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最近、著者の指導教官である河野智謙教授のグループが、金属含有型の人工

酵素の開発に尽力している（代表的総説を参照；Kawano et al., 2015; Yokawa et 

al., 2011a）。上記の総説にあるように、天然の触媒性タンパク質である酵素お

よび哺乳類から植物までの多様な生物種において確認されている低分子の機能

性ペプチド群の機能と構造の相関、更には、人工的な機能性をデザインした

DNA配列の理解へのアプローチが最近の研究の中で網羅されており、特に最新

の研究事例である天然のタンパク質およびペプチド中の金属結合モチーフに発

案を得た人工生体触媒（ペプチドおよび核酸）によるスーパーオキシドラジカ

ルの生成および除去に関する技術開発が注目されている。 

筆者を共著者に含む最新の総説論文（Kawano et al., 2015）において、以下に

のように新規の生体触媒カテゴリーおよびコンセプトを提唱している。生体触

媒の機能と化学的性質に基づく新カテゴリーおよびコンセプトについては、第

2 章において詳細を述べる。中でもタンパクあるいはペプチドに遷移金属が配

位することで活性中心を形成する場合は、生体触媒を無機触媒型に分類し、一

方で、プロリンやグアニジンのような有機触媒が示す反応に類似した反応型を

示す生体触媒を有機触媒型生体触媒ととらえる視点は重要であり、それぞれの

カテゴリーを代表する事例を特異的配列のペプチドや DNA を用いた実験を通

じて明示している。 

筆者は、過去に卒業論文、修士論文の研究の中でヒトプリオン由来ペプチド

が金属イオンと結合することで発揮するレドックス触媒活性の評価を行ってき

た。本研究は、その知見にたった、生体分子への金属イオンの吸着評価法を提

案するものである。以下にこれまでの研究背景を要約する。卒業研究では、プ

リオン・オクタリピート領域由来のペプチドを用いた、Cu 非要求性スーパーオ

キシド生成反応の有無、基質として添加する H2O2 水溶液、Tyramine 塩酸塩水

溶液の、H2O2 水溶液添加から Tyramine 塩酸塩水溶液添加までの時間による、

スーパーオキシド生成量の変化、基質濃度依存性の有無、ペプチドの繰り返し

単位の長さ、開始場所による変化、ペプチドの構造による変化、SOD 様活性の
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有無について研究した。これらの研究結果を用いて、プリオン・オクタリピー

ト領域由来のペプチドを、Cu 非要求性スーパーオキシドを生成する人工酵素と

して、バイオセンサー等で利用することを目的とした。各実験においてのスー

パーオキシド生成量の測定方法について説明した。具体的には、CLA 発光強度

を指標として、スーパーオキシド生成量を測定する。CLA とは、スーパーオキ

シドに特異的な化学発光プローブである Cypridina luciferin analog（ウミホタル

ルシフェリン類縁体）のことであり、この CLA はスーパーオキシドと反応す

ると発光する性質がある。この性質を利用して、各種ペプチドや CuSO4 水溶液、

H2O2水溶液、Tyramine 塩酸塩水溶液を用い、反応によって生成されるスーパー

オキシドの量を測定した。 

本研究では、新しい生体触媒のコンセプト（第 2 章参照）に基づいた機能性

生体触媒の開発に資する技術開発も視野に、触媒様の作用を示す天然のタンパ

ク質およびペプチドを構成するアミノ酸の組成や配置、更には活性中心形成金

属の配位の有無を水溶液中で反応に影響を与えない非侵襲的な手法で観察する

ためのプロトコル開発を中心に取り組んだ。特に蛍光法と化学発光法は、リア

ルタイムでの触媒性ペプチドの状態変化を感度よく観察する目的に合致してい

るため、本研究の主題を「蛍光および化学発光を利用した生体分子の定量およ

び機能性評価手法の確立」とした。具体的な技術提案としては、ペプチドへの

金属の結合を可視化するため、自家蛍光特性を有するテルビウム（Tb）イオン

とペプチド相互作用をの蛍光消光により検出する（１）Tb 蛍光消光法および任

意のペプチドに芳香族アミノ酸が含まれるものを対照とし、ペプチドが有する

紫外領域での励起における自家蛍光（可視光）がペプチドと金属との相互作用

により消光することを利用した（２）自家蛍光消光法の利用を提案する。Tb イ

オンが銅結合性ペプチドに結合し、銅結合能の評価に利用できる知見は、所属

研究室での先行研究および海外での研究事例により得られた知見である（第 3

章以降で詳細を議論）。 
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本学位論文は、以下の構成をとる。第 1 章（本章）では、研究の概略を述べ、

第 2 章では、研究のコンセプトを論じた。第 3 章から第 6 章では、4 つの異な

る研究事例を報告する。最後に第 7 章において、本研究での取り組みを総括し、

今後の研究展望を論じた。なお、本学位論文では、第 1 章および第 7 章を和文

とし、すでに学術雑誌上において発表済あるいは、投稿済の論文に対応する第

2 章から第 6 章までの内容は、用語使用の統一性や内容の正確を期して、英文

での構成とした。以下各章での議論を簡潔にのべる。また査読論文として発表

済み（および投稿済み）の内容と各章との対応を表 1-1（Table 1-1）にまとめ

る。 

 

Table 1-1．個別の論文として査読付学術誌に投稿した研究内容と各章の対応。 

章・タイトル 研究内容要約 発表誌・投稿誌 巻（号）：

頁および審

査・印刷状

況（平成 28

年 2 月現

在） 

Capter 3 Fluorescence 

measurements revealed two 

distinct modes of metal binding 

by histidine-containing motifs in 

prion-derived peptides  

プリオン蛋白のオ

クタリピート領域

に２つの異なる金

属結合モチーフが

存在する（Tb 蛍

光消光法・自家蛍

光消光法） 

Current Topics in 

Peptide and 

Protein Research  

13 : 111-118. 

印刷済み 

Capter 4 Fluorescent monitoring 

of copper-occupancy in His-ended 

catalytic oligo peptides  

GFP 色素領域と人

工酵素のキメラ分

子への金属結合の

評価（自家蛍光消

光法） 

Communicative & 

Integrative 

Biology 

印刷中 

Capter 5 Monitoring of copper loading 

to cationic histidine-rich short salivary 

polypeptides, histatins 5 and 8, based 

on the quenching of copper-sensitive 

intrinsic red fluorescence  

ヒスタチンへの金

属結合モニタリン

グ手法の確立（Tb

蛍光消光法・自家

Bioscience, 

Biotechnology, 

and Biochemistry 

投稿・ 

審査済み 
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蛍光消光法） 

Capter 6 Fluorometric 

quantification of ferulic acid 

concentrations based on 

deconvolution of intrinsic 

fluorescence spectra  

濃度により蛍光特

性が変化するフェ

ルラ酸の蛍光法に

よる定量の試み 

Environmental 

Control in Biology 
54 : 57-64. 

印刷済み 

 

 

以下、論文構成概略。 

第 1章（CHAPTER 1）General Introduction ：本章（和文）。 

第２章（ CHAPTER 2） Production of Superoxide Anion Radical by Artificial 

Metalloenzymes（英文）。触媒活性を有する金属結合型のペプチド性の生体触

媒の開発に関する概念を整理した。 

本研究に用いたプリオンタンパク質( PrP )とはタンパク質からなる感染性粒

子のことである( Jaffray, M. et al., 2000 ) 。この PrPには正常型と異常型の 2種類

が存在し，異常型は正常型とは立体構造が異なる．異常型 PrP は正常型 PrP の

重合体であり，モノマーである正常型が重合し異常型へと変化する過程におい

て，正常型が自己触媒的に働き，その際に活性酸素を生成することが確認され

ている（Fig. 1-1）。この PrP には，触媒となる銅結合領域と基質となるチロシ

ン残基が共存しているため，本研究を行う前に行った予備実験において，銅結

合領域由来ペプチド + 過酸化水素（基質１） + チロシン残基（基質２） + 酸素

（基質３）の条件で反応が起き，活性酸素が生成されることが確認されている。 

第３章（CHAPTER 3） Fluorescence measurements revealed two distinct modes of 

metal binding by histidine-containing motifs in prion-derived peptides（英文）。プリ

オン由来の触媒活性を有することが明らかになっている金属結合領域に相当す

るペプチドへの金属（Cu、Tb）の結合を蛍光法により可視化した。ここでは、

（１）Tb 蛍光消光法および（２）自家蛍光消光法の両方を適用し技術の検証を

した。 
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プリオンタンパク（PrP）は、狂牛病やクロイツフェルトヤコブ病などの病

原因子として知られるタンパク質の総称である。PrP の病原性には、正常型か

ら異常型への変化が大きく関与し、異常型への変化の引き金として、銅イオン

の結合や酸化的環境変化が重要とされる。ヒト PrP には特徴的な銅結合領域が

７箇所存在しており，本研究で利用した PrP はその中でもオクタリピート領域

と呼ばれる箇所のものである．このオクタリピート領域は，８個のアミノ酸か

らなる配列( PHGGGWGQ )が４回繰り返されている領域である．８パターンの

繰り返しユニットが存在するオクタリピート領域のペプチドを用いて，活性酸

素の生成活性をそれぞれ比較した結果，ヒスチジン( H, His )やプロリン( P, Pro )

の位置により活性が変化することが確認された．これにより，活性酸素の生成

活性を左右するのは，銅の結合活性ではないかと考察された．また，この結果

は，有機素材と結合した X-X-H モチーフをもつ銅結合ペプチドは，最新の生命

工学的な道具を形成可能であることを示している( Okobira, T. et al., 2011 )。以

上より，本研究では，（１）蛍光性金属イオンのペプチドへの結合による蛍光

の消失，および（２）金属結合によるペプチド自家蛍光の消失を測定し，ヒト

PrP・オクタリピート領域と金属との相互作用（結合）を可視化する方法の開

発を試みた。 

 第４章（CHAPTER ４）Fluorescent monitoring of copper-occupancy in His-ended 

catalytic oligo peptides（英文）。緑色蛍光タンパク質（GFP）由来の金属結合領

域に相当するペプチドへの金属（銅）の結合を蛍光法により可視化した。ここ

では、自家蛍光消光法を適用し技術の検証をした。実験のアプローチは、PrP

研究に準じた。 

第 5 章（CHAPTER 5）Monitoring of Copper Loading to Cationic Histidine-rich 

Short Salivary Polypeptides, Histatins 5 and 8, Based on the Quenching of Copper-

sensitive Intrinsic Red Fluorescence（英文）。ヒト口腔内において生体防御反応

に関わる微小ペプチドであるヒスタチン分子への金属（銅）の結合を蛍光法に
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より可視化した。ここでは、（１）Tb 蛍光消光法および（２）自家蛍光消光法

の両方を適用し技術の検証をした。 

近年、100 を超える口腔内環境の維持および微生物からの防御に関わる高濃

度蛋白質・ペプチド群が同定されている。中でも金属結合領域を有するオリゴ

ペプチドであるヒスタチン（Hsts）は、金属と結合することで機能を発現する

と考えられているため、銅をはじめとする金属の結合のモニタリング手法が求

められている。本報告では、（１）Hst-5 および Hst-8 をモデルに、テルビウム

イオン（Tb
3+）の蛍光の消光を指標としたペプチド上の金属結合モチーフへの

Tb3+の結合の評価および（２）Hst-5および Hst-8が有する赤色蛍光の消光を指

標とした銅イオン（Cu
2+）のペプチドへの結合の評価を行った。また、Hsts が

示す新規の触媒活性（スーパーオキシド生成反応）が銅結合により付与される

ことを示した。 

第 6 章（CHAPTER 6）Fluorometric quantification of ferulic acid concentrations 

based on deconvolution of intrinsic fluorescence spectra（英文）。植物における生

体防御反応や酸化ストレス防止などに貢献することが知られ、食品として摂取

した場合、人の健康増進にも有用であるフェノール由来成分であるフェルラ酸 

(FA)に注目し、蛍光法による同分子の定量を試みた。技術的留意点は、FA濃度

が変化するのに伴い蛍光特性が変化する点である。 

FA は、細胞壁複合体における重要な化合物のひとつとして、多くの植物中

で見られる単純なポリフェノールである。現在、米ぬか油などの食用油中の

FA 結合脂質など FA や FA 派生物の定量分析には、分光光度計による簡便な定

量や HPLC による詳細な分析が行われているが、非破壊的に野菜や青果物中の

FAや FA派生物を定量化するための手法として、固定波長の励起光照射下に認

められる FA 特異的な蛍光の増加を利用した FA 関連化合物の検出に関する報

告例がある（Meyer et al., 2003）。しかし、励起光の波長を固定して FA蛍光を

検出する場合、検出感度が低く、対応する濃度のレンジも限られてしまうこと

が明らかになった。本研究では、将来の幅広いレンジでの非破壊的 FA の検



8 
 

出・定量に向けたモデル実験として、200 nm～400 nmまでの紫外領域において

変動させた励起波長に対する FA 特異的な蛍光帯（460 nm）におけるシグナル

強度の変化を測定し、従来法よりも容易で正確な FA定量法の開発を試みた。 

第７章は、和文での研究の総括である。 
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Fig. 1-1. Description of the prion protein (PrP). (a) Simplified structure of human PrP 

(Modified from Ralph Zahn et al., 2000). The helices are shown as cylindrical images, 

the β-strands are shown as arrows, the segments with nonregular secondary structure 

within the C-terminal domain are shown as lines, and the flexibly disordered “tail” of 

residues 23-121 is represented by dots. (b) Figure of changing normal PrP to isoform 

PrP (Modified from Furuichi, T. and Kawano, T.,  2005). 
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Recently, the group of Tomonori Kawano (who is the supervisor of the author) 

has summarized their effort on development of artificial metalloenzymes (Kawano et al., 

2015; Yokawa et al., 2011a). In the aforementioned review articles, their recent 

approaches for understanding and modification of natural catalytic proteins/peptide and 

functional DNA sequences of mammalian and plant origins are covered, especially, 

focusing on the development of a novel classes of artificial redox-active biocatalysts 

involved in production and/or removal superoxide anion radicals (O2
•-
). In their review 

articles, they introduced a novel concept on the category of biocatalysts as below. 

Most of the cases, catalysts (Cs) can be defined as the set of different types of 

elements/molecules/compounds:  

{Cs} = {{OCs}, {ICs}, {BCs}}  (1) 

In the above proposition, OCs, ICs, and BCs stand for organic catalysts, inorganic 

catalysts, and biocatalysts, respectively. Note that OCs can be represented by natured 

and bio-inspired organic molecules such as guanidine-type (as described by Nagasawa, 

2003) or amino acid proline-type catalysts (as described by Jarvo and Miller, 2002), and 

ICs can be represented by inorganic molecules or complex such as metal-based catalysts 

(see Pardieck et al., 1992, etc.). In fact, the natures of OCs and ICs are clearly defined 

based on their chemical properties. In contrast, the category of BCs merely implies the 

origins but not the natures of these chemicals. Conventionally, it has been viewed that 

the set {BCs} can be divided into two subsets as follows (Kawano et al., 2015): 

{BCs} = {{Es}, {Ns}}   (2) 

where Es and Ns are enzymes and nucleozymes, respectively. 

In fact, Es and Ns can be further confirmed as follows: 

{Es}  {{Cs} ∩ {proteins ∪ peptides}} (3) 

{Ns}  {{Cs} ∩ {RNA ∪ DNA}}  (4) 

Moreover, the sets of {Es} and {Ns} can be further divided into subsets as 

follows: 
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{Es} = {{Ens}, {Eas}}   (5) 

{Ns} = {{Nns}, {Nas}}   (6) 

where Ens and Nns, are natural enzymes and nucleozymes, respectively, which can be 

found in or produced by living organisms; and Eas and Nas are artificial enzymes and 

nucleozyme, respectively, which are now newly designed or engineered in the 

laboratory.  

Among the Es, many portion of both Ens and Eas reportedly form the center of 

catalytic reactions within the molecules through binding of catalytically active metals 

directly or indirectly (by possessing prosthetic groups such as iron-centered 

hemes)(Rosati and Roelfes, 2010). Thus, catalytic activities of natural and artificial 

metal-binding enzymes can be largely attributed to the behaviors of bound metals. 

Therefore, it is natural to obtain the following proposition on the nature of enzymes,  

P(Es). 

P(Es) =  {Es}  {ICs}   (7) 

This type of enzymes should be considered as metalloenzymes. According to 

recent reviews (Lu, et al., 2009; Rosati and Roelfes, 2010), an artificial metalloenzyme 

can be designed de novo by arranging the peptidic sequence composed of 20 natural 

amino acids. Basically, such de novo designs of metalloproteins can be achieved freely 

designing the amino acid sequences capable of binding metal ions (Rosati and Roelfes, 

2010). In order to artificially design or modify the catalytic proteins or peptides, it is far 

easier to learn from the catalytically active peptidic motifs within the naturally existing 

active enzymes or proteins as the platforms of engineering (Kawano, 2011; Yokawa et 

al., 2011a). 

Interestingly, Yeung et al. (2009) have reported that modification of myoglobin 

(Mb) is one of successful cases in engineering of semi-natural metalloenzyme. 

Accordingly, natural Mb was re-designed into an enzyme (a functional nitric oxide 

reductase), by newly forming a non-heme iron binding site in the distal pocket of Mb, 

suggesting that novel synthetic enzymes can be developped by desingning a non-heme 

metal binding motifs. Presence of such natural, semi-natural and artificial 
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metalloenzymes consists the elements of conceptual subset of bio-originated catalysts 

within the set of {ICs} fulfilling the proposition (7): P(Es) =  {Es}  {ICs}.  

Similarly to the cases of metalloenzymes, kawano’s group have been seeking for 

the cases of metallonucleozymes, in which catalytic activities of natural and artificial 

metal-binding nucleic acids (DNAs and RNAs) can be attributed to the behaviors of 

bound metals. Then following proposition on the nature of catalytic nucleic acids, P(Ns) 

can be obtained. 

P(Ns) =  {Ns}  {ICs}   (8) 

Two propositions listed above (7, 8) can be combined and generalized : 

P(BCs) =  {BCs}  {ICs}   (9) 

It could be assumed that catalytic actions of some BCs can be attributed to the 

catalytic mode of metal actions similar to ICs. In the chapter  3, 4 and 5, the auther 

enphasized the protocols to determine on detect the binding of metals such as Cu and Tb 

onto the petides of interest, in order to form the catalytic corpley belonging to IC-type 

BCs. Futhermore,  some BCs can be categorized as part of OCs as proline, one of 

natural amino acids composing proteins, is now consider as an active catalyst (Jarvo and 

Miller, 2002). Thus, following proposition can be arisen. 

P(BCs) =  {BCs}  {OCs}   (10) 

This proposition implies that peptides rich in prolin may act as OC-types BCs.  

The  peptides we employed  include prion-derived octarepeat sequence which 

contains Pro-residue. Role of this residue is discussed in the chapter 3.   

 

Finding and defining the metal-binding and catalytic motifs within chicken prion 

proteins 

There is a set of proteins which could not be defined by proposition (3)  

{Es}  {{Cs} ∩ {proteins ∪ peptides}} 



14 
 

The case of prion proteins (PrPs) and derived small peptides could be one such 

example. Generally, PrPs and derived peptides are not considered as enzymes at present, 

although they are either proteins or peptides having catalytic nature (proposition 11).  

{PrPs}  {{{Cs} ∩ {proteins ∪ peptides}}＼{Es}}  (11) 

By admitting that there are proteins or peptides (both natural and artificial) with 

catalytic activity which can be considered as element of {BCs} in a broad sense as 

defined below (proposition 12), the phenomena observed with plant O3-inducible (OI)-

peptides and animal PrPs belonging to novel class of BCs can be compared with 

conventional BCs such as plant peroxidases (Yokawa et al., 2011b). 

P(novel BCs) =  {proteins ∪ peptides}  {{BCs}＼{ Es ∪ Ns }}   (12) 

Actually, the kingdoms of plants and animals are rich in such small peptidic 

metalloenzymes, belonging to BCs in a broad sense, catalyzing the generation of O2
•-
 

(Kagenishi et al., 2011).
 

The criteria for consisting a minimal peroxidase-like small peptides is the 

presence of His-rich motifs required for binding to metals (chiefly copper), and free 

and/or peptide-bound substrates (Yokawa et al., 2011a). Similarly, recent studies have 

shown that peptides derived from human PrP mediates the production of O2
•-
 through 

oxidation of substrates such as aromatic monoamines or phenolics (mostly, 

neurotransmitters and their analogues) (Kawano, 2007). Upon binding to copper at four 

different putative copper-binding motifs (Fig.3-1b) , PrP and derived peptides may gain 

the catalytic activities as our earlier works have revealed that PrP-derived copper-

binding peptides catalyze the generation of O2
•-
 in peroxidase-like manner involving 

H2O2 as e
-
 acceptor and aromatic amines or phenols as the e

-
 donors (Kawano, 2007; 

Yokawa et al., 2009a). 

Actions of Cu-bound PrPs are of great importance from the engineering point of 

view in order to design the novel peptidic metalloenzymes. Apart from engineering 

purpose, but viewing from the biological and medical points, the importance of 

metalloproteins in neurobiology has been suggested both as oxidant and antioxidant in 

neurodegenerative processes in animals (Opazo et al., 2003). Cu is an essential trace 
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element in most living organisms but its redox reactivity often leads to the risk of 

oxidative damage to the cells and tissues, as observed in the neurodegenerative diseases 

such as 'prion' disease and Alzheimer's, Menkes' and Wilson's diseases all occurring via 

disorders of Cu metabolism (Rotilio et al., 2000; Vassallo et al., 2003; Rossi et al., 

2004). Especially, Alzheimer's disease and prion disease are two of known major 

conformational diseases, as documented to date. 

Deposition of abnormal protein fibrils is a common pathological feature observed 

in “protein conformational” diseases, including prion dementias and Alzheimer’s, 

Parkinson’s and motor neuron diseases (Tabner et al., 2001). Generation of ROS is now 

considered as one of key events required for development of conformational diseases. In 

the cases of accumulation of α-synuclein in Parkinson’s disease and accumulation of β-

amyloid in Alzheimer’s disease, the evidence for involvement of ROS, chiefly H2O2 

and derived HO
•
, in the neurodegenerative mechanisms have been documented, 

suggesting that pathogenesis of such neurodegenerative diseases could be attributed to 

the generation and damaging impacts of ROS which eventually stimulates the formation 

of abnormal protein aggregates (Tabner et al., 2001; Allsop et al., 2008). 

PrPs are the only known causative agents for transmissible spongiform 

encephalopathies in mammalian brains (Jeffray et al., 2000). A number of studies have 

shown that PrPs can form a group of Cu-binding proteins possibly involved in redox 

reactions (Aronoff-Spencer et al., 2000; Burns et al., 2003) as human PrP has four Cu-

binding sites in the “octarepeats” region (PrP 60-91) in which amino acid sequence P-

H-G-G-G-W-G-Q appears four times in tandem and each repeat possibly binds single 

Cu
2+

 at physiological neutral and basic range of pH (Bonomo et al., 2000). Similarly, in 

chicken PrP, the Cu-binding motif analogous to the octarepeats are known as hexa-

repeats in which each repeat consist of the six amino acids, H-N-P-G-Y-P. In chicken 

PrP, His residues in hexa-repeat are considered to play a key role in anchoring of Cu 

(Stanczak et al., 2004). 

Note that both His and Tyr residues can be found in the chicken PrP’s hexa-repeat 

unit. As Tyr-containing peptides could be a target of the redox reaction catalyzed by 

metal-containing proteins or peptides involved in peroxidative and ROS generating 
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reactions, we synthesized six peptides corresponding to Cu-binding region (hexa-repeat) 

of chicken PrP and examined its catalytic activity for the generation of O2
•-
. Each of six 

peptide synthesized (N-P-G-Y-P-H, P-G-Y-P-H-N, G-Y-P-H-N-P, Y-P-H-N-P-G, P-H-

N-P-G-Y, and H-N-P-G-Y-P) contains both histidine residue possibly anchoring Cu ion 

and Tyr residue possibly behaving as a substrate were used for assessing the O2
•-

generating activity using the O2
•-
-specific CL of CLA (Yokawa et al., 2010). As a 

results, the generation of O2
•-
 was observed in the presence of hexapeptide, copper and 

H2O2 without addition of any phenolic substrate since tyrosine-residue on the 

hexapeptide possibly behaves as a substrate for the reaction. 

To conclude that requirement of tyrosine residue on the peptides in H2O2-

dependent generation of O2
•-
, we also tested the mutation of Tyr resides into Phe 

residues in two model peptides (i.e. N-P-G-F-P-H and F-P-H-N-P-G). As expected, the 

Y-to-F substitution mutant peptides showed complete loss of H2O2-dependent 

generation of O2
•-
. Furthermore, we confirmed that supplementation of free Tyr to the 

reaction mixture containing the Y-to-F mutant peptides results in production of O2
•-
. It 

is conclusive that similarly to plant OI-peptide, both the presence and positions of His 

and Tyr residues in chicken PrP’s hexa-repeat units are highly important for the 

catalytic modes leading to generation of O2
•-
. 

 

Catalytic activity in human prion-derived peptides 

To date, key involvement of trace elements, chiefly of Cu, in prion disease has 

been well documented (Sauer et al., 1999; Wong et al., 2001; Watt et al., 2005). Until 

recently, two opposing roles for Cu-bound PrPs have been proposed and discussed, 

namely the role of bound copper as an anti-oxidant element and contrary as a pro-

oxidant element enhancing the neurodegenerative process (Koga et al., 1992). In both 

cases, Cu-binding sequences highly preserved in PrPs play key roles in generation 

(Kawano, 2007) or removal of ROS (Wong et al., 2001). 

A series of works conducted by our group suggested that 4 distinct peptide 

sequences corresponding to 7 putative copper-binding sites containing metal anchoring 

His residues (His61, His69, His77, His85, His96, His111, and His187) in human PrP 
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function as catalytic motifs active for O2
•-
 generation through reactions with aromatic 

monoamines (Kawano, 2007). Furthermore, phenol-dependent O2
•-
 generation catalyzed 

by several PrP-derived copper-binding peptides was recently assessed using various 

phenolics as substrates such as free phenolics and free Tyr (Kagenishi et al., 2011; 

Yokawa et al., 2008), solubilized polymers with phenolic groups (i.e. polyvinyl phenol 

which is a polymer with multiple phenolic groups, chain length, 12 - 58 mer; Yokawa et 

al., 2011b) and Tyr residues on peptide chains (Yokawa et al., 2009a). Since 

supplementation of H2O2 is required for oxidation of amines or phenols by these 

copper-centered peptides, the modes of reactions were considered to be peroxidase-like 

(Kawano, 2007; Yokawa et al., 2011b). 

Among PrP-derived and related Cu-binding motifs ever examined, H2O2-

dependent O2
•-
-generating activity was most active in a truncated helical sequence (V-

N-I-T-K-Q-H-T-V-T-T-T-T) which is highly analogous to original (wildtype) PrPs’ 

helical sequence (Kawano, 2007; Yokawa et al., 2008). 

 

Two distinct metal-binding motifs overlaid in the PrP octarepeat region 

Our earlier studies have revealed that His residues (at least single His) are required 

for anchoring copper on PrP-derived peptides (Kawano, 2006, 2007), and consequently, 

the catalytically active copper-binding motif within PrP-derived peptides was 

determined to be X-X-H, where X can be any amino acids followed by His residue 

(Yokawa et al., 2011b; Kagenishi et al., 2009). 

In human PrP, His96 is located between G-G-G-T and S-Q-W-N sequences. To 

examine the positional effect of His on the catalytic activity in the derived peptides, 

comparison of the His-started H-S-Q-W-N pentapeptide and the His-ended G-G-G-T-H 

pentapeptide was carried out (Kagenishi et al., 2011). While reaction with tyramine 

(given as model substrate) and G-G-G-T-H peptide resulted in robust production of O2
•-
, 

the H-S-Q-W-N peptide showed no catalytic activity. By assuming that G-T-H motif 

within the G-G-G-T-H pentapeptide is one of X-X-H motif derivatives, experimental 

comparison of the catalytic activities among G-G-G-T-H pentapeptide and shorter 

derivatives (G-G-T-H and G-T-H) were performed and the data obtained clearly 
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suggested the importance of the N-terminal glycyl-chain elongation for manifesting the 

maximal redox activity in C-terminal His anchored peptides. 

Example of artificial enzyme based on XXH motif was developed by Okobira et al. 

(2011), demonstrating that Cu-binding peptides with X-X-H motif conjugated to 

organic materials could form a novel class of biosensing and bioengineering tools. 

Accordingly, a tripeptide, Gly-Gly-His (G-G-H, one of X-X-H motif derivatives) was 

introduced onto the glycidyl methacrylate-grafted porous hollow fiber membrane made 

on the polyethylene platform by radiation-induced graft polymerization. After loading 

of Cu
2+

 on the membrane, CL assay was performed to testify the catalytic activity of the 

membrane, generating O2
•-
 upon addition of H2O2 and tyramine as the paired substrates. 

The author and her colleagues (Inokuchi et al., 2012) have studied the minimal 

motifs required for binding of metals within human PrP, by assessing (1) the peptide-

dependent quenching of Tb
3+

 fluorescence and (2) the Cu
2+

-dependent quenching of 

intrinsic fluorescence in human PrP octarepeat-derived peptides. Nobel assays based on 

the quenching of Tb-fluorescence by interacting peptides emphasized the role of His-

ended peptides sharing X-X-H motif. The obtained data clearly supported the view that 

an intact X-X-H motif located at C-termini of peptides, is desirable as the site of metal 

chelation. In the case of human PrP’s octarepeat unit, P-Q-H motif rather than N-

terminal H-G-G-G-W motif was shown to be active in metal binding. 

Empirically, N-terminal His-started oligo-peptides derived from human PrP have 

been used as models for Cu-binding in earlier in vitro studies. These study suggested 

that the actual least motif in the octarepeats necessarily required for binding of Cu 

consists of 5 amino acids H-G-G-G-W (Burns et al., 2002) or 4 amino acids H-G-G-G 

(Bonomo et al., 2000).  

Interestingly, the role of His-started motif (H-G-G-G-W) was supported by the Cu-

dependent peptide fluorescence quenching assay (Inokuchi et al., 2012). Among the 

octapeptide sequences examined, the P-H-G-G-G-W-G-Q peptide was shown to be the 

most sensitive to the low Cu concentration although this sequence lacks the presence of 

intact metal-binding X-X-H motif. 
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Taken together, in the mammalian PrP octarepeat regions, in which P-H-G-G-G-W-

G-Q is repeated for four (human) to six (bovine) times, two distinct metal binding 

motifs, namely, X-X-H motif and H-G-G-G motif, could be overlaid by sharing 

common His residue and thus co-existed (Fig.3-6). 

 

Role of Tyr residue within human PrP, the likely target of catalysis 

Human PrP-derived catalytic model peptides all showed requirements for addition 

of aromatic substrates in order to produce O2
•-
 in the presence of H2O2 (Kawano, 2007; 

Kagenishi et al., 2011) while the studies with the Cu-binging motifs in plant OI-peptides 

and chicken PrP are strongly indicating that Tyr residues presented on the peptide 

chains are likely target of redox relay eventually converting H2O2 into O2
•-
 (Yokawa et 

al., 2010, 2011b). Since free Tyr (among the active phenolics examined) is a good 

substrates for human PrP-derived catalytic short peptides, we assume that the modes of 

catalytic actions among the plant-derived, chicken-derived and human-derived copper-

binding peptides described above may not differ much. 

In case of non-peptidic free Tyr given as a model substrate, the presence of 

phenolic moiety, but not the amino and carboxyl groups, was shown to be important in 

the interaction with Cu-bound PrP-derived peptide (Yokawa et al., 2009a). Therefore, it 

is tempting to testify if the Tyr residues flanking on peptidic chains or proteins function 

as putative targets of human PrP’s copper-binding motifs. 

In fact, human PrP possesses several Tyr-resides being exposed to the external 

media and events involving such Tyr residue may play a pivotal role in development of 

prion dementias, as recent reports suggested that helix H1 of human PrP and its two 

flanking loops (highly rich in Tyr residues) are subjected a transition into a β sheet-like 

structure during forced conformational conversion of the intrinsic cellular form of PrP 

(PrP
c
) into the scrapie form of PrP (PrP

sc
) (Bertho et al., 2008). By definition, 

conversion of the PrP
C
 into PrP

SC
 is a fundamental event observable upon onset of prion 

disease development. 



20 
 

Yokawa et al. (2009a) have reported an attempt to testify if the Tyr residues on 

PrP or derived peptides can be used as the substrate for a human PrP-derived Cu-bound 

catalytic peptide. In their experiments, the Cu-bound V-N-I-T-K-Q-H-T-V-T-T-T-T 

helical peptide was used as a model catalyst H2O2-dependently producing O2
•-
. On the 

other hand, the tested putative substrates include (1) tyrosyl-tyrosyl-arginine tripeptide 

(Y-Y-R) which appears twice in the PrP's Tyr-rich region (DYEDR-YYR-

ENMHRYPNQV-YYR-PMDEY) and (2) longer peptide sequences corresponding to 

the Tyr-rich region in human PrP (D-Y-E-D-R-Y-Y-R-E-N-M-H-R). 

Compared to free Tyr, Y-Y-R tripeptide was shown to be much more active in 

production of O2
•-
, confirming that both free form and peptide-integrated forms of Tyr 

can be recognized by the Cu-loaded catalytic peptide (Yokawa et al., 2009a). Although 

the reactivity of longer peptide sequences corresponding to the Tyr-rich region in 

human PrP (D-Y-E-D-R-Y-Y-R-E-N-M-H-R) was obviously lower than free Tyr, 

comparison with the Y-to-F substitution mutant (D-F-E-D-R-F-F-R-E-N-M-H-R) 

confirmed that Tyr-rich long peptides are favored for production of O2
•-
. These data 

suggest that the Tyr residues presenting on the intra- and inter-PrP molecules could be 

the target of the Cu-bound PrP-catalyzed reaction. 

 

Synthesis of novel metalloenzymes with peptides and their substrate preferences 

Among human PrP-related Cu-binding model peptides, the octarepeat unit (P-H-

G-G-G-W-G-Q) was shown to be active in aromatic monoamine (AMA)-dependent O2
•-
 

generation using phenylethylamine as model substrate (Kawano, 2007), by mimicking 

the plant AMA-utilizing enzymes sensitive to monoamine oxidase inhibitors (Kawano 

et al., 2000a). On the other hand, a helical motif V-N-I-T-K-Q-H-T-V-T-T-T-T 

undecapeptide and G-G-G-T-H pentapeptide, both derived from human PrP, showed 

negligible AMA-dependent activity while performing much greater phenol-dependent 

O2
•-
 generating activities (Kawano, 2007; Yokawa et al., 2009a; Kagenishi et al., 2011). 

Based on above knowledge, substrate specificity of novel metalloenzymes can be 

properly designed. Based on the results with PrP-derived peptides, our group has 

designed a series of novel peroxidative biocatalysts as discussed below. 
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By analogy to G-G-G-T-H, a phenol-oxidizing catalytic pentapeptide derived 

from human PrP, we have designed a series of simplified model peptides (GnH series 

peptides) which are composed of oligoglycyl chains ended with C-terminal His. To test 

the importance of the elongated N-terminal glycyl chain and anchoring His residue, both 

GnH series peptides varied in N-terminal glycyl chain length (n = 2, 3, 4, 5 and 10) and 

oligoglycyl peptides lacking His (Gn series) were synthesized. 

As expected, Gn series showed no catalytic activity since these sequence lack the 

motif for binding to catalytically important Cu
2+

. Within the GnH series, catalytic 

activity of the minimal Cu-binging motif (G2H tripeptide) was hardly detected despite 

the report by Okobira et al. (2011). Probably, in the Okobira model, in addition to G-G-

H sequence, supporting chains of glycidyl methacrylate on which G-G-H is grafted may 

playing a role similarly to N-terminal elongating oligo-Gly chain. In GnH series, G3H 

tetrapeptide showed a detectable increase in production of O2
•-
, confirming the 

importance of N-terminal Gly elongation. It can be generalized that the catalytic 

performance in GnH series can be ca. 3-fold enhanced by single amino acid elongation 

(addition of N-terminal Gly residue, allowing elongation from G2H to G3H, G3H to G4H, 

and G4H to G5H). However, further elongation from G5H hexapeptide to G10H 

undecapeptide resulted in only ca. 3-fold of enhancement suggesting that the 

requirement for the N-terminal elongation is nearly fulfilled. These data suggest that the 

presence of the C-terminal His is the primary requirement for catalytic performance, 

and N-terminal elongation contributes to the enhancement of the catalytic activity. 

Although involvement of Cu and generation of ROS are analogous to tyrosinase 

which oxidizes Tyr and polyphenols with concomitant release of O2
•-
 (Opazo et al., 

2003), the roles played by H2O2 are largely different in the GnH series metalloenzymes. 

While H2O2 is often regarded as an inhibitor of the tyrosinase reaction (Wood et al., 

1991), the GnH series metalloenzymes require the presence of H2O2 as co-substrate. On 

the other hand, plant peroxidases are shown to be active in generation of O2
•-
 upon 

oxidation of various phenolics and monoamines in the presence of H2O2 (Kawano, 

2003a; Kawano and Muto, 2000), suggesting that the modes of reactions catalyzed by 

PrP-derived peptides and artificial GnH series metalloenzymes are analogous to the 

modes of peroxidase reactions. 
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Among hydroxybenzoic acids (HBAs) and benzoic acid (BA), 2-HBA (salicylic 

acid) and BA were shown to be poor substrates for O2
•-
-generating reactions catalyzed 

by G-G-G-T-H pentapeptide and GnH series metalloenzymes (Kagenishi et al., 2011). 

In contrast, 3-HBA and 4-HBA were shown to be good substrates, suggesting that the 

presence of phenolic moieties with m- or p-positioned OH group is required for 

generation of O2
•-
, notably differed from the plant peroxidase which favors 2-HBA 

(Kawano et al., 1998). When dihydroxybenzoic acids (DHBAs) were used as model 

substrates, inutility of o-positioned OH group was also observed using 2,6-DHBA. 

However, PrP-derived peptides (G-G-G-T-H and V-N-I-T-K-Q-H-T-V-T-T-T-T), plant 

OI-peptides, and GnH series metalloenzymes showed O2
•-
 generating activity upon 

addition of other DHBAs with o-positioned OH (2,3-DHBA, 2,4-DHBA, and 2,5-

DHBA), indicating that the presence of o-positioned OH does not interfere with the 

roles for active OH groups at m- and p-positions (Yokawa et al., 2009a; Yokawa et al., 

2011b; Kagenishi et al., 2011). 

 

Organic catalyst-like biocatalysts 

Propositions (1) to (6), (12) are merely definitive. Predictions by propositions 

(7) to (9), of the cases of biocatalysts acting upon binding to catalytically active metals, 

such as copper-centered metallo-enzymes, peptides and nucleic acids, were examined 

and proven through discussion up to here, thus confirming the generalized proposition 

(9). 

     Contrary, our knowledge on the cases fulfilling the proposition (10) is yet to be 

covered.  

P(BCs) =  {BCs}  {OCs}   (10) 

As this proposition predict that there could be biocatalysts showing catalytic 

activity due to the action of guanidine-like or amino acid Pro-like catalytic domains 

without involvement of the action of metals. In addition, the model presented in a series 

of classical works by Kunitake and his colleagues on imidazole-containing enzyme-like 
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catalytic polymers could be also considered (Kunitake et al., 1969; Shinkai and 

Kunitake, 1975).  

Interestingly, Pro-containing octarepeat-peptides from human PrP shows self-

catalytic generation of O2
•-
, showing spiky CLA-CL upon mixture with media lacking 

metals. Since this phenomenon can be silenced by replacing Pro with other groups 

(Inokuchi et al., unpublished results), this topic may provide more clues to the 

development of OC-type BCs in the near future. 

Here, the author (Inokuchi) wishes to contribute to the course of developing a 

novel type of biocatalysts in which catalytic activities are conferred or modulated by the 

metal-binding motifs and proline-rich motifs in the natural protein-derived short 

peptides selected. Therefore, the present study could be the basis for further studies on 

the action of biochatalysts predicted by two propositions 

P(Es) =  {Es}  {ICs}   (7) 

P(BCs) =  {BCs}  {OCs}   (10) 

In the most works presented here, the author handled oligo-peptides sharing both 

or either proline-residue(s) and/or metal-binding motifs such as XXH motifs using 

fluorometric and chminometric approaches. 
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CHAPTER 3 

 

Fluorescence measurements revealed two distinct 

modes of metal binding by histidine-containing 

motifs in prion-derived peptides 
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3-1 Abstract 

 

PrPs are infectious agents causing transmissible spongiform encephalopathies in a 

misfolded protease-resistant form of protein. Human PrP possesses 7 potential copper-

binding sites. Notably, four of putative copper-binding sites are located in the octarepeat region 

(PrP 60-91). Recent studies have shown that peptides derived from human PrP 

effectively bind Cu
2+

 to form the Cu-centered catalytic complex required for generation 

of superoxide by coupling the oxidation of neurotransmitters and their analogues. In this 

study, we have studied the minimal motifs required for binding of metals within human 

PrP, by assessing (1) the peptide-dependent quenching of Tb
3+

 fluorescence and (2) the 

Cu
2+

-dependent quenching of intrinsic fluorescence in human PrP octarepeat-derived 

peptides. Assays with peptide-dependent quenching of Tb fluorescence supported the 

positive role for the His-ended X-X-H motif (in this case P-Q-H tripeptide sequence) 

rather than His-started H-G-G-G-W motif, as metal chelating motifs in short peptides. 

Controversially, the role of His-started motif was supported by the Cu-dependent 

peptide fluorescence quenching assay. Above data suggested that there are two distinct 

modes of metal binding to His residues in the octarepeat regions in PrP, possibly by co-

ordinations of His-started and His-ended motifs around the target metals depending on 

the conditions given. 

 

Keywords: Cu-binding, fluorescence, octarepeat, peptide, Prion 
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3-2 Introduction 

 

PrPs are infectious agents causing transmissible spongiform encephalopathies (TSE) in 

a misfolded protease-resistant form known as PrP
res 

(Jeffray et al., 2000). In general, the 

protease-sensitive form known as PrP
sen

 represents the intrinsic cellular PrP (PrP
C
) and 

PrP
res

 represents the infectious scrapie isoform of PrP (PrP
Sc

). 

Studies have shown that PrPs form a group of copper-binding proteins(Aronoff-Spencer 

et al., 2000; Burn et al., 2002). For an instance, human PrP has 7 potential copper-binding 

sites (Fig. 3-1). In the so-called “octarepeat” region (PrP 60-91) in human PrP, in which amino 

acid sequence “P-H-G-G-G-W-G-Q” repeatedly appears in tandem, each repeat unit possibly 

binds single Cu
2+

 at physiological neutral and basic range of pH (Bonomo et al.,2000; 

Shiraishi et al., 2000; Opazo et al., 2003). Similarly, bovine PrP sequence contains six 

octarepeats thus possessing at least six putative copper-binding sites with high affinity (Burn et 

al., 2002; Morante et al., 2004). In chicken, the copper-binding sites analogous to the 

octarepeats are known as hexa-repeats with each repeat consisting of H-N-P-G-Y-P sequence 

and here again His residues play a key role in anchoring of copper (Stanczak et al., 2004). 

Morante et al. (Morante et al., 2004) showed that partial occupancy of copper on bovine 

PrP is manifested by binding of copper to PrP in the intermolecular or inter-octarepeat 

orientations while total occupancy of copper is manifested by intra-repeat binding of copper to 

the octarepeat region. In vitro studies have shown that the actual least motif in the octarepeats 

necessarily required for binding of copper consists of 4 amino acids H-G-G-G (Bonomo et 

al.,2000) or 5 amino acids H-G-G-G-W (Burn et al., 2002).  

There are additional Cu-binding sites on PrP such as amino acid regions 92-96 (G-G-G-T-

H) (Burn et al., 2002), 124-126 (K-H-M) (Belosi et al., 2004) and 180-193 (V-N-I-T-K-Q-

H-T-V-T-T-T-T) (Brown et al., 2004). Importantly, all studies suggested that His residue in 

each region (or each repeat unit) plays a key role in anchoring the copper (Fig. 3-1b). 

Many metalloproteins behave both as oxidants and as antioxidants in biological systems 

(Rotilio et al., 2000; Vassallo and Herms, 2003; Rossi et al., 2004; Yokawa et al., 

2011a; Yokawa et al., 2011b). PrP-derived Cu-binding small peptides were shown to be 

active in both the enhancement of oxidative reactions targeting the cells and the protection of 
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biological components from the oxidative stress, both due to the metal-binding nature of the 

peptides, depending on the conditions given (Kawano, 2006; Kawano, 2007; Kawano, 

2011; Kagenishi et al., 2009; Kagenishi et al., 2011; Yokawa et al., 2009; Yokawa et al., 

2009; Yokawa et al., 2011d) . Therefore, the interaction between Cu
2+

 and PrP (binding of 

Cu
2+

) should be carefully monitored for further studying the modes of actions of PrP behaving 

as a metalloprotein. 

Accordingly (Jeffray et al., 2000; Safar et al., 2005 ) , several diagnostic 

approaches for detection of human prion disease based on the conformation-dependent 

immunoassay (CDI assay) were developed. These approaches aim to determine both the 

proteinase K-sensitive and resistant forms of PrP without the use of proteolytic 

digestion while all conventional immunoassays for PrP
Sc

 rely on the limited proteolysis 

to eliminate PrP
C
. Such CDI technique with enhanced sensitivity is based on the 

detection of PrP bound on microtitre plates using lanthanide-conjugated monoclonal 

antibodies(Safar et al., 2005; Bellon et al., 2003). The dissociation-enhanced lanthanide 

fluoro-immunoassay designated as DELFIA, utilizes the intrinsic fluorescence of 

specific lanthanides such as europium (Eu), samarium (Sm) and terbium (Tb). In 

DELFIA, the fluorescent signals for lanthanides are designed to be enhanced in the 

presence of the fluorescence-enhancing chelates. 

In some cases, the fluorescence of lanthanides could be largely altered without 

such chelates when reacting with metal-binding proteins or peptides. Thus, apart from 

DELFIA, fluorescent nature of lanthanides, chiefly of Tb
3+

, has been used for assessing 

the mode of metal binding to proteins and peptides since such ions of lanthanides mimic 

the behavior of copper, zinc, manganese and magnesium, and binds to proteins (Blandl 

et al., 1997). 

In this study, we have studied the minimal motifs required for binding of metals 

(chiefly copper) to the human PrP by assessing (1) the peptide-dependent quenching of 

Tb
3+

 fluorescence and (2) the copper-dependent quenching of intrinsic fluorescence in 

human PrP octarepeat-derived peptides.  
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3-3 Materials and Methods 

 

3-3-1 Peptides and Chemicals 

Peptides corresponding to Cu-binding sequence in PrP protein were synthesized to 

examine the behavior of such Cu-binding domains. The peptides were obtained from the 

custom peptide service department of Sigma Genosys Japan, Ishikari, Hokkaido, Japan. 

The amino acid sequences of the peptides chemically synthesized were purified on high 

pressure liquid chromatography prior to the experimental use.  

Other chemicals including terbium (III) chloride hexahydrate, used in this study 

were of reagent grade purchased from Wako Pure Chemical Industries Ltd. (Osaka, 

Japan). 

 

3-3-2 Fluorometric analysis 

Terbium (Tb)-dependent florescence and intrinsic fluorescence from the peptides 

and from amino acids were detected in phosphate buffered saline using a fluorescence 

spectrophotometer (F-4500 Hitachi High-Technol. Co., Tokyo) as described (Kawano, 

2006). The three-dimensional (3D) spectral measurement of fluorescence was carried 

out at the excitation wavelength between 200 and 600 nm with 5 nm intervals and 

emission wavelength between 200 and 600 nm with 5 nm intervals. 

In the phosphate-buffered medium, the actual concentrations of free Tb
3+

 after 

addition of mM orders of TbCl3 were expected to be as low as µM order due to 

interaction between phosphate and Tb ion. The observed Tb-fluorescence is likely due 

to free Tb
3+

, and thus quenching of Tb-fluorescence can be achieved by µM ranges of 

peptides or chelaters as previously described (Kawano, 2006). Here, quenching of Tb-

fluorescence by PrP-derived peptides was performed with 1 mM TbCl3 dissolved in 50 

mM potassium phosphate buffer (pH. 7.0) supplemented with and without peptides of 

interest (up to 30 µM). Intrinsic fluorescence in PrP-derived peptides and free amino 

acids up to 30 µM dissolved in 50 mM potassium phosphate buffer (pH. 7.0) were also 

assessed with a fluorescence spectrophotometer in the presence and absence of CuSO4. 



29 
 

 3-4 Results and Discussion 

 

3-4-1 Quenching of Tb-fluorescence by octarepeat peptides 

As previously reported (Kawano, 2006), free Tb
3+ 

showed the peaks of fluorescence 

with excitation wavelength at 224 nm and emission wavelengths at 545 nm and 585 nm 

(Fig. 3-2a). The Tb-dependent fluorescence was drastically lowered in the presence of 

peptides of octarepeat series confirming the metal binding nature of the peptides used 

(Fig. 3-2b-d). 

Due to fluorescent nature and similarity to behavior of Cu ion, Tb ion has been used 

as a model for studying the kinetic analysis of metallo-complex formation by short Cu-

binding peptides such as a 17 amino acid-sized conatntokin-G (Blandl et al., 1997). In 

the present study, the peptide ending with His residue (GGGWGQPH) showed highest 

activity for quenching of the Tb-fluorescence among eight different octapeptides tested 

(Fig. 3-2e).  

 

3-4-2 Peptides showed intrinsic fluorescence in the absence of Tb 

In the absence of fluorescent REE ions such as Tb
3+

, the PrP-derived peptides 

tested here showed intrinsic fluorescence (Fig. 3-3a). The fluorescent nature of 

octapeptide could be attributed to the presence of Trp residue. Among amino acids 

constituting the octarepeat, only tryptophan showed major (excitation at 280 nm, 

emission at 365 nm) and minor (excitation at 230 nm, emission at 365 nm) peaks of 

intrinsic fluorescence (Fig. 3-3b-g). Comparison of fluorescence between the Trp-

containing peptides and free Trp suggested that fluorescence by Trp is largely lower by 

conjugation with other amino acids. 

As expected, the PrP octarepeat-derived short peptides lacking Trp residue showed 

no fluorescence, further confirming the role of Trp residue for fluorescence (Fig. 3-4). 

Again, data suggested that Trp-residue is required for the fluorescent nature of the 

octarepeat peptides and that conjugation of longer chains to tryptophan lowers the 

intrinsic fluorescence. 
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3-4-3 Quenching of peptide fluorescence by copper 

As the characteristics of fluorescence which is intrinsic to the human PrP-derived 

octarepeat peptides were spectroscopically determined above, the impact of Cu-binding to the 

peptide on the yield of fluorescence was tested (Fig. 3-5). The intrinsic fluorescence in the 

octarepeat sequence-derived peptides and free tryptophan was shown to be quenched in 

the presence of excess of CuSO4. The presence of Cu
2+

 in the range of molar ratios 

(Cu
2+

/peptide) between ca. 0.2 and 1.0 showed linear decrease in fluorescence from the most 

peptides tested, suggesting that the mode of interaction between the PrP-derived peptide and 

metal ions can be optically monitored.  

Kinetic analysis revealed that fluorescence from the PrP octarepeat-derived 

octapeptides showed higher sensitivity to the presence of low concentration of Cu ion 

(Fig. 3-5). Among the octapeptide sequences tested, PHGGGWGQ peptide was shown 

to be most sensitive to the low Cu concentration although this sequence lack the 

presence of metal-binding motif X-X-H. In turn, the role or significance of another 

motif, namely, H-G-G-G-W was suggested. It must be noted that our discussion does 

not cover the behavior of shorter Cu binding motif H-G-G-G reported by Bonomo et al. 

(Bonomo et al.,2000). Since fluorometric analysis is based on the Trp-dependent fluorescence, 

Cu-mediated in the tetrapeptide HGGG could not be assessed by our approach. 

 

3-4-4 Two distinct metal-binding motifs overlaid in the PrP octarepeat region 

According to earlier studies, at least single His residue is required for binding of 

copper on PrP-derived peptides (Kawano, 2006; Kawano, 2007), and the catalytically 

active copper-binding motif within PrP-derived peptides was determined to be X-X-H 

(where X can be any amino acids followed by His) (Yokawa et al., 2011a; Kagenishi et 

al., 2009). Furthermore, our demonstrations have shown that the PrP-derived and related 

short peptides ended with X-X-H motif, effectively bind Cu in the biological media and 

thus prevent the damaging impacts of Cu ions against DNA degradation (Yokawa et al., 

2011d) and living plant cells (Kagenishi et al., 2009). Okobira et al. (Okobira et al., 

2011) has demonstrated that Cu-binding peptides with the X-X-H motif conjugated to 

organic materials could form a novel class of bioengineering tools. Accordingly, a 
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tripeptide, glycyl-glycyl-histidine (G-G-H, one of X-X-H motif derivatives) as Cu-

binding domain, was introduced onto the glycidyl methacrylate-grafted porous hollow 

fiber membrane made on the polyethylene platform by radiation-induced graft 

polymerization.  

On the other hand, N-terminal His-started oligo-peptides were also used as model 

for Cu-binding in earlier in vitro studies describing that the actual least motif in the 

octarepeats necessarily required for binding of Cu consists of 5 amino acids H-G-G-G-

W (Burn et al., 2002) or 4 amino acids H-G-G-G (Bonomo et al.,2000). Therefore, in 

the mammalian PrP octarepeat regions, in which PHGGGWGQ is repeated for four 

(human) to six (bovine) times, both metal binding motifs could be overlaid by sharing 

common His residue and thus co-existed.  

Our fluorescent assay with Tb-fluorescence quenching supported the positive role 

of His-ended peptides. The obtained data clearly supported the view that the peptides 

sharing an intact X-X-H motif (in this case PQH motif) located at C-termini rather than 

N-terminal H-G-G-G-W motif, is desirable as metal chelating peptides. 

Controversially, the role of His-started motif (H-G-G-G-W) was supported by the 

Cu-dependent peptide fluorescence quenching assay. Among the octapeptide sequences 

examined, the PHGGGWGQ peptide was shown to be the most sensitive to the low Cu 

concentration although this sequence lacks the presence of intact metal-binding X-X-H 

motif. 

The present study suggested that there are two distinct modes of metal binding to 

His residues in the octarepeat regions in mammalian PrP, possibly by co-ordinations of 

His-ended motif (Fig. 3-6a) or His-started motif (Fig. 3-6b) around the target metals 

depending on the conditions given. The proposed two-motif model must be further 

testified by future experiments.  
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Fig. 3-1. The Cu-binding site and Cu-binding model of PrP. (a) Cu-binding site in PrP. 

(b) Amino acid sequence of octarepeat peptide. (c) Likely structure of peptide (QPH)-

Cu complex. 
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Fig. 3-2. PrP-dependet quenching of fluorescence in Tb solution. Typical 3D 

representations (contour plot) of the Tb-fluorescence spectra in the presence and 

absence of PrP-derived octapeptides are shown in (a) Tb alone, (b) Tb and 

PHGGGWGQ, (c) Tb and GGGWGQPH, and (d) Tb and GQPHGGGW. (e) Effects of 

eight different peptide sequences found in PrP octarepeat region on quenching of Tb-

fluorescence are compared.  
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Fig. 3-3. Intrinsic fluorescence in octarepeat peptide and free amino acids.  

Typical 3D-representations (contour plot) of the Peptide-FL and W-FL are shown. 

Typical results for octapeptide PHGGGWGQ (a), free proline (b), free histidine (c), free 

glycine (d), free tryptophane (e), free glutamine (f), and mixture of five amino acids (g). 

Concentration of the octapeptide and free proline, histidine, tryptophane, and glutamine 

were 30 µM. Concentrations of free glycine was 30 µM (d) or 90 µM (g). 
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Fig. 3-4. Comparison of intrinsic fluorescence in PrP octarepeat-derived short peptides. 

(a) Octapeptide PHGGGWGQ, (b) tetrapeptide PHGG, (c) hexapeptide GGGWGQ,  (d) 

tripeptide WGQ. 
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Fig. 3-5. In the presence of 30 μM peptides or tryptophan, fluorescence quenching 

action of copper at various concentrations (up to 30 μM) was examined. 
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Fig. 3-6. Proposed involvement of overlapped two distinct motifs in the octarepeat region  

in binding to metal cations. (a) X-X-H motif (Yokawa et al.,2011; Kawano T, 2006;  

Kagenishi et al., 2009) suggested to bind Tb in the Tb-fluorescence assay. (b) H-G-G- 

G-W motif (Burns et al., 2002) suggested to bind Cu in the peptide-fluorescence assay.  

M
2+

, metal cations. 
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CHAPTER 4 

 

Fluorescent monitoring of copper-occupancy in 

His-ended catalytic oligo-peptides 
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4-1 Abstract 

 

Controlled generation of reactive oxygen species (ROS) is widely beneficial to 

various medical, environmental, and agricultural studies. As inspired by the functional 

motifs in natural proteins, our group has been engaged in development of catalytically 

active oligo-peptides as minimum-sized metalloenzymes for generation of superoxide 

anion, an active member of ROS. In such candidate molecules, catalytically active 

metal-binding minimal motif was determined to be X-X-H, where X can be most amino 

acids followed by His. Based on above knowledge, we have designed a series of 

minimal copper-binding peptides designated as GnH series peptides, which are 

composed of oligo-glycyl chains ended with C-terminal His residue such as GGGGGH 

sequence (G5H). In order to further study the role of copper binding to the peptidic 

catalysts sharing the X-X-H motif such as G5H-conjugated peptides, we should be able 

to score the occupancy of the peptide population by copper ion in the reaction mixture. 

Here, model peptides with Cu-binding affinity which show intrinsic fluorescence due to 

tyrosyl residue (Y) in the UV region (excitation at ca. 230 and 280 nm, and emission at 

ca. 320 nm) were synthesized to score the effect of copper occupancy. Synthesized 

peptides include GFP-derived fluorophore sequence, TFSYGVQ (designated as Gfp), 

and Gfp sequence fused to C-terminal G5H (Gfp-G5H). In addition, two Y-containing 

tri-peptides derived from natural GFP fluorophores, namely, TYG and SYG were fused 

to the G5H (TYG-G5H and SYG-G5H). Conjugation of metal-binding G5H sequence 

to GFP-fluorophore peptide enhanced the action of Cu
2+

 on quenching of intrinsic 

fluorescence due to Y residue. Two other Y-containing peptides, TYG-G5H and SYG-

G5H, also showed intrinsic fluorescence which are sensitive to addition of Cu
2+

. There 

was linear relationship between the loading of Cu
2+

 and quenching of fluorescence in 

these peptides was observed suggesting that Cu
2+

-dependent quenching of Y-reside-

derived fluorescence could be a measure of copper occupancy in the peptides. Lastly, 

the fate of Y residue in the Cu-loaded peptides under oxidative condition in the presence 

of H2O2 was discussed based on the Cu/H2O2-dependent changes in fluorescence 

spectra. 
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4-2 Introduction 

 

Controlled generation of reactive oxygen species (ROS) is widely beneficial to 

various medical, environmental engineering, and agricultural fields including clinically 

applied immunological modulations (Bogdan et al. 2000; Folkes et al., 2002), 

degradation of polluting organic compounds (Werner et al., 2005), inactivation of 

bacterial cells for the hygienic purpose (Laroussi and Leipold, 2004), activated sludge 

process (Sakai et al., 1997), and direct and indirect agricultural pest controls targeting 

pathogens and host plants, respectively (Yoshioka et al., 2008; Kawano and Bouteau, 

2013). 

In the last decade, our group has been engaged in development a novel classes of 

engineered biocatalysts including catalytic oligonucleotides (functional DNA 

sequences; Iwase et al., 2014) and peptides (Kagenishi et al., 2011), designed to 

catalyze the production and/or removal superoxide anion radicals (O2
•-
) through 

understanding and modification of natural catalytic proteins and of animal and plant 

origins. 

For examples, we found that peptides derived from human and mammalian PrPs 

(Kawano, 2007; Yokawa et al., 2009a,b) and plant stress-responsive peptides (Yokawa 

et al., 2011a) have catalytic nature although they are not considered as enzymes at 

present. Actually, the kingdoms of plants and animals are rich in such small peptides 

with high affinity to metal ions which might aid in catalysis. By mimicking such natural 

peptide, novel series of minimal-sized oligo-peptidic artificial enzymes catalyzing the 

generation of O2
•-
 in peroxidase-like manner requiring hydrogen peroxide (H2O2) and 

electron donating substrates such as phenolics or amines were developed (Kagenishi et 

al., 2011; Okobira et al., 2011).
 

The first criterion for consisting such minimal peroxidase-like small peptides is the 

presence of His-containing motif(s) required for binding to metals (chiefly copper), and 

then, free-form and/or peptide-bound form of substrates fuels the reaction (Yokawa et 

al., 2011d). Our preliminary studies on PrP-derived peptides have pointed that His 

residues (at least single His) are required for anchoring of Cu onto PrP-derived peptides 
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(Kawano, 2006, 2007), and eventually, the catalytically active Cu-binding minimal 

motif was determined to be tri-peptidic sequence X-X-H, where X can be most amino 

acids followed by His (Kagenishi et al., 2009; Yokawa et al., 2011d). An engineering 

example of a catalytic peptide sequence sharing XXH motif for development of 

biosensing and bioengineering materials was reported (Okobira et al., 2011). 

Accordingly, one of X-X-H motif derivatives, Gly-Gly-His (G-G-H) sequence was 

introduced onto the glycidyl methacrylate-grafted on the polyethylene platform (porous 

hollow fiber membrane). Chemiluminescence assay reveled that loading of Cu
2+

 on the 

peptide-conjugated membrane conferred the catalytic activity to it, thus, catalyzing the 

generation of O2
•-
 upon addition of a pair of substrates (H2O2 and tyramine). 

In human PrP, His96 centered in G-G-G-T-H-S-Q-W-N sequences is considered 

as one of Cu-binding sites. Effect of His position on the catalytic activity in PrP-derived 

peptides were examined by comparing the H-S-Q-W-N (His-started pentapeptide) and 

the G-G-G-T-H (His-ended pentapeptide) (Kagenishi et al., 2011). While reaction with 

tyramine (given as a model phenolic substrate) and G-G-G-T-H peptide resulted in 

robust production of O2
•-
, the H-S-Q-W-N peptide showed no catalytic activity, 

suggesting that G-T-H motif within the His-ended pentapeptide is one of X-X-H motif 

derivatives. As the catalytic activities among G-G-G-T-H and shorter derivatives (G-G-

T-H and G-T-H) were compared and the importance of the N-terminal glycyl-chain 

elongation for maximal redox activity in C-terminal His anchored peptides was implied 

(Kagenishi et al., 2011). Furthermore, the likely common structure formed by Cu/X-X-

X motif complex found in Cu-binding motifs in human PrP including octarepeat region 

(Inokuchi et al., 2012), helical region (Yokawa et al., 2011b), neurotoxic region 

(Kagenishi et al., 2009) was proposed to be semi-planar shape resembling the structure 

of metal-centered heme in which metallic element is coordinated by planarly arranged 

four nitrogen atoms, by analogy to the structure of Ni/X-X-H metallopeptides (Fang et 

al., 2004, 2006). 

As inspired by the natural PrP-derived G-G-G-T-H sequence, we have designed a 

series of simplified model peptides designated as GnH series peptides, which are 

composed of oligo-glycyl chains (Gn) ended with C-terminal His residue (Kagenishi et 

al., 2011). As expected, importance of the elongated N-terminal Gn chain with 
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anchoring His was confirmed by comparing the GnH series peptides (n = 2, 3, 4, 5 and 

10) and Gn series peptides lacking His. Notably, Gn series lacking the metal-binding 

motif showed no catalytic activity even in the presence of free Cu
2+

. In GnH series, G3H 

tetrapeptide showed a detectable increase in production of O2
•-
, and peptides with longer 

chain showed higher activity, confirming the importance of N-terminal Gn chain length. 

Data suggested that the requirement for the N-terminal Gn elongation is nearly fulfilled 

at between G5 and G10 (Kagenishi et al., 2011), and amazingly, unlikely to conventional 

enzymes, the catalytic activity in these metal-binding peptides survive the heating 

treatment such as autoclaving and the repeated freeze and thaw cycles (Yokawa et al., 

2009b).  

Fluorometry often provides strong approaches for studying the molecular 

interaction. Inokuchi et al. (2012) assessed (1) the quenching of Tb
3+

 fluorescence by 

PrP-derived metal-binging peptides and (2) the Cu
2+

-dependent quenching of intrinsic 

fluorescence in human PrP octarepeat peptide sequence. Quenching of Tb-fluorescence 

by interacting peptides implied the important role for His-ended peptidic sequence 

sharing X-X-H motif (in case of human PrP’s octarepeat region, P-Q-H). On the other 

hand, quenching of intrinsic peptide fluorescence due to the presence of a tryptophan 

(W) residue by cupper ion suggested that classically known H-G-G-G motif in PrP 

(Burns et al., 2002) forms an active motif in metal binding. Taken together, in the 

mammalian PrP octarepeat regions, in which P-H-G-G-G-W-G-Q is repeated for four 

(human) to six (bovine) times, two distinct metal binding motifs, namely, X-X-H motif 

and H-G-G-G motif, could be overlaid by sharing common His residue and thus co-

existed (Inokuchi et al., 2012). 

In order to further study the role of copper binding to the biocatalysts sharing the 

X-X-H motif such as GnH series catalytic peptides, we should be able to score the 

occupancy of the peptide population by copper ion in the reaction mixture. In the 

present study, we attempted to monitor the binding of copper to GnH catalytic peptides 

by designing the chimeric molecule fusing fluorescent oligo-peptide sequence derived 

from green fluorescence protein (GFP) and G5H sequence. 



44 
 

4-3 Materials and Methods 

 

4-3-1 Peptides and Chemicals 

Model peptides with Cu-binding affinity which show intrinsic fluorescence in the 

UV region were synthesized to score the effect of copper occupancy. The peptides were 

obtained from the custom peptide service department of Sigma Genosys Japan, Ishikari, 

Hokkaido, Japan. The amino acid sequences of the peptides chemically synthesized 

were purified on high pressure liquid chromatography prior to the experimental use. 

Other chemicals such as CuSO4 and salts for buffer used in this study were of reagent 

grade purchased from Wako Pure Chemical Industries Ltd. (Osaka, Japan). 

Synthesized peptides include GFP-derived fluorophore sequence, TFSYGVQ 

(designated as Gfp), and Gfp sequence fused to GGGGGH, thus, designated as Gfp-

G5H. Note that the synthesized peptide sequences corresponding to GFP fluorophore do 

not show green fluorescence without post-translational process for developing the 

molecular rigidity in living cells. Instead, intrinsic fluorescence due to presence of the 

tyrosyl residue (Y) can be expected. Therefore, two Y-containing tri-peptide sequences 

found in natural GFP fluorophores, namely, TYG and SYG were fused to the Cu-

binding GGGGGH sequence (thus, designated as TYG-G5H and SYG-G5H, 

respectively). 

 

4-3-2 Fluorometric analysis 

Intrinsic fluorescence from the 30 µM peptides with and without loading of copper 

ions were detected in potassium phosphate buffer (50 mM, pH 7.0) using a fluorescence 

spectrophotometer (F-4500 Hitachi High-Technol. Co., Tokyo). The three-dimensional 

(3D) spectral measurement of fluorescence was carried out at the excitation wavelength 

between 200 and 700 nm with 5 nm intervals and emission wavelength between 200 

and 700 nm with 5 nm intervals. 
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4-4 Results and Discussion 

 

4-4-1 Enhanced Cu
2+

-dependent changes in intrinsic fluorescence spectra of a GFP-

fluorophore peptide conjugated with metal binding sequence 

GFP fluorophore-derived peptides tested here showed non-green intrinsic 

fluorescence at UV region (Fig. 4-1). Upon excitation at excitation at 230 nm (peak a) 

and 280 nm (peak b), both Gfp-G5H (TFSYGVQ-GGGGGH) and Gfp (TFSYGVQ) 

showed fluorescence emission at around 320 nm. Fluorescence signals at the peak a 

(230 nm excitation/320 nm emission) by 30 μM Gfp-G5H and Gfp showed tendency to 

be quenched in the presence of 30 μM Cu
2+

 by 61.6 % and 32.0 %, respectively. Under 

the same conditions, the fluorescence signals at the peak b (280 nm excitation/320 nm 

emission) by Gfp-G5H and Gfp showed Cu
2+

-dependent quench by 48.5 % and 22.7 %, 

respectively. These data suggested that G5H-conjugated peptide showed twice greater 

sensitivity to addition of CuSO4. Therefore, we can expect that Cu-dependent quenching 

of UVC-excited UVA fluorescence by Gfp-G5H can be used as a measure of Cu-

occupancy in G5H domain. 

 

4-4-2 Intrinsic fluorescence in tyrosine-containing peptides showed sensitivity to Cu 

The intrinsic fluorescence signals (the peaks a and b) from the three G5H-

conjugated GFP-derived peptides (30 μM of Gfp-G5H, TYG-G5H, and SYG-G5H) 

plotted on 3-dimentional contour graphs were compared. Data showed that the intrinsic 

fluorescence by all peptides can be quenched in the presence of CuSO4 (10, 25 and 100 

μM; Fig. 4-2). Among three peptides examined, SYG-G5H was most sensitive to lower 

range of CuSO4 concentration (10 μM, molar ratio to peptide: ca. 0.17-0.33). The 

fluorescent signals from TYG-G5H also showed higher sensitivity to Cu as compared to 

the signals from Gfp-G5H. 
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4-4-3 Linear relationship between loading of Cu
2+

 and quenching of fluorescence 

Among three peptides examined, only Gfp-G5H showed linear decrease in 

fluorescent signal along with occupancy with cupper in the range between 0.17 and 1.33 

of molar ratios of Cu
2+

 over peptide (Fig. 4-3 and 4). Note that within this range of 

copper concentration, the squared correlation coefficients (r
2
)

 
for Cu-dependent 

quenching of fluorescence signals at the peaks a and b in Gfp-G5H were 0.982 and 

0.989, respectively (Fig. 4-3 and 4, insets). 

On the other hand, r
2 
for Cu-dependent quenching of fluorescence signals by TYG-

G5H and SYG-G5H ranged at relatively low scores between 0.700 and 0.906 (Fig. 4-3 

and 4, insets). Therefore, we could conclude that the kinetics reported by Gfp-

conjugated G5H peptide is most proportional to the copper occupancy in G5H sequence.  

Previously, catalytic nature of G5H hexapeptide was assessed (Kagenishi et al., 

2011). It has been shown that catalytic activity in G5H peptide requires the binding of 

copper to it. Furthermore, Michaelis constant (Km) for O2
•-
 production using tyramine as 

a model substrate for Cu/G5H complex (0.15 mM) was determined to be 0.24 mM. 

Then, Vmax at molar basis and weight basis were determined to be 52.91 mmol (O2
•-
) 

mmol (peptide)
-1

 min
-1

 and 0.12 mmol (O2
•-
) mg (peptide)

-1
 min

-1
, respectively 

(Kagenishi et al., 2011). With molar-basis comparison, the catalytic activity looks week, 

however, due to its low molecular weight characteristics, weight-basis comparison of 

the catalytic activity reaches applicable range which is almost 1/6 of purified 

horseradish peroxidase (Kagenishi et al., 2011). It is obvious that this type of approach 

for creating heat-stable biocatalysts require further innovation. Therefore, we expect 

that the use of Gfp-fused G5H peptide for quantification of Cu-binding to G5H motif 

may contribute to further engineering of the GnH-based catalytic peptides. 

 

4-4-4 Fate of tyrosine residue after oxidative reaction 

Up to here we mostly discussed the role of His-ended metal binding motif in novel 

class of catalytic peptides with aid by fluorescent signal which could be attributed to the 
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presence of Tyr residue. We view that Tyr residue has an additional important role in 

designing the peptidic O2
•-
-generating catalysts (Kawano, 2011). 

Reportedly, supplementation of structurally similar free catecholamine-related 

chemicals (tyramine or phenylethylamine), a free amino acid Tyr (Y), or Tyr-rich 

oligopeptides (such as tyrosyl-tyrosyl-arginine, YYR) as model substrates (instead of 

typical peroxidase substrates such as phenolics or amines) to the reaction mixture 

containing Cu-bound peptides sharing X-X-H motif such as Cu/VNITKQHTVTTTT 

(helical Cu-binding motif in mammalian PrP; Yokawa et al., 2009), Cu/GGGTH (short 

Cu-binding motif in human PrP; Kawano, 2007), Cu/GGGGGH (artificial catalyst; 

Kagenishi et al., 2011), Cu/GGGFGH (Yokawa et al., 2011a), or Cu/ NPGFPH 

(Yokawa et al., 2010) resulted in H2O2-dependent O2
•-
-generation. Notably, Y residue-

containing peptides with X-X-H motif including Cu/GGGYGH (plant ozone-inducible 

peptide sequence; Yokawa et al., 2011a), Cu/NPGYPH (chicken PrP hexa-repeat 

sequence; Yokawa et al., 2010), and Cu/FLTEYVA-GGGGGH (Erk1/Erk2 MAP kinase 

substrate sequence fused with metal binding sequence designated as ErkG5H; Kawano, 

2011) showed catalytic activity for H2O2-dependent O2
•-
 generation without 

supplementation of any free phenolic substrates. These knowledges suggest that Y-

residue mimics the role for free phenolics in H2O2-dependent O2
•-
 generating reactions. 

The above view was supported by Y-to-F mutation in chicken PrP sequence 

(Yokawa et al., 2009) and plant ozone-inducible peptide sequence (Yokawa et al., 

2011a), by which Phe residues on catalytic peptides were replaced with Tyr residues. 

The difference was merely the presence and absence of the OH group on the aromatic 

ring. Moreover, masking of Y-residue (at OH group) in ErkG5H through tyrosyl 

phosphorylation in Erk1/Erk2 MAP kinase substrate moiety of ErkG5H peptide was 

performed, and catalytic activity for H2O2-dependent O2
•-
 generation was largely lost in 

the resultant Y-phosphorylated peptide (Kawano, 2011). To date, ErkG5H is the only 

artificial catalyst which can be attenuated by phosphorylation event. 

Involvement of free Y or Y residue in the Cu/peptide complex-catalyzed H2O2-

dependent generation of O2
•-
 suggests that a phenoxy radical derived from Y (tyrosyl 

radical, Y
•
) can be formed in aid of single electron reduction of molecular oxygen, by 
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analogy to plant enzymes H2O2-dependently generating O2
•-
 by coupling to oxidation of 

phenolics (such as salicylic acid) to form phenoxy radicals (Kawano et al., 1998; 

Kawano and Muto, 2000). 

There would be two distinct models for the fate of Y residue in model Cu/peptide 

complex. One likely model is that Y-residue is simply consumed and oxidized by the 

Cu-bound catalytic center in the presence of H2O2 as observed for various free 

phenolics (Kagenishi et al., 2011). Another likely model is that Y residue lasts longer by 

repeatedly participating the reaction as shuttle for transferring electron, by analogy to 

the putative intra-molecular substrate-like roles for Y residues within ribonucleotide 

reductases (Boal et al., 2010) and cyclooxygenase-2 (Li et al., 2010), in which 

corresponding reactions proceed via transient formation of Y
•
 and recycling of Y. 

To obtain a clue to this view, we examined the fate of Y-dependent fluorescence 

in Gfp-G5H, TYG-G5H, and SYG-G5H peptides after addition of Cu and H2O2 (Fig. 4-

5). Ratio of H2O2 concentration (1 mM) over Cu/peptide concentration (30 μM) was set 

at excess level since higher range of H2O2 concentration has been employed in the 

previous studies using G5H-based catalysts. 

Addition of copper to three peptides largely lowered the fluorescence signals as 

described earlier in this report. Addition of H2O2 to SYG-G5H lowered the fluorescence 

signals. Contrary, addition of H2O2 enhanced the fluorescence at both peaks a and b in 

TYG-G5H and the peak a in Gfp-G5H. The reason why two peaks of Y fluorescence in 

different peptides showed different sensitivity to H2O2 should be attributed to the fact 

that even a monomer of phenolic compound often possesses multiple fluorophores 

within the molecule despite its simple structure as in the case of ferulic acid (Djikanović 

et al., 2007). 

To combination of Cu and H2O2, three peptides responded differently. Response 

to Cu/H2O2 co-treatment in Gfp-G5H was almost identical to the response to Cu alone. 

Changes in SYG-G5H was less obvious. The fluorescence intensities at 230 nm 

excitation/320 nm emission and 280 nm excitation/320 nm emission corresponding to 

the peaks a and b in Cu/H2O2 co-treated TYG-G5H were seemed to be maintained at 

higher level compared to control. Note that the peak excitation wavelength at peak b 
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fluorescence slightly shifted from 280 to 290 nm, therefore the product of peptide-

catalyzed redox reaction challenging Y-residue under Cu/H2O2 co-treatment must be 

no-longer intact Y residue. The case in TYG-G5H suggest that after possible formation 

of Y
•
 via Cu/peptide-catalyzed H2O2-dependent reaction, recycling of Y did not 

sufficiently occurred thus spectral changes (shift in the excitation peak) was observed. 
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Fig.4-1. Different quenching action of copper ion against intrinsic tyrosine fluorescence  

in GFP-derived fluorophore sequence with and without fusing to copper binging  

sequence hexapeptide. Peptides (30 μM) used were Gfp-G5H (TFSYGVQ-GGGGGH)  

and Gfp (TFSYGVQ). Peaks of tyrosine fluorescence (emission at ca. 320 nm) were  

observed with excitation at 230 nm (a) and 280 nm (b). Quenching of fluorescence in  

the presence of 30 μM CuSO4 was assessed. 
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Fig. 4-2. Effect of copper ion on quenching of intrinsic fluorescence signals by three  

GFP fluorophore-derived oligo-peptides conjugated with copper-binding hexapeptide  

motif. Peptides (30 μM) used were Gfp-G5H (TFSYGVQ-GGGGGH), TYG-G5H  

(TYG-GGGGGH), and SYG-G5H (SYG-GGGGGH). In the absence of CuSO4, two  

typical peaks of tyrosine fluorescence (emission at ca. 320 nm) were observed with  

excitation at 230 nm (a) and 280 nm (b). Quenching of fluorescence in the presence of  

10, 25 and 100 μM CuSO4 was assessed. 
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Fig. 4-3. Effect of copper concentration on quenching of 230 nm excitation/320 nm  

emission signals by three G5H-conjugated GFP fluorophore-derived oligo-peptides.  

Peptides (30 μM) used were as in Figure 2. Quenching of fluorescence was performed  

with 5-100 and 100 μM CuSO4 was assessed. Three different symbols represent the data  

points obtained. Curves were merely approximation of the response (note that they are  

not regression curves). In the inset, linear relationships between the remitted range of  

Cu concentration (up to 40 μM) and the decrease in peptidic fluorescent signals are  

shown. 
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Fig. 4-4. Effect of copper concentration on quenching of 280 nm excitation/320 nm  

emission signals by three G5H-conjugated GFP fluorophore-derived oligo-peptides.  

Peptides (30 μM) used were as in Figure 2. Quenching of fluorescence was performed  

as in Figure 3. In the inset, linear relationships between the remitted range of Cu  

concentration (up to 40 μM) and the decrease in peptidic fluorescent signals are shown. 
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Fig. 4-5. Changes in UV-excited fluorescence contour spectra in three peptides after  

addition of copper and/or excess hydrogen peroxide. Peptides used were as in Figure 2,  

namely Gfp-G5H, TYG-G5H and SYG-G5H. Each peptide (30 μM) was treated with  

none, either or both of CuSO4 (30 μM) or/and H2O2 (1 mM). Numbers after (a) and (b)  

shown with each spectrum represent the relative changes in fluorescence intensities at  

peaks a (230 nm excitation/320 nm emission) and b (280 nm excitation/320 nm  

emission), respectively. 
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CHAPTER 5 

 

Monitoring of Copper Loading to Cationic 

Histidine-rich Short Salivary Polypeptides, 

Histatins 5 and 8, Based on the Quenching of 

Copper-sensitive Intrinsic Red Fluorescence 
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5-1 Abstract 

 

Recent studies identified nearly 100 of high abundance salivary proteins/peptides, 

including a group of cationic histidine-rich short polypeptides known as histatins (Hsts). 

The most recognized roles for Hsts are anti-microbial activities, and the modes of action 

of Hsts (chiefly, Hst-5 and 8) have been subjected to intense debates. Since Hst-5 and 8 

possess metal-binding motifs, analysis of Cu occupancy in Hsts is of great importance. 

Here, we conducted two distinct fluorescence-based assays, namely, the Hst-dependent 

quenching of Tb
3+

-fluorescence and the Cu
2+

-dependent quenching of intrinsic red 

fluorescence in Hsts. Notably, Cu-sensitive intrinsic red fluorescence from Hsts is 

documented for the first time. In addition, novel catalytic activities in Cu-loaded Hsts 

were demonstrated. Upon addition of H2O2, both Hsts catalyzed the generation of 

superoxide. The present study may provide key technical knowledge required for 

development of non-invasive fluorometric and chemiluminometric monitoring of metal 

binding to the peptides of interest. 

 

Key words: Copper occupancy, Fluorescence quenching, Metal-binding motif, Peptide 

 

Abbreviations: ATCUN, amino-terminal Cu/Ni binding motif; AU, arbitrary units; CL, 

chemiluminescence; FL, fluorescence; Hst-5, histatin 5; Hst-8, histatin 8; Hsts, 

histatins; ROS, reactive oxygen species. 
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5-2 Introduction 

 

Saliva is a glandular secretion that is vital in the maintenance of healthy oral 

tissues (Huq et al., 2007). Recent proteomic and peptidomic studies have reported the 

identification of over 1,300 proteins and peptides in human saliva, including nearly 100 

of high abundance salivary proteins/peptides (Huq et al., 2007). Historically, several 

research groups have documented the existence of a group of cationic histidine-rich 

short polypeptides which are now recognized as human salivary histatins (Hsts) (Bonilla, 

1969; Azen, 1972; Holbrook and Molan, 1975; Baum et al., 1976 ). The most 

recognized biological functions proposed for Hsts are bactericidal action against 

Streptococcus mutans (MacKay et al., 1984)  and antifungal activities against 

opportunistic yeast Candida albicans (Yoshida et al., 2001; Tsai, 1998), and 

Cryptococcus neoformans (Tsai et al., 1996), and are therefore potential therapeutic 

reagents against Candida species. Actions by Hsts are now considered as the first line of 

defense (primordial mechanism of immunity commonly observed in vertebrate and 

nonvertebrate organisms) against oral candidiasis caused by Candida albicans (Melino 

et al., 2014; Puri et al., 2015). Accordingly, fungal cells are killed by Hsts through their 

binding to the cell membrane and their internalizing, eventually disrupting the cellular 

volume regulatory mechanisms and mitochondrial function (Yoshida et al., 2001). As a 

consequence, production of reactive oxygen species (ROS) and non-lytic cell death. 

Among salivary peptides, histatin 5 (Hst-5) consisted of 24 amino acids 

(DSHAKRHHGYKRKFHEKHHSHRGY), is the most potent molecule with regard to 

its fungicidal activity towards C. albicans(Puri et al., 2015; Pauri and Edgerton, 2014 ). 

Therefore, its use as a therapeutic reagent against Candida species is highly expected 

(Yoshida et al., 2001). In the C-terminal half of Hst-5, a sequence of a dozen amino 

acids (KFHEKHHSHRGY) corresponding to full sequence in histatin 8 (Hst-8) is 

conserved. Hst-8 is kwon to serve as hemagglutination-inhibiting peptide (Yoshida et al., 

2001). A study using truncated fragments of Hst-8 revealed that last tripeptide (RGY) 

could be involved in effective inhibition of hemagglutination by Porphyromonas 

gingivalis (Murakami et al., 1992). In addition to the above listed effects of Hst-5 and 
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Hst-8 against oral pathogens, the effect of Hsts on mammalian host immune systems 

has also been studied (Yoshida et al., 2001). Reportedly, in the wide range of 

concentration spanning from nM to sub-mM, both Hst-5 and Hst-8 (with lesser extent) 

induce the release of histamine from rat peritoneal mast cells in a dose-dependent 

manner.  

The mode of action of Hsts (chiefly, Hst-5) has been a subject of intense debate 

(Pauri and Edgerton, 2014). While most of classical host innate immune proteins act by 

membrane lysis or pore formation on microbial plasma membrane, the Hst-5 likely 

targets multiple proteins inside the microbial cells. In case of fungicidal action against C. 

albicans, Hit 5 firstly binds to fungal cell wall proteins (Ssa1/2) and glycans, then, Hst-

5 is actively internalized (in an energy-dependent manner) by C. albicans cells with 

involvement of the polyamine transporters (Pauri and Edgerton, 2014; Murakami et al., 

1992; Li et al., 2003).Once entering inside the fungal cells, Hst-5 may cause 

dysfunction in mitochondria, thus, leading to oxidative burst releasing ROS. Note that 

the last straw for dying fungal cells is osmotic stress accompanying the volume 

dysregulation and ion imbalance triggered (Vylkova et al., 2007). 

Many predicted that His-residue-mediated high affinity to metals in Hst members 

could provide clues to understand the mechanism of Hst actions. In fact, Hst-5 binds 

various metals in saliva, viz., Zn, Cu, Ni (Pauri and Edgerton, 2014), and Fe (Puri et al., 

2015). It has been proposed that the metal binding by Hst-5 would be much more 

significant under limitation of nutrients as the metal binding by Hst-5 could potentially 

further limit the essential metals needed for microbial growth (Pauri and Edgerton, 

2014). Apart from such a passive mechanism, metal-loaded Hst-5 may have active roles. 

As shown in Fig. 1, Hst-5 possesses an NH2-terminal Cu/Ni binding (ATCUN) motif 

and a Zn(II)-binding motif (HEXXH) at the C terminus for binding of metals (Pauri and 

Edgerton, 2014). 

In a number of proteins, the ATCUN motif is formed from a His residue in the 

third position, two preceding residues, and the free N-terminus (NH2-XXH), therefore a 

peptide or protein maximally possesses only single ATCUN motif at its N-terminus 

(Sankararamakrishnan et al., 2005). According to the crystal structure of a small metal-
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bound ATCUN peptide, four nitrogen atoms in the ATCUN motif (three residues with 

free amino-terminus) form a square semi-planar geometry (Sankararamakrishnan et al., 

2005),
 
 thus, mimicking to the manner for allocating the nitrogen atoms around a single 

metal in the metal-centered tetrapyrroles such as heme. The likely metals potentially 

bound to ATCUN motif in Hst-5 are Cu, Ni and Fe. Especially, the interactions between 

Hst-5 and either of Cu or Fe reportedly contribute to generation of ROS members which 

eventually oxidize an array of key proteins in the mitochondria causing mitochondrial 

dysfunction leading to further oxidative burst and cell death in microbial cells 

(Sankararamakrishnan et al., 2005). 

Presence of the HEXXH motif in C-terminal half of Hst-5 and center of Hst-8 

suggests that these molecules have high affinity to Zn. According to an earlier study 

(Melino et al., 1999),
 
binding to Zn may be required for fusing into the negatively 

charged phospholipid-based membranes or vesicles. However, Zn binding to Hst-5 

shows only limited effects on Hst-5’s fungicidal activity (Puri et al., 2015). 

While the HEXXH motif can be found in both Hst-5 and Hst-8, the ATCUN motif 

can be found only in Hst-5 (Fig. 5-1). However, knowledge on peptide geometry 

predicts that even to Hst-8, copper can be bound due to the presence of the XXH motif 

where X can be most amino acids followed by His, therefore ATCUN can be one form 

of XXH motif concepts. 

It has been revealed that the XXH motif has been shown to play key its role as one 

of Cu-binding motifs in mammalian PrPs  (Kawano, 2007; Yokawa et al., 2009; 

Yokawa et al., 2009) and plant stress-responsive small peptides (Yokawa et al, 2011a). 

Interestingly, upon binding to Cu (II), natural (Kawano, 2007; Yokawa et al., 2009; 

Yokawa et al, 2011a)  and engineered (Kawano, 2007; Kagenishi et al., 2011; Okobira 

et al., 2011) peptides containing XXH motif show catalytic activity for generation of 

superoxide anion radical (O2
•-
) by coupling to oxidation of aromatic monoamines and 

phenolics in the presence of H2O2, thus, similarly to plant peroxidase reaction (Kawano 

and Bouteau, 2013; Yokawa et al., 2011b). Taken together, we can expect that both Hst-

5 and Hst-8 might capture Cu to form functional or catalytic nature. Similarly to the fact 

that enzyme-like activity for H2O2-dependent substrate oxidation accompanying ROS 
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generation can be found in human prion-derived Cu (II)-bound peptides  (Kawano, 

2007; Yokawa et al., 2009) and mimicking engineered peptides (Kagenishi et al., 2011),
 

the Cu (II)-bound form of Hst-5 also exhibits enzyme-like enzyme-like kinetics 

requiring  (Tay et al., 2009). 

As discussed above, analysis of Cu occupancy in Hsts is of great importance. 

Monitoring of metal-Hst-5 interaction can be performed by various techniques such as 

circular dichroism (Puri et al., 2015). Use of fluorescence (FL)-active rare earth element 

ions such as terbium ion (Tb
3+

) as model metal ions is one of such approaches assessing 

the mode of metal-binding in Cu-binding peptides as performed for conantokin-G, a 

toxic metallo-peptide derived from a snail (Blandl et al., 1997) and human prion-

derived Cu-binding peptides (Kawano, 2006; Inokuchi et al., 2012 ). 

In the present study, we conducted two distinct FL-based assays, namely, (1) the 

Hst-dependent quenching of Tb
3+

-FL and (2) the Cu
2+

-dependent quenching of intrinsic 

FL in Hst-5 and Hst-8. We emphasized the latter study focusing on the intrinsic red-FL 

newly found in both Hst-5 and Hst-8, since the monitoring of intrinsic FL emitted by 

biological molecules of interest without using artificial FL probes has advantages to be 

applied to a variety of future assays including microscopic, flow-cytometric studies in 

intact cells and organisms. 
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5-3 Materials and Methods 

 

5-3-1 Peptides and Chemicals 

Model peptides sequences with metal-binding affinity which show intrinsic red-FL 

under irradiation by UV, corresponding to Hst-5 

(DSHAKRHHGYKRKFHEKHHSHRGY) and Hst-8 (KFHEKHHSHRGY) were 

synthesized to score the effect of copper occupancy. Synthesis of the peptides was 

tailor-made through the custom peptide service department of Sigma Genosys Japan, 

Ishikari, Hokkaido, Japan. The chemically synthesized peptides were purified on high 

pressure liquid chromatography prior to the experimental use. Cypridina luciferin 

analog designated as CLA (2-Methyl-6-phenyl-3,7-dihydroimidazo[1,2-a]pyrazin-3-

one) was obtained from Tokyo Chemical Industry, Tokyo. Other chemicals such as 

CuSO4 and terbium (III) chloride hexahydrate used in this study were of reagent grade 

purchased from Wako Pure Chemical Industries Ltd. (Osaka, Japan). 

 

5-3-2 Terbium FL and Hsts’ red intrinsic FL 

Using a FL spectrophotometer (F-4500 Hitachi High-Technol. Co., Tokyo), Tb-

dependent FL was detected in in K phosphate buffer (50 mM, pH 7.0) as previously 

described (Kawano, 2007). The three-dimensional (3D) spectral analysis of FL was 

carried out by scanning through the excitation wavelength between 200 and 300 nm 

(interval, 5 nm) and emission wavelength between 500 and 600 nm (interval, 5 nm). In 

the phosphate-buffered reaction mixture, the actual concentrations of free Tb
3+

 after 

addition of 1 mM of TbCl3 were expected to be as low as at µM order due to interaction 

between phosphate and Tb ion.
18)

 Therefore, the FL due to free Tb
3+

 can be quenched 

by µM ranges of peptides or chelators as previously described (Kawano, 2006; Inokuchi 

et al., 2012). 

Usually, tyrosine (Y)-containing peptides show two peaks in intrinsic FL in the UV 

regions (excitation at ca. 230 and 280 nm, and emission at ca. 320 nm) which is non-

specific to the nature of proteins. In addition, in biological samples, FL signals in the 
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UV regions can be hardly distinguished from the background FL due to a variety of 

proteins, phenolics, catecholamines, and other aromatic molecules. Therefore, we 

focused on the intrinsic red-FL signals specific to Hst sequence commonly found in 

both Hst-5 and Hst-8. 

Using a FL spectrophotometer, the intrinsic red-FL signals from the Hst-5 and Hst-

8 (1, 3, 10, 30, and 100 µM) with and without loading of Cu
2+

 (5, 10, 15, 20, 25, 30, 60, 

and 100 µM) were detected in K phosphate buffer (50 mM, pH 7.0). The 3D spectral 

analysis of FL was carried out by scanning through the excitation wavelength between 

200 and 350 nm (interval, 5 nm) and emission wavelength between 500 and 800 nm 

(interval, 5 nm). 

 

5-3-3 Detection of superoxide anion radical (O2
•-
) with chemiluminescence (CL) 

To detect the generation of O2
•-
, an O2

•-
-specific CL agent, Cypridina luciferin 

analog (CLA) was used. The peptides (Hst-5 and Hst-8) and other chemicals were 

dissolved in 50 mM K-phosphate buffer adjusted at pH 7.0. The molar ratios among the 

components in the 200 µl of reaction mixture, the peptide, CuSO4 and H2O2 were 

approximately 1:10:10 (0.15 mM peptides, 1.5 mM CuSO4, 1.5 mM H2O2). Generation 

of O2
•-
 was monitored by CLA-CL with a luminometer (Luminescensor PSN AB-2200-

R, Atto, Tokyo), and the yield of CL was expressed as relative luminescence units (rlu). 
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5-4 Results and Discussion 

 

5-4-1 Quenching of Tb
3+

-FL 

As previously documented (Kawano, 2006; Inokuchi et al., 2012), free Tb
3+ 

showed 

intensive emission of FL signals upon irradiation by 224 nm UV light, dually peaking at 

545 nm and 585 nm (Fig. 5-2). As expected, quenching of Tb
3+

-FL by 30 µM of Hst-5 

and Hst-8 was observed (Fig. 2). Interestingly, Hst-5 showed higher quenching activity 

compared to Hst-8. It is likely that the difference is possibly due to the presence of 

ATCUN motif in Hst-5, which is absent in Hst-8. Although limited at partial level, Hst-

8 also showed quenching of Tb
3+

-FL suggesting that HEXXH motif in Hst-8 which is 

considered as a Zn(II)-binding motif also do bind Tb
3+

. As the Tb-based FL assay was 

originally proposed for assessing the metal-binding capacity in Cu-binding peptides 

(Blandl et al., 1997), we can assume that Hst-8 may interact with Cu. 

 

5-4-2 Cu-sensitive intrinsic red-FL 

Both Hst-5 and Hst-8 peptides (30 μM) showed intrinsic red-FL (at 610 nm) upon 

excitation by UV region (230 nm and 275 nm) as visualized in the contour (3D) plots of 

FL intensities (Fig.5-3). Fig. 4 shows the effect of peptide concentrations on the yield of 

red intrinsic FL by Hst-5 and Hst-8. Within the range of peptide concentration 

examined (up to 100 μM), both Hst peptides showed concentration-dependent increase 

in the yield of red intrinsic FL. The peak of FL under excitation at 230 nm showed 

much steeper and greater increase along with elevated concentrations of peptides. 

 

5-4-3 Linear relationship between loading of Cu
2+

 and quenching of FL 

As shown in Fig. 3, red-FL signals from both peptides showed tendency to be 

quenched in the presence of Cu
2+

. Furthermore, effects of copper concentration on 

quenching of two distinct peaks of red intrinsic FL in Hst-5 and Hst-8 were examined 

(Fig. 5-5). Within the range of copper concentrations (up to 100 μM), curve for 



64 
 

quenching of intrinsic FL by 30 μM peptides were shown to be saturated. In the limited 

range of molar ratio of copper concentration over peptide concentration up to 2.0 (60 

μM), there were linear relationships between the copper concentration and quenching of 

Hsts’ red-FL. Compared to the 230 nm-excited FL from both Hst molecules, the 275 

nm-excited fluorescent peak showed higher sensitivity to relatively low concentration of 

copper between 5 and 25 μM (Fig. 5-5 A,B). Notably, showed the squared correlation 

coefficients (r
2
) for the regressions for the relationship between the copper 

concentration and the 230 nm-excited fluorescent peak in Hst-5 and Hst-8 were 0.9546 

and 0.9684, respectively (Fig. 5-5B, insets), suggesting that changes in red-FL can be 

used as a measure of copper occupancy in these peptides. 

 

5-4-4 Catalytic activity in Cu-loaded peptides 

     As discussed earlier in this report, binding of metals such as copper may confer 

specific functions to the peptides of interest sharing metal-binding motifs such as XXH 

motif ( Kawano,  2007; Yokawa et al., 2009; Yokawa et al., 2009; Yokawa et al., 

2011a; Kagenishi et al., 2011; Okobira et al., 2011). Accordingly, upon binding to Cu 

(II), these peptides containing XXH motif show O2
•-
-generating catalytic activity in 

H2O2-dependent peroxidase-like manner with requirement for phenolic substrates or 

aromatic monoamines (Kawano and Bouteau, 2013; Yokawa et al., 2011b). As model 

substrates, an intermediate of neurotransmitters, tyramine (Kawano, 2007; Yokawa et 

al., 2009; Kagenishi et al., 2011; Okobira et al., 2011),
 
 and a structurally similar free 

amino acid, tyrosine (Yokawa et al., 2009; Kagenishi et al., 2011), are known to date. 

Our previous work on a Cu-binding peptide (GGGGGH hexapeptide designated as 

G5H) demonstrated that the Cu-loaded peptide (0.15 mM) showed an enzyme-like O2
•-
-

generating catalytic activity (Vmax, 52.91 mmol/ mmol peptide/ min) with Michaelis 

constant (Km) 0.24 mM worked out for tyramine as a substrate, reaching the applicable 

range especially as the catalytic activity was evaluated by molecular weight-basis which 

is almost 1/6 of purified horseradish peroxidise (Kagenishi et al., 2011).By analogy, we 

view that Hst-5 and Hst-8 may show such catalytic activity. 
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In support of the above view, Tay et al. (Tay et al., 2009)
 
have shown that Cu-

bound form of Hst-5 catalyses the H2O2-dependent oxidation of catechol. However, O2
•-
 

could be hardly generated in the presence of catechol as Kagenishi et al. (Kagenishi et 

al., 2011) have thoroughly studied that phenol and the m-positioned benzenediol 

(resorcinol) were shown to be active as O2
•-
-generating substrates by Cu-bound peptides, 

while o- and p-positioned benzenediols (catechol and hydroquinone) were shown to be 

inactive. Furthermore, natural frequency that Hst-5 meets catechol in salivary media 

should not be high unless suplemented with foods. 

Interestingly, without supplementation of phenolics, catecholamines or related free 

molecules, tyrosine (Y) residue-containing oligopeptide sequences fused to Cu-binding 

XXH motif such as NPGYPH (chicken prion hexa-repeat sequence) (Yokawa et al, 

2010), GGGYGH (plant ozone-inducible peptide sequence) (Yokawa et al, 2011a), and 

FLTEYVA-GGGGGH (Erk1/Erk2 MAP kinase substrate sequence fused to G5H 

peptide, thus designated as Erk-G5H) (Yokawa et al, 2010), showed catalytic activity 

for H2O2-dependent O2
•-
 generation without supplementation of any free phenolic 

substrates. Involvement of Y-residue(s) in the Cu/peptide complex-catalyzed reactions 

suggests that a phenoxy radical derived from Y (tyrosyl radical, Y
•
) can be formed in 

aid of single electron reduction of molecular oxygen, by analogy to plant enzymes 

H2O2-dependently generating O2
•-
 by coupling to oxidation of phenolics to form 

phenoxy radicals (Kawano, 2011; Kawano et al., 1998).
 
In figure 5-6 (A andB), two 

distinct modes of H2O2-dependent generation of O2
•-
 by Cu-bound catalytic peptides, 

which are differed in requirement for free electron-donating substrate molecules (chiefly 

phenolics), are illustrated for comparison.  

Note that both Hst-5 and Hst-8 contain corresponding metal-binding domain(s) and 

Y-residue(s) as illustrated in Figure 1. Therefore, we can expect that Cu-bound Hst-5 

and Hst-8 show H2O2-responsive O2
•-
 generating activity without addition of phenolic 

substrates as similarly to previously engineered artificial enzymes such as Erk-G5H 

(Yokawa et al, 2010). 

Lastly, we demonstrated the H2O2-induced generation of O2
•-
 catalyzed by the 

copper-bound forms of Hst-5 and Hst-8 (Fig. 5-6). Upon addition of H2O2 to reaction 



66 
 

mixture containing Cu-loaded Hst-5 and Hst-8, immediate induction of O2
•-
 generation 

was observed. The peak height of CLA-CL was almost identical (Fig. 5-6C), but the the 

reaction catalyzed by Hst-5 showed tendency to be long-lasted possibly due to the 

doubled number of metal-binding sites and Y-residues. Since depletion of copper, 

peptide, or H2O2 from the Hst-5-mediated reaction resulted in loss of oxidative burst 

(except for the initial spike observed in the absence of copper; Fig.5-6D), we can 

conclude that Hsts become reactive against H2O2 only after binding to Cu. Possible 

involvement of this hidden action of Cu-bound form of Hsts in antimicrobial action 

must be examined in the future study. 

 

5-4-5 Perspectives 

Recently, saliva-based therapeutic protocols using artificial salivas and 

antimicrobial agents are recently developed based on biochemical nature of Hsts and 

mucins (Huq et al., 2007). As the functions of Hsts largely depend on the loading of 

copper or related metal ions, protocol for functional evaluation of natural and 

supplemented Hsts in saliva or artificial media relating the binding of copper and/or 

other ions must be developed. The present study may provide key fluorometric and 

chemiluminometric knowledge supporting such approaches. 

 

5-4-6 Conclusion 

The most recognized roles for Hsts are anti-microbial activities, and the modes of 

action of Hsts (chiefly, Hst-5 and 8) have been subjected to intense debates. Since Hst-5 

and 8 possess metal-binding motifs, analysis of Cu occupancy in Hsts is of great 

importance. FL-active rare earth element ions such as Tb
3+

 can be used for assessing the 

metal-binding capacity in Cu-binding peptides as previously performed for several Cu-

binding peptides. In the present study, we conducted two distinct FL-based assays, 

namely, the Hst-dependent quenching of Tb
3+

-FL and the Cu
2+

-dependent quenching of 

intrinsic FL in Hsts. Compared to Hst-8, Hst-5 showed higher activity for quenching of 

Tb
3+

-FL, possibly due to the presence of ATCUN in Hst-5, which is absent in Hst-8. 
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Hst-8 showed partial quenching of Tb
3+

-FL suggesting that HEXXH motif contributes 

to binding of Tb
3+

. Since the Tb-based assay was originally proposed for the study of 

Cu-binding peptides, we assumed that both Hsts interact with Cu. Both Hst-5 and 8 

showed intrinsic red-FL at 610 nm upon excitation at 230 and 275 nm, which was 

shown to be quenched by Cu
2+

. In the limited range of Cu/peptide molar ratio up to 2, 

there were linear relationships between the Cu
2+

 concentration and quenching of Hsts’ 

red-FL. Therefore, the changes in red-FL can be used as a measure of Cu occupancy in 

these peptides. 

Lastly, novel catalytic activity of Cu-loaded Hsts were demonstrated. Upon addition 

of H2O2, both Hsts catalyzed the generation of O2
•-
. As the functions of Hsts largely 

depend on the binding of Cu or related metal ions, protocol for functional evaluation of 

Hsts relating the metal binding must be developed. The present study may provide key 

technical knowledge supporting such approaches. 
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Fig. 5-1. Structures of Hst-5 and Hst-8 harboring multiple metal binding motifs. 

Asterisks indicate the position of key amino acid in two typical metal binding motifs in 

Hsts, namely, the amino-terminal Cu/Ni binding (ATCUN) motif (NH2-XXH) and 

Zn(II)-binding motif (HEXXH). In addition, overlapped presence hidden metal binding 

sites sharing the XXH motif known to bind a variety of metals chiefly, Cu (II), are 

shown. Arrows indicate the presence of aromatic amino acids which would contribute to 

the copper-sensitive FL signal. 
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Fig. 5-2. Hst-dependent quenching of Tb FL. Typical 3D representations (contour plot) 

of the Tb
3+

-FL spectra in the absence and presence of Hst-5 or Hst-8 (30 μM) are shown. 

Intensities of the FL signal peaking at 225 nm excitation and 545 nm emission are 

compared.  
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Fig. 5-3. Contour-plotted intrinsic red-FL signal from Hst-5 and Hst-8 in the presence  

and absence of CuSO4. Peptides (30 μM) used were used. Two peaks of red-FL  

emission at ca. 610 nm were shown under excitation at 230 nm (peak a) and 275 nm  

(peak b). Quenching of intrinsic FL in the presence of 30 μM or 100 μM CuSO4 was  

assessed and FL intensities at peaks (a) and (b) are shown. 
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Fig. 5-4. Effect of peptide concentration on red intrinsic FL in Hst-5 and Hst-8. 

(A) Effect of peptide concentrations on the yield of red-FL (610 nm) under excitation at 

230 nm. (B) Effect of peptide concentrations on the yield of red-FL (610 nm) under 

excitation at 270 nm. AU stands for arbitrary units. 
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Fig. 5-5. Effect of copper concentration on quenching of red intrinsic FL in Hst-5 and  

Hst-8.(A) Effect of copper concentration on the quenching of red-FL (610 nm) under  

excitation at 230 nm. (B) Effect of copper concentration on the quenching of red-FL  

(610 nm) under excitation at 275 nm. Peptide concentration, 30 μM. AU stands for  

arbitrary units. Curves were merely for approximation of the response. In the insets,  

linear relationships (regressions) between the limited range of Cu concentration (up to  

60 μM) and the decrease in fluorescent signals are shown. 
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Fig. 5-6. H2O2-dependent O2
•-
 generation catalyzed by Hst-5 and Hst-8. (A) Model 

mechanism for peroxidase-like H2O2-dependent O2
•-
 generation catalyzed by Cu-bound 

oligo-peptides using phenolics as substrates. (B) Model mechanism for phenolics-free 

H2O2-dependent O2
•-
 generation catalyzed by Cu-bound Y residue-containing oligo-

peptides. (C) Typical traces of CLA-CL reflecting the generation of O2
•-
. To 1.5 mM 

peptide (Hst-5 or Hst-8) was preincubated with 1.5 mM CuSO4. Upon addition of 1.5 

mM H2O2 (arrows), increase in CLA-CL was observed. Inset: comparison of H2O2-

induced CLA-CL in reaction mixture containing Hst-5 and Hst-8. Error bars, Standard 

deviation (n=3). (D) Requirement for copper, H2O2 and a peptide for generation of O2
•-
 

catalyzed by Hst-5. 
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CHAPTER 6 

 

Fluorometric quantification of ferulic acid 

concentrations based on deconvolution of 

intrinsic fluorescence spectra 
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6-1 Abstract 

 

   Ferulic acid (FA) is one of phenolics found in most higher plants. It is important to 

quantify the internal FA level in vegetables and fruits, since it was epidemiologically 

demonstrated and a number of study supported that  consumption of fruits and 

vegetables rich in phenolic acids including FA is associated with the prevention of 

chronic diseases such as cancer and cardiovascular disease. In order to allow handling 

of the intact fresh produces, non-invasive methods are desired. Previously, 355 nm 

ultraviolet (UV) laser-induced fluorescence spectrum revealed that living plants contain 

fluorophore corresponding to blue-green fluorescence (shown to be FA). However, 

quantification of FA based on fluorescence in UV-excited leaves can be hardly achieved 

since FA fluorescence measured at fixed excitation and emission can be applied only to 

the limited range of FA concentration. Here, we report a model experiment for 

fluorometric quantification of FA in solution in vitro which may provide a series of 

useful information required for estimation of FA concentrations in vivo fluid inside the 

vegetables. Based on deconvolution of intrinsic fluorescence spectra, we observed that 

FA fluorescence signals can be deciphered to determine the concentration of FA. By 

viewing that the recorded FA fluorescence (h) is reflecting the primitive function (f) 

corresponding to FA concentrations and kernel function (g) determining the spike 

position in the spectra. Thus, f should be obtained as f = h × g-
1
. In practice, cumulative 

curves of fluorescence signals at fixed emission wavelength (460 nm) along with the 

changes in excitation wavelength (200-400 nm) were plotted and the midpoints (along 

the scale of excitation wavelength) in the resultant curves corresponding to different FA 

concentration were graphically determined. FA’s concentration-specific changes in 

fluorescence profiles must be due to the fact that FA possesses multiple fluorophores 

within the molecule despite its simple structure. Lastly, simplified protocol for 

determination of FA concentration using dual UV excitation wavelengths was proposed. 

In this assay, ratio of 460 nm fluorescence intensities induced by two distinct excitation 

wavelengths (short, 260 nm; long, 330-380 nm) were shown to be highly correlated 

with FA concentration ranged from μM to mM orders. 
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6-2 Introduction 

 

In plants, biosynthesis of an array of phenolic compounds, associated with plant 

development, senescence and chemical or physical defense mechanisms against 

invasion by pathogens, proceeds from trans-cinnamic acid, the first metabolite in the 

phenylpropanoid pathway (Kawano et al., 2004). The compounds produced via 

phenylpropanoid pathway include lignin, flavonoids, phytoalexins and a variety of 

phenolics. 

Ferulic acid (FA) is one of such plant-specific phenolics, which is a simple 

polyphenol found in most higher plants as one of key components in cell wall complex 

(Johnson et al., 1998; Lichtenthaler and Schweiger, 1998; Buschmann et al., 2000). In 

the cell-walls of higher plants, members of hydroxycinnamates including FA are known 

to be derived from feruloyl-CoA, coumaroyl-CoA and other intermediates in the 

phenylpropanoid pathway (Brett et al., 1999). FA and p-coumaric acid are also known 

to tightly bound to the epicuticular waxes of the leaves of Prunus persica and Olea 

europaea (Liakopoulos et al., 2001). It has been suggested that life-stage dependently 

increased FA content in young plants such as seedlings of winter triticale may prevent 

the damages to photosynthetic apparatus under strong sunlight (Hura et al., 2010). 

There have been a number of studies relating the human and animal health cares 

and the actions of FA and its derivatives. Recent advancement in analytical techniques 

using dispersive solid phase extraction and high-performance liquid chromatography 

with tandem mass spectrometric detection methods (LC-MS/MS), enabled a sensitive 

detection of FA circulating in human blood after orally taking vegetables (Mülek and 

Högger, 2015). Today, medical or pharmacological uses of FA in chemotherapeutic 

strategies against cancer are intensively discussed. FA applied in combination with an 

inhibitor of poly(ADP-ribose)polymerase, ABT-888, may serve as an effective 

combination chemotherapeutic agent of nature and biological origins (Choi et al., 2015). 

A recent clinical investigation revealed that FA in the extract from the roots of Angelica 

sinensis effectively contributes to the nephroprotective action of this herbal medicine 
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against the damages induced by cisplatin, a chemotherapeutic drug targeting tumor, at 

least through reduction of apoptosis rate (Bunel et al., 2015). 

Antipyretic, analgesic and anti-inflammatory drugs in Japanese traditional herbal 

medicine (known as Shoma, which is dried rhizoma of Cimicifuga sp.) contains FA and 

its isomer isoferulic acid as the main active components which can effectively suppress 

the inflammation in murine macrophage cell line, RAW264.7, through inhibitory effects 

on the production of macrophage inflammatory protein-2 known to be induced in 

response to respiratory syncytial virus (Sakai et al., 1999). It was epidemiologically 

demonstrated that consumption of fruits and vegetables rich in phenolic acids including 

FA is associated with the prevention of chronic diseases such as cancer and 

cardiovascular disease, most likely by induction of detoxifying cellular phase II 

enzymes (phenolsulfotransferases) which are associated with cancer preventive 

potentials (Yeh and Yen, 2005). Furthermore, for unknown reason, FA might act 

against the high-fat and high-fructose diet-induced metabolic syndromes as tested in rats 

(Wang et al., 2015). 

A number of studies suggested that FA is highly reactive against the members of 

reactive oxygen species (ROS), thus, this molecule may prevent the oxidative damages 

in living cells and ROS-mediated denature of proteins (Sgarbossa and Lenci, 2013). 

Recent demonstration further confirmed that FA protects the cells of human challenged 

by oxidative stress, as H2O2-induced apoptotic cell death in human embryonic kidney 

293 cells (HEK293) was inhibited by pretreatment with FA (Bian et al., 2015). In 

addition to direct action of FA, the likely mechanisms suggested include indirect action 

of FA in induction of catalase and superoxide dismutase (Bian et al., 2015). Therefore, 

in order to prevent the ROS-mediated damages in human body, it is highly 

recommended to take vegetables and fruits rich in FA content (Park et al., 2015). 

As discussed above, it is important to quantify the internal FA level in vegetables 

and fruits, thus, non-invasive methods are desired in order to allow handling of the 

intact fresh produces. Conventionally, FA-specific spectroscopic analysis was 

performed with extracts from vegetables and fruits (Yeh and Yen, 2005) and FA-

conjugated lipids in edible oils such as rice bran oil (Hara et al., 2016), but this method 
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cannot be extended to applications in non-invasive approach. In this point of view, 

fluorometric approach has some advantages and there have been several reports on 

quantification of FA based on its intrinsic fluorescence. Meyer et al. (2003) have 

reported that the intact leaves of vegetables such as leafy lettuce often emit both red and 

far-red fluorescence signals upon irradiation by chlorophyll-targeting UV radiation. 

Notably, blue-green fluorescence is also emitted upon irradiation by UV, since 

hydroxycinnamic acids chiefly, FA bound to cell wall are readily excited, therefore, FA 

is known as the main blue-green fluorescent component in various plants (Liakopoulos 

et al., 2001; Buschmann et al., 2000; Johnson et al., 2000).  

According to Tanaka et al. (2009), 355 nm ultraviolet (UV) laser-induced 

fluorescence spectrum recorded with a single intact leaf attached to a street Zelcova tree 

suggested that blue-green fluorescence can be detected by application of remote-sensing 

technology such as laser-induced fluorescence (LIF) spectrometry. The blue-green 

range of fluorescence could be most likely attributed to the presence of FA in the leaf. 

In a number of plant samples including the leaves of spinach (Goulas et al., 1990) and 

sugar beet (Morales et al., 1996, 1998), on both the adaxial and the abaxial sides of 

leaves were dominated by blue-green fluorescence of epidermis, upon excitation under 

UV radiation, and FA was the only fluorophore that emitted fluorescence in a similar 

manner to epidermis, thus, it was concluded that FA as the main fluorophore of the 

epidermis in such plants listed above. 

However, quantification of FA based on fluorescence in UV-excited leaves can be 

hardly achieved since FA fluorescence measured at fixed excitation (355 nm) and 

emission (450 nm) can be applied only to the highly limited range of FA concentration 

(Meyer et al., 2003).  

Here, we report a model experiment for fluorometric quantification of FA in 

solution in vitro which may provide a series of useful information required for 

estimation of FA concentrations in vivo fluid inside the vegetables. Based on 

deconvolution of intrinsic fluorescence spectra, we observed that FA fluorescence 

spectra can be altered depending on the FA concentrations. Therefore, existing 
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fluorometric methods based on single band measurements should be subjected to 

reconsideration. 
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6-3 Materials and Methods 

 

6-3-1 Spectroscopic and Fluorometric analysis. 

FA (Fig. 1A) and all chemicals used in analytical procedures were purchased 

from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). FA (0.1, 0.5, 1.0, 5.0, 10.0 

mM) dissolved in 2 ml absolute ethanol was used for spectroscopic and fluorescence 

analyses using a spectrophotometer (Shimadzu UV-1800, Kyoto, Japan) and a 

fluorescence spectrophotometer (F-4500, Hitachi High-technologies, Tokyo, Japan), 

respectively. For fluorometric analysis of FA’s intrinsic fluorescence, three-dimensional 

(3D) contour plot was performed as demonstrated elsewhere (Sergiel et al., 2014; Park 

et al., 2015). This approach is often performed for analyses of various plant pigments 

such as chlorophyll catabolites (Kawano et al., 1999). 

 

6-3-2 Deconvolution of fluorescent spectra reflecting the concentration of FA.  

By assuming that spectra of fluorescence measured in the presence of FA 

represents the mixture of (i) concentration-specific integrating patterns of intrinsic FA 

fluorescent signal which can be altered depending of the FA concentration, which 

should be expressed as the primitive function of FA concentrations, and (ii) opposing 

differential modification causing splitting of FA fluorescence signals which is 

considered as the kernel function determining the spike position in the recorded spectra. 

Therefore, intensity (h) of recorded signals can be considered as the composite function 

derived after conjunction of the primitive function (f) and the kernel function (g). Taken 

together, the primitive function (f) should be obtained as follows: 

 f = h × g
-1  

where g
-1

 is an integral kernel function allowing conversion of h into f. This can be 

practically performed simply through integral conversion of fluorescence spectra 

obtained at fixed emission wavelength (460 nm) along with the changes in excitation 

wavelength (200-400 nm).  
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6-4 Results and Discussion 

 

6-4-1 Spectroscopic and fluorescent profiles of FA  

We have confirmed that free FA shows absorption at 330 nm and linear 

relationship between the FA concentration and the changes in absorbance was obtained 

(Fig. 6-1B, C), suggesting that FA specifically absorbs UV radiation. On the other hand, 

due to the presence of FA, plant leaves reportedly exhibits a blue-green fluorescence, 

with emission peaking in the ranges between 405 and 475 nm (blue emission) and 

between 510 and 550 nm (green emission) upon excitation by UV radiation (Johnson et 

al., 2000). For analysis of FA intrinsic fluorescence, 3D contour plot was performed 

(Fig.6-2). When the concentration of FA was higher than 1 mM, only single area of 

fluorescence with sharp excitation maximum at 360-385 nm and broad emission 

maxima ranging from 400 nm to 650 nm was observed. Interestingly, this analysis 

suggested that there is two additional areas of intensive FA fluorescence which could be 

visualized only at relatively lower concentrations of FA (Fig. 2, see 0.1 mM and 0.5 

mM). In these additional fluorescence bands, excitation maxima were shown to be at 

260 nm or 300 nm and intensive but broad emission was shown to span from ca. 380 

nm to 600 nm. 

 

6-4-2 Concentration-dependent changes in fluorescent profile 

As shown in Fig. 6-3, peaks of fluorescent signal (emission, 460 nm) are highly 

sensitive to the changes in FA concentration. At lowest concentration examined (0.1 

mM), three major peaks (at 260, 300 and 340 nm of exciting) can be observed.  

The peak of fluorescence induced by short wavelength UV (260 nm) disappeared 

as FA concentration was elevated to the mM range. The peak(s) induced by long-

wavelength UV showed FA concentration-dependent tendency to shift from peaking at 

340 nm of excitation (at 0.1 mM) towards peaking at 385 nm of excitation (at 10 mM) 

(Fig. 6-3). Above data strongly suggested that FA fluorescence profile is concentration-
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sensitive, thus, fluorescence signal may tell us the clues for estimation or quantification 

of FA content in the fluid. 

 

6-4-3 Natural role and concentrations of FA in plants 

Not only as a ubiquitous building block for lignocelluloses in plant kingdom 

(Saulnier and Thibault, 1999), FA may has multiple roles. In case of wheat, major form 

of compounds derived from phenolics is insoluble bound FA and interestingly FA 

present in such form contribute to resistance to wheat fungal diseases (Gelinas and 

McKinnon, 2006). FA is naturally found in the seeds of apple, artichoke, peanut, orange, 

and coffee, and most commelinid cereals such as barley and rice. In commelinid seeds, 

FA is localized in the bran the hard outer layer of grain, therefore FA-cojugated oils can 

be readily extracted from the rice bran (Hara et al., 2016). The highest range of FA 

concentrations in the glucosilated form has been found in seed of flax (Linum 

usitatissimum) reaching 0.02% of total dry weight (Beejmohun and Fliniaux, 2007).  

 

6-4-4 Estimation of FA concentration based on fluorescent profiles 

In general, the blue-green fluorescence tends to be relatively more intensive than 

chlorophyll fluorescence in monocotyledonous plants but not in dicotyledonous plants, 

due to high contents of FA and related phenolics (Lichtenthaler and Schweiger, 1998). 

In leafy lettuce, Meyer et al. (2003) found that the decrease in chlorophyll fluorescence 

and the increase in FA-dependent blue-green fluorescence coincide along with aging of 

tissues, without altering the shape of excitation and emission spectra or the lifetime of 

fluorescence. 

To date, the known factors altering the fluorescence intensities in plants are (1) 

the changes in the concentration of emitting substances (chiefly, FA and chlorophylls), 

(2) changes in internal optic nature in the leaves which determine the penetration of 

excitation radiation (and partial re-absorption of the fluorescent signal), and (3) 

distribution of energy between photosynthesis, heat production and chlorophyll 

fluorescence (Buschmann et al., 2000). However, changes in the shape of excitation and 
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emission spectra along with the change in FA concentration have not been documented 

to date. 

 

6-4-5 Deconvolution of scanned FA fluorescence: Correlation between geometric 

center of UV-excited (200-400 nm) FA fluorescence and FA concentration  

There have been a number of approaches for deciphering the fluorescent profile 

from biological molecules with and/or without aids with additional fluorescent probes. 

For example, fluorometric studies in living cells often employ the fluorophore showing 

altered fluorescence profile upon binding to target chemicals such as calcium ion (Tsien 

et al., 1985), or pair of molecules (one must be a fluorophore) showing FRET 

(fluorescence resonance energy transfer) effect (Adams et al., 1991). By analogy, we 

attempted simple and practical deconvolution approach here. 

As stated in the Material and Method section, we assume that the spectra of FA 

fluorescence measured in ethanol is made up after compromised actions of (i) 

concentration-specific integral patterns of intrinsic FA fluorescent signal which can be 

altered depending of the FA concentrations, and (ii) opposing differential modification 

allowing splitting (peaking) of FA fluorescence signals at specific excitation 

wavelength. 

Thus, former function should be expressed as the primitive function of FA 

concentrations and the later function is considered as the kernel function determining 

the spike position in the recorded spectra. Therefore, as shown in Fig.6-4 (A), intensity 

(h) of recorded FA fluorescence signals can be considered as composite function 

derived after conjunction of the primitive function (f) and the kernel function (g). By 

definition, f should be obtained as follows: 

f = h × g
-1 

In practice, we can simply work out the curves for relative increase in f (where f = 

1.0 is the maximal value), by integrating the fluorescence signal at fixed emission 

wavelength (460 nm) along with the changes in excitation wavelength (200-400 nm) 

(Fig. 6-4B). The resultant plot (x axis, excitation wavelength; y axis, f (0→1.0) of 
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relative signal increase) displays the effect of FA concentration on the rate of increase in 

f. By focusing on the x-axis value (excitation wavelength) corresponding to f = 0.5, we 

can evaluate the impact of FA concentration on the fluorescent patterning. 

The reason why FA shows different profiles of fluorescence depending on its 

concentration should be attributed to the fact that even the monomer of FA possesses 

multiple fluorophores within the molecule despite its simple structure, unlike most 

natural fluorescent molecules of biological origins (Djikanović et al., 2007). This 

hypothetical view must be examined in the future studies. 

For simplification, we viewed the curves of fi (x), with i corresponding to FA 

concentrations, as S-shaped sigmoidal curves. As originally shown by Pierre François 

Verhulst (1838), a logistic function or logistic curve shows a common sigmoid "S-

shaped” curve, with standard equation: 

 =  

By definition, values of x range between −∞ and +∞ of real numbers but we need 

to limit and shift the range within the range of realistic FA concentrations, the midpoint 

in sigmoid curve is defined by x0 (which might correspond to FA concentration), L is 

the maximum value (in case of above curves, 1.0), and α defines the curve’s steepness. 

This type of simplified mathematic approach may help us developing a simulative 

model. Such simulations must be performed in the future studies. 

 

6-4-6 Simplified measure of FA concentration with dual UV excitation wavelengths 

Although, the approach described above (scanning the excitation wavelength 

against the fixed emission wavelength) could provide a powerful tool for quantification 

of FA, actual application in non-destructive remote sensing techniques is not realistic. 

Therefore, we further propose a simplified and practical approach, in which, instead of 

continuous scanning the excitation wavelength between 200 and 400 nm, a pair of fixed 

UV light sources are used. In this dual UV excitation protocol, reading of 460 nm blue 

emission at two distinct excitation wavelengths, namely, short (260 nm) and long (330-

https://en.wikipedia.org/wiki/Pierre_Fran%C3%A7ois_Verhulst
https://en.wikipedia.org/wiki/Pierre_Fran%C3%A7ois_Verhulst
https://en.wikipedia.org/wiki/Sigmoid_function
https://en.wikipedia.org/wiki/Real_number
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380 nm) UV (expressed as Long/Short ratio) showed significant correlation with FA 

concentration covering from μM order to mM order (Fig. 6-5). 

As showed in figure 4B, only limited range (0.1 mM and 0.5 mM) of FA 

concentration can be detected by the geometric center-based fluorimentic approach, 

therefore, in combination with quantification by long/short fluorescence index 

(applicable in lower concentration down to µM order), we can cover broader range of 

FA concentrations. 

 

6-4-7 Perspectives 

There is additional fluorometric topic in which FA is likely involved in. According 

to Sgarbossa and Lenci (2013), FA interacts with several proteins and modify the 

biological activities of these proteins. Furthermore, intrinsic fluorescence by proteins 

due to the presence of tyrosine residues can be quenched by binding of FA to proteins. 

The mechanism of the FA action against the tyrosine-dependent fluorescence is under 

investigation, and it is most likely that FA action is not specific but acting as inner filter 

to block the fluorescence from tyrosine-residue (Sgarbossa and Lenci, 2013). 

Non-destructive monitoring of lettuce leaf fluorescence reflecting the FA content 

and chlorophyll contents have been performed using LIF technology (Ishizawa et al., 

2002). However, determination of FA concentration by LIF was hardly performed. In 

fact, single-band LIF may face the difficulty of FA quantification as we brought about, 

in this report, the discussion on the problems associated with single-band excitation-

based scoring of the FA fluorescence. Therefore, we propose the use of dual-band UV 

LIF for simple quantification of FA in growing plant tissues in vivo as model 

demonstration for determination of FA content with dual excitation bands were 

successfully performed (Fig. 6-5). 

FA measurements by such dual LIF technology may help quantifying FA content 

not only in the living plants in the fields, but also in the products after harvesting, such 

as the grains of wheat (Pussayanawin et al., 1988; Saadi et al., 1998) and rice bran oil 

(Hara et al., 2006). In fact, in general, monocots are rich in FA and its derivatives, so 
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that leaves of monocots can be distinguished from those of dicots solely based on the 

intensity of FA fluorescence (Panneton et al., 2010). 
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Fig. 6-1. Spectroscopic profile of feruric acid (FA). (A) Structure of FA. (B) Absorbance 

spectra of FA solutions (20, 40, and 50 μM dissolved in absolute ethanol) showing the peak of 

absorbance at 330 nm. (C) Relationship between FA concentration and absorbance at 323 nm. 
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Fig. 6-2. Intrinsic fluorescence of FA. Typical 3D representations (contour plot) of fluorescence 

emitted by different concentrations FA. Contour-plot of FA-dependent fluorescence spectra 

were performed as described elsewhere (Kawano et al., 1998). FA concentrations; 0.1, 0.5, 1.0, 

2.5, 5.0, 10.0 mM. Arrows indicate the peaks of fluorescence. 
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Fig. 6-3. Fluorescence spectra (emission at 460 nm) of FA at various concentrations examined 

under excitation by UV range (200-400 nm) of radiation.FA concentrations; 0.1, 0.5, 1.0, 2.5, 

5.0, and 10.0 mM. 
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Fig. 6-4. Possible quantification of FA concentration in ethanol through deconvolution of 

intrinsic FA fluorescence spectra. (A) Concept on the deconvolution of intrinsic fluorescence 

spectra. (B) Concentration-dependent changes in integral patterns of FA fluorescence signal 

{fi(x)} and plotted against the increase in excitation wavelength. Geometric center of FA 

fluorescence spectra within UV excitation range (excitation wavelength required for achieving 

fi(x) = 0.5) can be graphically identified. (C) Relationship between the geometric center of FA 

fluorescence spectra and FA concentration. 
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Fig. 6-5. Dual band ratio for quantification of FA. (A) Definition of Long/Short fluorescence 

index which is logarithm of the ratio of 460 nm fluorescence signal obtained under excitation by 

short wavelength UV radiation (260 nm) over that under excitation by long wavelength UV 

(340-380 nm). (B) Relationship between FA concentration and Long/Short fluorescence index. 
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CHAPTER 7 

 

General Discussion 
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CHAPTER 3 Fluorescence measurements revealed two distinct modes of metal 

binding by   histidine-containing motifs in prion-derived peptides 

 フリーの Tb
3+イオンは励起波長 225 nm、蛍光波長 545 nm, 585 nmの２ヶ所で

自家蛍光のピークが得られることが判明した。また、Tb 由来蛍光の蛍光強度が

オクタリピートペプチドと結合することで減少し、特に GGGWGQPH の配列を

もつペプチドが、最も強い Tb由来蛍光の消光能をもつことが判明した。 

以上より、フリーの Tb
3+イオンは２ヶ所で自家蛍光のピークを持ち、オクタ

リピートペプチドと結合することで消光されることが判明した。Tb
3+イオンの

蛍光特性と銅イオンの挙動との類似性のため、Tb
3+イオンは複数のアミノ酸か

ら構成される銅結合ペプチドから成る、半金属複合構造体の挙動解析研究のモ

デルとして、用いることが可能であると考察される。 

また、Tb 由来蛍光がオクタリピートペプチドと結合することで消光し、特に

GGGWGQPH の配列をもつペプチドが、最も強い消光能をもつことが判明した。

これより、C 末端が His で終わる X-X-H モチーフのペプチドが、金属との結合

力が最も強いと考察される。 

 ヒト PrP・オクタリピート領域由来ペプチドである PHGGGWGQ を用いて実

験を行った結果、このペプチドは自家蛍光を持つことが確認された。また、こ

のオクタリピートペプチドの自家蛍光は Trp 由来のものであり、ペプチドを構

成するアミノ酸( Pro, His, Gly, Trp, Gln )のなかで、Trpのみが自家蛍光の大きな

ピーク（ 励起波長 280 nm 蛍光波長 365 nm ）と小さなピーク（ 励起波長 230 

nm 蛍光波長 365 nm ）を持つことが確認された。 

 オクタリピートペプチドおよび Trp の自家蛍光を銅の添加前後で比較した結

果、両者の自家蛍光は銅添加後に消光していることが確認された。さらに、銅

濃度が上昇するにつれて、ペプチドおよび Trp 由来の蛍光強度が減少していく

ことから、銅添加による両者由来蛍光の消光には銅濃度依存性があり、実験に
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用いたオクタリピートペプチドの中で銅に対する感受性が最も強いのは、

PHGGGWGQであることが判明した． 

 以上より、オクタリピートペプチドの自家蛍光は Trp 由来のものであること

が判明した。これより、オクタリピートペプチドの蛍光特性には Trp が必要不

可欠であると考察される。 

また、銅添加によるオクタリピートペプチドおよび Trp 由来蛍光の消光には銅

濃度依存性があり、用いたオクタリピートペプチドの中で銅に対する感受性が

最も強いのは、PHGGGWGQ であることが判明した。実験に用いた大半のペプ

チド由来の蛍光強度が、ペプチドに対する濃度比 0.2~1.0 の Cu
2+イオンが存在

する条件下において、直線的に減少していることから、PrP 由来ペプチドと金

属との相互作用は可視化できると考察される。 

この挙動解析は、PrP・オクタリピート領域由来ペプチドの自家蛍光が、低濃

度銅イオンの存在に対して高い感受性をもつことを示している。よって、低濃

度銅イオンに対して最も強い感受性を示すペプチドは、PHGGGWGQ であるこ

とが考察される。 

上記より、本研究で用いたオクタリピートペプチドにおいて、Tb 由来蛍光の

消光能が最も高いのは GGGWGQPH、銅感受性が最も高いのは PHGGGWGQで

あることが判明した。以上より、ヒト PrP・オクタリピート領域由来ペプチド

には、異なる金属に対応する異なるモチーフが重複し、存在すると考察される。 

 

CHAPTER 4 Fluorescent monitoring of copper-occupancy in His-ended catalytic 

oligo peptides 

Gfp-GGGGGH(Gfp-G5H)、Gfp ともに、励起波長 230,280 nm、蛍光波長 320 

nm の２ヶ所で自家蛍光のピークが得られることが判明した。また、Gfp-

G5H,TYG-G5H,SYG-G5H への銅添加実験において、銅の添加前後で比較した結

果、全てのペプチドの自家蛍光は銅添加後に消光していることが確認された。
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さらに、銅濃度が上昇するにつれて蛍光強度が減少していくことから、銅添加

による消光には銅濃度依存性があることが判明した。 

 化学発光法を用いた実験結果(Fig.4-5)より、実験に用いた全てのペプチドに 

H2O2 を添加した場合、各自家蛍光強度の増加が確認された。また、銅を添加し

た場合、蛍光強度の減少が確認された。以上より、これらのペプチド由来の自

家蛍光強度は金属と結合すると消光して減少し、酸化剤と反応すると増加する

と考察される。 

 

CHAPTER 5 Monitoring of copper loading to cationic histidine-rich short salivary 

polypeptides, histatins 5 and 8, based on the quenching of copper-sensitive intrinsic red 

fluorescence 

Tb への Hist-5,8 添加実験の結果(Fig.5-2)より、Hist-5,8 はともに Tb 由来自家

蛍光を消光していることから、これらのペプチドは Tb 結合能をもつことが判

明した。 

Fig.5-3,4 より、Hist-5,8は、励起波長 230, 275 nm、蛍光波長 610 nmの２ヶ所

で自家蛍光のピークが得られることが判明した。また、両者とも濃度が高くな

るにつれて自家蛍光強度が高くなっていることから、Hist-5,8 由来自家蛍光強

度は濃度依存性を持つことが判明した。 

Fig.5-3,5 より、Hist-5,8 の自家蛍光強度を銅の添加前後で比較した結果、両者

ともに銅添加後に消光していることが確認された。これより、Hist-5,8 は銅結

合能をもつことが判明した。さらに、銅濃度が上昇するにつれて、Hist-5,8 由

来の自家蛍光強度が減少していくことから、銅添加による両者由来蛍光の消光

には銅濃度依存性があることが判明した。 

Fig.5-6 より、化学発光法を用いた実験において、PrP + 銅の条件下でスーパ

ーオキシドの生成が確認されていること、PrP 内にはチロシン(Y)残基を含むこ
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とから、H-E-X-X-Hもしくは X-X-Hモチーフをもつペプチドで、Y残基をもつ

場合、基質のフェノール類なしで、ペルオキシターゼ様スーパーオキシド生成 

活性を示すと考察される。 

 

CHAPTER 6 Fluorometric quantification of ferulic acid concentrations based on 

deconvolution  of intrinsic fluorescence spectra 

実際にイネ葉を利用した蛍光分析による FA 濃度の検出結果は以下の通りで

ある。まず、FA 濃度依存性の 323 nm 光の吸収が検出された。次に、FA 濃度

が高くなるにつれて得られる蛍光のピーク数は減少することから、FA 濃度は

分光法・蛍光分析法を用いて、非破壊的に定量することが可能であることが判

明した。さらに、累積相対蛍光強度比の重心 f (x) = 0.5 を求めることにより、

広範囲の FA 濃度の定量が可能であることが判明した。これにより、紫外領域

を励起光とした蛍光スペクトルの重心点である f(x) = 0.5 に対応する励起波長が、

FA濃度に依存し増大することを利用し、広範囲の FA濃度の定量が可能である

ことが判明した。 

 今回提案した蛍光スペクトル分析手法が、生組織からの蛍光検出にも適用可

能であれば、新規の非破壊的 FA 定量法の確立に道を拓くことができるという

ことが考察されており、今後の更なる実証試験が期待されている。 

Fig.7-1,7-2 は実際にイネ葉を用いた実証実験の模式図である。また、得られた

実験結果より、Fig.6-5 (B)中の式を利用して FA濃度を算出し、Table.7-1 の結果

を得た。 
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Fig.7-1. イネ葉への光照射図(Light irradiation of the rice leaf.) 
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Fig.7-2. イネを用いた FA実証実験 

Table.7-1. Fig.6-5 (B)中の式を用いての FA濃度算出 

Log10(FL350-380nm/FL260nm) FA Conc. [Log10mM] FA Conc.[μM]

根 0.1021 -1.1048 78.6

葉① 0.1868 -0.9754 106.0

葉②　 -0.1873 -1.6180 24.1

葉③ -0.0141 -1.2962 50.6  
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以上より、植物体に存在する FA 濃度は、光照射時に発生する一定波長の蛍光

の強度を測定することにより、算出可能であることが示された。 
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