. 5.2 and set the recluster-
ing interval to 3 s and floodingTTL to 6 hops. The other parameters for each
scheme used in the simulation are summarized in Table 5.2. These settings were
the appropriate value for an α of 1.0 at the start of the simulation.

Furthermore, the average number of hops needed to retrieve content, cache
hit rate, and advertisement rate were used as evaluation indices to discuss the
effectiveness of the proposed scheme. The average number of hops focused on
content retrieval time, which was defined as the total number of hops during the
time when all consumers retrieved content divided by the total number of requests
for all consumers. The cache hit rate focused on cache efficiency, which was
defined as the total number of cache hits on all CRs divided by the total number
of requests for all consumers. The advertisement rate focused on communication
overhead, which was defined as the amount of advertisement packets divided by
the total amount of traffic. In this study, I assumed the average name length
is 30 bytes, and the size of the advertisement packet which includes the content
name, the flooding limit, and the flag bit that indicates the cache information
(newly cached/discarded), is the same as the Interest packet.

51

 2

 3

 4

 5

 6

 7

 8

 9

 0 50 100 150 200 250

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Time [s]

LCE
HR

HRC
Static

Dynamic

(a) Average number of hops

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250

C
ac

he
 h

it
ra

te
 [

%
]

Time [s]

LCE
HR

HRC
Static

Dynamic

(b) Cache hit rate

Figure 5.3: Effect of Interoute

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 50 100 150 200 250

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Time [s]

LCE
HR

HRC
Static

Dynamic

(a) Average number of hops

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250

C
ac

he
 h

it
ra

te
 [

%
]

Time [s]

LCE
HR

HRC
Static

Dynamic

(b) Cache hit rate

Figure 5.4: Effect of Sinet

5.4 Simulation results
In this section, I evaluate the proposed scheme on actual topologies of various
shapes to discuss its feasibility and effectiveness. Figures 5.3, 5.5, 5.4, and 5.6
commonly show the average number of hops and cache hit rate as a function of
time on each topology. These indicate that the trend is almost the same as the
results for the grid topology shown in Section 4.4.1, and the Dynamic scheme
always maintains the high cache hit rates and reduces the average number of
hops regardless of the shape of topologies. In addition, regarding communication
overheads, the Dynamic scheme achieves smaller advertisement rates than the

52

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5
 7

 7.5
 8

 0 50 100 150 200 250

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Time [s]

LCE
HR

HRC
Static

Dynamic

(a) Average number of hops

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250

C
ac

he
 h

it
ra

te
 [

%
]

Time [s]

LCE
HR

HRC
Static

Dynamic

(b) Cache hit rate

Figure 5.5: Effect of Missouri

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 50 100 150 200 250

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

Time [s]

LCE
HR

HRC
Static

Dynamic

(a) Average number of hops

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250

C
ac

he
 h

it
ra

te
 [

%
]

Time [s]

LCE
HR

HRC
Static

Dynamic

(b) Cache hit rate

Figure 5.6: Effect of Geant

Static scheme (Table 5.3). Therefore, the proposed scheme is effective even in
practical network topologies.

5.5 Conclusion
The design of the proposed schemes and their effectiveness have been discussed
on the basis of a simple topology in Chapters 3 and 4. However, to apply the
proposed scheme to practical networks, it is essential to establish a clustering
scheme for practical networks and evaluate its performance regarding topology

53

Table 5.3: Advertisement rate on each topology
Interoute Sinet Missouri Geant

Static 6.59 % 7.80 % 5.82 % 5.38 %
Dynamic 4.76 % 5.20 % 3.88 % 3.52 %

dependence. Therefore, I proposed a clustering scheme for practical networks
and evaluated the feasibility and effectiveness of the proposed scheme through
simulations conducted on various actual topologies. Simulation evaluations have
indicated that the proposed scheme can reduce the delivery latency while consis-
tently maintaining a high cache hit rate in practical networks.

54

6 Conclusion and future work

In this chapter, I conclude this dissertation and address future work.

6.1 Conclusion
The primary usage of today’s network is for delivering video content, such as
Video on Demand (VoD), which constitutes approximately 80% of the total net-
work traffic. It is anticipated that in the near future, the proliferation of IoT
(Internet of Things) services will lead to the influx of a large volume of IoT
content into the network. Therefore, solutions are needed to support the cur-
rent network usage, which revolves around content distribution. A new network
architecture called Information-Centric Networking (ICN) has attracted atten-
tion as a potential solution. ICN is designed with a focus on the concept that,
when consumers access content, they are indifferent to the identity of the content
provider. This design allows for directly exploring content in the network without
being dependent on the content provider by changing the destination of a content
request from the traditional Internet protocol (IP) address to the content name.
To take advantage of this design concept, content routers (CRs), which are inter-
mediate routers, are assigned the roles of both forwarding and caching content.
This allows replicated content to be distributed into the network while acting as
substitutes for content providers. Therefore, ICN can handle the content requests
by using CRs without the intervention of content providers, which contributes to
balancing server and network loads and reducing content delivery latency.

However, the cache size of CR is significantly smaller than the huge amount of
content worldwide, so it is naturally impossible to cache all content. Therefore,
an important issue to be addressed by ICN is to consider how to use these cashes,
since they significantly affect the performance of content retrieval. In recent years,

55

to address this issue, clustering schemes have been proposed. These schemes
group several CRs (i.e., a cluster) in the network and apply efficient content
placement and routing within each cluster. This allows for resolving the majority
of consumer content requests by utilizing a near cluster. However, I believe that
we can achieve higher efficiency by focusing on two points, which are still open
for discussion:

1. How to efficiently use surrounding clusters. The routing design of these
clustering schemes has not allowed forwarding outside the cluster for request
resolution. Specifically, the cache exploration range is restricted to the cluster
boundaries, and the requests for non-cached content within the cluster are for-
warded directly to the producer. However, although a cluster has a large cache
size, it cannot cache the huge amount content worldwide, so the caches in neigh-
boring clusters should also be made available. Therefore, routing that is not
restricted by cluster boundaries is necessary.

2. How to adapt to changes in content demand trends. The design of these
clustering schemes aims to improve cache utilization and reduce delivery latency
by retaining a sufficient amount of the main popular content in the caches of a
cluster. However, in a practical environment, the content demand trends, i.e.,
the amount of the main popular content, will change over time. Therefore, the
cluster size needs to be determined depending on the situation.

In this dissertation, as one solution for efficiently using caches in ICN to meet
the recent demand for content distribution, I proposed a clustering scheme that
considers issues 1 and 2. This proposed scheme efficiently delivers contents
by making clusters that are efficiently clustered and distributed content in ac-
cordance with the network situation and by flexibly exploring valuable content
from the clusters. Furthermore, I demonstrated the effectiveness of the proposed
scheme through simulation evaluations.

Chapter 2 provided an overview of the inception of ICN, its fundamental op-
erations, related works, and the two specific issues addressed in this dissertation.

Chapter 3 focused on issue 1 and proposed an efficient content distribution and
exploration scheme for clustering schemes. This scheme uniformly distributes con-
tent to each cluster in a distributed caching manner and dynamically updates the
routing table on the basis of collaboration among CRs across the cluster bound-

56

ary. As a result, consumers can explore the nearest content from surrounding
clusters. In simulation evaluations, the proposed scheme demonstrated higher
cache efficiency and lower content delivery latency than conventional schemes by
using surrounding clusters/caches.

Chapter 4 focused on issue 2 and proposed a dynamic clustering scheme to
adjust the cluster size in accordance with fluctuations in content demand trends.
This scheme effectively estimates the appropriate cluster size by using a simple
threshold-based algorithm on the basis of the frequency of cache updates in the
cluster. As a result, it enables the construction of consistently appropriate clusters
to adjust to shifting content demand trends. Simulation evaluations indicated
that the proposed scheme reduces delivery latency while consistently maintaining
a high cache efficiency in an environment with changing content demand trends.

Chapter 5 delved into the adaptability of the proposed scheme in practical net-
works. While the design and effectiveness of the proposed scheme were discussed
on the basis of the simple topology in Chapters 3 and 4, applying the scheme
to practical networks requires establishing a clustering scheme for their networks
and evaluating its performance regarding topology dependence. Therefore, I pro-
posed a clustering scheme for practical networks, and in simulation evaluations,
the proposed scheme indicated sufficient applicability in practical networks.

In this dissertation, I solved the two specific issues 1 and 2 on clustering schemes
in ICN. By deploying the proposed scheme on the network, clusters that auto-
matically formed on the basis of content demand trends among consumers will
contribute to improving quality of service regarding diverse content distribution
in the future, as shown in Fig. 6.1. However, the following issues remain for future
work.

6.2 Future work
As mentioned above, various caching schemes have been proposed to support the
content distribution in ICN. The common direction of these designs is to take into
account the content popularity for efficiently using the caches. However, as ICT
technology further evolves, various services with content delivery formats that are
beyond our imagination will appear in the future. As a result, these designs may

57

Consumers

Producers

Networks

Figure 6.1: An overview of the proposed cluster-based ICN

not be sufficient to support the efficient content distribution of these services. For
instance, IoT services, which have attracted attention in recent years, distribute
content much smaller than video content, which is currently the main content
distributed on the network. In automatic driving, which is a typical IoT service,
to constantly determine the direction and speed of the car in accordance with the
traffic conditions on the road, the server must collect and process the information
around the car and feed control information to the car within an extremely short
time. However, while almost all caching schemes prioritize caching the popular
content for many consumers, they may not effectively cache the content that
is very important for automated driving services and needs to be delivered as
quickly as possible, such as traffic accident information. This is because these
contents not only are used by far fewer consumers than publicly available video
contents but also are generated suddenly and have limited time for utilization,
so the importance of the contents is difficult to estimate on the basis of content
popularity. From the above, it is important to consider how to utilize the caches
in the future, considering such aspects on the service side as well as the consumer
side.

Therefore, as a direction for future study, I will consider automatically forming

58

and layering clusters that can cache content in accordance with the type of ser-
vice, on top of clusters for consumers. I expect that this approach will not only
contribute to enhancing the quality of services provided on the network but will
also support the introduction of services that have been difficult to realize in the
past.

59

References

[1] L. Roberts, “The Arpanet and computer networks,” A history of personal
workstations, pp. 141–172, Jan. 1988. DOI:10.1145/61975.66916

[2] T. Berners-Lee and R. Cailliau, “WorldWideWeb: Proposal for a Hyper-
Text Project,” [Online]. Available: https://www.w3.org/Proposal.html.
Accessed on Dec. 12, 2023.

[3] Cisco, “Cisco Annual Internet Report (2018–2023),” [Online]. Avail-
able: https://www.cisco.com/c/ja_jp/solutions/collateral/
executive-perspectives/annual-internet-report/
white-paper-c11-741490.html. Accessed on Dec. 12, 2023.

[4] National Institute of Information and Communications Technol-
ogy (NICT), “Beyond 5G/6G white paper version 1.0,” [On-
line]. Available: https://beyond5g.nict.go.jp/images/download/
NICT_B5G6G_WhitePaperEN_v1_0.pdf. Accessed on Jan. 12, 2023.

[5] A. Passarella, “A survey on content-centric technologies for the current Inter-
net: CDN and P2P solutions,” Elsevier Computer Communications, vol. 35,
no. 1, pp. 1–32, Jan. 2012. DOI:10.1016/j.comcom.2011.10.005

[6] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer con-
tent distribution technologies,” ACM Computing Surveys, vol. 36, no. 4,
pp. 335–371, Dec. 2004. DOI:10.1145/1041680.1041681

[7] W. Yu, F. Liang, X. He, W.G. Hatcher, C. Lu, J. Lin, and X. Yang, “A
survey on the edge computing for the Internet of Things,” IEEE Access,
vol. 6, pp. 6900–6919, Nov. 2017. DOI:10.1109/ACCESS.2017.2778504

60

[8] V. Jacobson, D.K. Smetters, J.D. Thornton, M. Plass, N. Briggs, and
R. Braynard, “Networking named content,” Communications of the ACM,
vol. 55, no. 1, pp. 117–124, Jan. 2012. DOI:10.1145/2063176.2063204

[9] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K.C. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 66–73,
Jul. 2014. DOI:10.1145/2656877.2656887

[10] A. Ioannou and S. Weber, “A survey of caching policies and forward-
ing mechanisms in information-centric networking,” IEEE Communica-
tions Surveys & Tutorials, vol. 18, no. 4, pp. 2847–2886, May 2016.
DOI:10.1109/COMST.2016.2565541

[11] S. Arshad, M.A. Azam, M.H. Rehmani, and J. Loo, “Recent advances in
information-centric networking-based internet of things (ICN-IoT),” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 2128–2158, Apr. 2019.
DOI:10.1109/JIOT.2018.2873343

[12] M. Meddeb, A. Dhraief, A. Belghith, T. Monteil, K. Drira, and
S. Al-Ahmadi, “Named data networking: A promising architecture
for the internet of things (IoT),” International Journal on Semantic
Web and Information Systems, vol. 14, no. 2, pp. 86–112, Apr. 2018.
DOI:10.4018/IJSWIS.2018040105

[13] V. Sourlas, I. Psaras, L. Saino, and G. Pavlou, “Efficient hash-
routing and domain clustering techniques for information-centric net-
works,” Elsevier Computer Networks, vol. 103, pp. 67–83, Jul. 2016.
DOI:10.1016/j.comnet.2016.04.001

[14] C. Li and K. Okamura, “Cluster-based in-networking caching for
content-centric networking,” International Journal of Computer Sci-
ence and Network Security, vol. 14, no. 11, pp. 1–9, Nov. 2014.
http://paper.ijcsns.org/07_book/201411/20141101.pdf.

61

[15] B. Alahmri, S. Al-Ahmadi, and A. Belghith, “Efficient pooling and collab-
orative cache management for NDN/IoT networks,” IEEE Access, vol. 9,
pp. 43228–43240, Mar. 2021. DOI:10.1109/ACCESS.2021.3066133

[16] H. Yan, D. Gao, W. Su, C.H. Foh, H. Zhang, and A.V. Vasilakos, “Caching
strategy based on hierarchical cluster for named data networking,” IEEE Ac-
cess, vol. 5, pp. 8433–8443, Mar. 2017. DOI:10.1109/ACCESS.2017.2694045

[17] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and S. Nic-
colini, “Temporal locality in today’s content caching: Why it matters and
how to model it,” SIGCOMM Computer Communication Review, vol. 43,
no. 5, pp. 5–12, Oct. 2013. DOI:10.1145/2541468.2541470

[18] M. Yoshida, Y. Ito, Y. Sato, and H. Koga, “A cluster-based cache
distribution scheme in content-centric-networking,” Proc. ACM Con-
ference on Information-Centric Networking, pp. 196–197, Sept. 2018.
DOI:10.1145/3267955.3269012

[19] M. Yoshida, Y. Ito, Y. Sato, and H. Koga, “Popularity-aware dynamic-
clustering scheme for distributed caching in ICN,” Proc. ACM Con-
ference on Information-Centric Networking, pp. 192–193, Sept. 2022.
DOI:10.1145/3517212.3559482

[20] M. Yoshida, Y. Ito, Y. Sato, and H. Koga, “Performance evaluation of
popularity-aware dynamic-clustering scheme for distributed caching in ICN,”
Proc. APSIPA Annual Summit and Conference, pp. 185–190, Nov. 2022.
DOI:10.23919/APSIPAASC55919.2022.9979928

[21] M. Yoshida, Y. Ito, Y. Sato, and H. Koga, “PopDCN: Popularity-
aware dynamic-clustering scheme for distributed caching in ICN,” to ap-
pear in IEICE Transactions on Communications, 10 pages, May 2024.
DOI:10.23919/transcom.2023EBP3152

[22] A. Dominguez, O. Novo, W. Wong, and T. Valladares, “Publish/subscribe
communication mechanisms over PSIRP,” Proc. IEEE International Con-
ference on Next Generation Web Services Practices, pp. 268–273, Oct. 2011.
DOI:10.1109/NWeSP.2011.6088189

62

[23] T. Koponen, M. Chawla, B.G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker,
and I. Stoica, “A data-oriented (and beyond) network architecture,” ACM
SIGCOMM Computer Communication Review, vol. 37, no. 4, pp. 181–192,
Aug. 2007. DOI:10.1145/1282427.1282402

[24] H. Che, Y. Tung, and Z. Wang, “Hierarchical Web caching systems:
Modeling, design and experimental results,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1305–1314, Sept. 2002.
DOI:10.1109/JSAC.2002.801752

[25] S. Arianfar, P. Nikander, and J. Ott, “On content-centric router design
and implications,” Proc. ACM SIGCOMM the Re-Architecting the Internet
Workshop, pp. 1–6, Nov. 2010. DOI:10.1145/1921233.1921240

[26] I. Psaras, W.K. Chai, and G. Pavlou, “Probabilistic in-network caching
for information-centric networks,” Proc. ACM Workshop on Information-
Centric Networking, pp. 55–60, Aug. 2012. DOI:10.1145/2342488.2342501

[27] N. Laoutaris, H. Che, and I. Stavrakakis, “The LCD interconnection of LRU
caches and its analysis,” Performance Evaluation, vol. 63, no. 7, pp. 609–634,
Jul. 2006. DOI:10.1016/j.peva.2005.05.003

[28] N. Laoutaris, S. Syntila, and I. Stavrakakis, “Meta algorithms for hi-
erarchical web caches,” Proc. IEEE International Performance Com-
puting and Communications Conference, pp. 445–452, Apr. 2004.
DOI:10.1109/PCCC.2004.1395054

[29] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “Wave:
Popularity-based and collaborative in-network caching for content-oriented
networks,” Proc. IEEE Conference on Computer Communications Work-
shops, pp. 316–321, May 2012. DOI:10.1109/INFCOMW.2012.6193512

[30] E.J. Rosensweig and J. Kurose, “Breadcrumbs: Efficient, best-effort content
location in cache networks,” Proc. IEEE Computer and Communications
Societies, pp. 2631–2635, Apr. 2009. DOI:10.1109/INFCOM.2009.5062201

63

[31] Y. Li, T. Lin, H. Tang, and P. Sun, “A chunk caching location
and searching scheme in content centric networking,” Proc. IEEE In-
ternational Conference on Communications, pp. 2655–2659, Jun. 2012.
DOI:10.1109/ICC.2012.6363958

[32] L. Gong, “Intelligent forwarding strategy based on online machine learn-
ing in named data networking,” Proc. IEEE Trustcom/BigDataSE/ISPA,
pp. 1288–1294, Aug. 2016. DOI:10.1109/TrustCom.2016.0206

[33] L. Wang, S. Bayhan, J. Ott, J. Kangasharju, A. Sathiaseelan, and
J. Crowcroft, “Pro-diluvian: Understanding scoped-flooding for con-
tent discovery in information-centric networking,” Proc. ACM Con-
ference on Information-Centric Networking, pp. 9–18, Sept. 2015.
DOI:10.1145/2810156.2810162

[34] T. Mick, R. Tourani, and S. Misra, “MuNCC: Multi-hop neighbor-
hood collaborative caching in information centric networks,” Proc. ACM
Conference on Information-Centric Networking, pp. 93–101, Sept. 2016.
DOI:10.1145/2984356.2984375

[35] M. Lee, J. Song, K. Cho, S. Pack, T. Kwon, J. Kangasharju,
and Y. Choi, “Content discovery for information-centric network-
ing,” Elsevier Computer Networks, vol. 83, pp. 1–14, Jun. 2015.
DOI:10.1016/j.comnet.2014.10.006

[36] W. Wong, L. Wang, and J. Kangasharju, “Neighborhood search and
admission control in cooperative caching networks,” Proc. IEEE
Global Communications Conference, pp. 2852–2858, Dec. 2012.
DOI:10.1109/GLOCOM.2012.6503549

[37] H.M. Ju and L. Hyesook, “Cache sharing using Bloom filters in named data
networking,” Journal of Network and Computer Applications, vol. 90, pp. 74–
82, Jul. 2017. DOI:10.1016/j.jnca.2017.04.011

[38] S. Nayak, R. Patgiri, and A. Borah, “A survey on the roles of
Bloom Filter in implementation of the Named Data Networking,” El-

64

sevier Computer Networks, vol. 196, art. no. 108232, Sept. 2021.
DOI:10.1016/j.comnet.2021.108232

[39] L. Saino, I. Psaras, and G. Pavlou, “Hash-routing schemes for informa-
tion centric networking,” Proc. ACM SIGCOMM workshop on Information-
centric networking, pp. 27–32, Aug. 2013. DOI:10.1145/2491224.2491232

[40] G.F. Riley and T.R. Henderson, “The ns-3 Network Simulator,”
in Modeling and Tools for Network Simulation, ed. K. Wehrle,
M. Güneş, J. Gross, pp. 15–34, Springer, Berlin, Heidelberg, 2010.
DOI:10.1007/978-3-642-12331-3_2

[41] M. Hefeeda and O. Saleh, “Traffic modeling and proportional partial caching
for peer-to-peer systems,” IEEE/ACM Transactions on Networking, vol. 16,
no. 6, pp. 1447–1460, Mar. 2008. DOI:10.1109/TNET.2008.918081

[42] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan, “The in-
ternet topology zoo,” IEEE Journal on Selected Areas in Communications,
vol. 29, no. 9, pp. 1765–1775, Oct. 2011. DOI:10.1109/JSAC.2011.111002

65

