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Chapter 1

Introduction






1.1 Purposes

This dissertation is concerned with the design methods for bracing of steel members
and aimed at developing the methods for increasing the elastic buckling strength.

The design methods for bracing of steel structure are presented in Design Standard
for Steel Structures”, Recommendation for Limit Design of Steel Structures®,
Recommendations for the Plastic Design of Steel Structures® and Recommendations for
Stability Design of Steel Structures®.

This study referred to bracing of steel member consists of 1) bracing for compressive
members to varying axial force in a staircase pattern, 2) relation between elastic
buckling strength and bracing stiffness of H-shaped members with lateral bracing or
torsional bracing when subjected to axial force, end moments and uniformly distributed
load. The purposes of each part are shown as follows.

1) As for the members subjected to varying axial forces in a staircase pattern such as
pony truss, the buckling strength of the members is larger than that of the members
subjected to uniform axial force®. In references 1) and 4), the equation is presented for
calculating the effective length factor of members that has two parts subjected to
different axial forces (Fig. 1(b-1) and (c-1)). When calculating the effective length
factor of the member that has three parts subjected to different axial forces, the axial
force in a staircase pattern is considered as that subjected to the axial force that varies
continuously( Fig. 1(b-2) and (c-2)). The effective length can be calculating by using the
equations for the effective length of the members subjected to axial force that varies
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Fig. 1.1 Models of compressive members subjected to
varying axial force in a staircase pattern



continuously which are presented in references 1) and 4).

The relation between the buckling strength and the bracing stiffness and the minimum
bracing stiffness that the effective length can be taken as brace spacing are presented
when the member is supported by equally spaced brace®. The required nondimensional
bracing stiffness k is unity when there is one supporting point and k=1.5 and 1.7 when
there are two or three supporting points respectively®. However, there are few studies
about the buckling strength and bracing of members subjected to varying axial force in a
staircase pattern.

The bracing frames should have sufficient stiffness and strength. In reference 4), the
relation between the compressive force and bracing force of the elastic compressive
members and the bracing force of the inelastic compressive members are presented. And
the sufficient bracing force is 2% of the compressive force when the bracing stiffness k
is greater than 3. However, this result was derived from the analytical and the
experimental studies by using the compressive members subjected to uniform axial
force and the relation between bracing force and axial force of the members subjected to
varying axial force is not clear.

Therefore, as the first target of this dissertation, the problems of bracing for
compressive member subjected to varying axial force in a staircase pattern will be
discussed.

2) H-shaped beam or beam-column members are sometimes restrained laterally
between their ends by elastic lateral supports to prevent lateral buckling and
flexural-torsional buckling. Typical examples include (1) the beam-column members
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Fig. 1.2 Examples of bracing used in industrial buildings
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which are laterally restrained by tie beams used for industrial buildings and (2) the
girders which are supported by secondary beams in general steel structures or tie beams
in industrial buildings. Figure 1.2(a) presents a typical steel industrial building whose
H-shaped beams and beam-columns are supported by tie beams as bracing. Figure
1.2(b) shows an example of continuous bracing that the H-shaped beams or
beam-columns are supported by purlins.

In Recommendation for Limit State Design, the required bracing stiffness and the
required bracing force are shown for flexural buckling of compressive members, lateral
buckling of members subjected to bending moment and beam-columns respectively.
These design methods for bracing are based on the study results of bracing for flexural
buckling of compressive members subjected to the uniform axial force. Most of studies
commencing with references 5) and 6) target the members subjected to uniform axial
force although the studies investigated the flexural buckling of the members with
multiple bracing, initial imperfection and inelastic buckling behavior.

As for the flexural-torsional buckling of H-shaped beam-columns or the lateral
buckling of beams, the research results of bracing of compressive members subjected to
uniform axial force are introduced by considering the flexural-torsional buckling or the
lateral buckling as the flexural buckling of the compressive flange. Compressive
member subjected to uniform axial force corresponds to the compressive flange of
H-shaped beam which is subjected to uniform bending moment. However, the bending
moment generally varies along the member axis.

Some studies have focused on the problems of bracing for beam-columns, such as
references 7) and 8). The buckling equation of beam-columns with a sandwich section
when single lateral bracing and single torsional bracing is attached at the midspan of the
member was derived by using the Rayleigh-Ritz method. The effects of loading
conditions, bracing stiffness and resistance by St. Venant torsion on the
flexural-torsional buckling strength were presented”. However, few studies show
systematically the relation between buckling strength and bracing stiffness of the
H-shaped member with lateral bracing or torsional bracing subjected to axial force, end
moments concurrently. The effects of the size of cross section, the length of member
and the position of bracing on the buckling strength are not clear.

As for the bracing for beams, most of studies referred to the lateral bracing when the
beam members are subjected end moments and distributed load concurrently, such as
references 10) ~14). However, all of these studies are about the continuous bracing, and
the relation between buckling strength and bracing stiffness and the influence on



bracing force in the cases of discrete lateral bracing and discrete torsional bracing are
not clarified. Although reference 15) relates to the influence of lateral bracing and
torsional bracing on the lateral buckling strength of beams, and the relation between
buckling strength and bracing stiffness is presented, the distributed load is not
considered in the analytical model.

Hence, the problems on discrete lateral bracing and discrete torsional bracing for
beam-columns and beams under the real loading conditions will be discussed and the
influences of size of cross section, length of member and position of bracing will be
taken as parameters.



1.2 Outline

This dissertation consists five chapters. Chapter 1 is the introduction of this
dissertation and Chapter 5 summaries the results of this research. The abstract of other
chapters are shown as follows.

Chapter 2 Bracing for Compressive Members Subjected to Varying Axial Force
Chapter 3 Relation between Elastic Buckling Strength and Bracing Stiffness of
H-shaped Beam-column simply supported at Both Ends

Chapter 4 Bracing for buckling of members with pinned ends subjected to end

moments and uniformly distributed load

Detail introduction for each chapter is shown as follows.

Chapter 2 is aimed to calculate the effective length factor of compressive member
which is subjected to varying axial forces in a staircase pattern by using the buckling
slope deflection method. The required bracing stiffness to take the effective length as
brace spacing is presented. In addition, the behavior of deflection and the bracing force
are shown when the member with initial deformation is subjected varying axial force in
a staircase pattern.

Chapter 3 is concerned with the effect of the bracing stiffness on the elastic buckling
strength of H-shaped members that are subjected to compressive force and end moments.
The buckling equations are presented by Rayleigh-Ritz method when the H-shaped
member is simply supported at both ends and discrete or continuous lateral bracing and
torsional bracing are attached. The relation between elastic buckling strength and
bracing stiffness are presented when the member is subjected to axial force and end
moments and the bracing is attached at the midspan of the member. The relation
between the compressive force and the required bracing stiffness in order that the
deflection and the torsional angle at the bracing point are zero and the equation to obtain
the required bracing stiffness is presented.

Chapter 4 focus on the effect of bracing stiffness on the elastic buckling strength of
H-shaped members that are subjected to end moments and uniformly distributed load.
The relation between the end moment ratio and the nondimensional bending moment
are presented by taking the nondimensional distributed load ratio, the bracing stiffness,
the cross section, the length and the position of bracing as parameters. Examples of the
required bracing stiffness when the bracing strength equals the elastic buckling strength
equals the elastic buckling strength when the member is subjected to end moment only
is presented.
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Chapter 2

Bracing for Compressive Members Subjected to

Varying Axial Force






2.1 Introduction

The buckling strength of the members in truss structures subjected to varying axial
force in a staircase pattern is larger than that of the members subjected to uniform axial
force V. In references 1) and 2), the equation is presented for calculating the effective
length factor of the member that has two parts subjected to different axial forces. When
calculating the effective length factor of the member that has three parts subjected to
different axial forces, the axial force in a staircase pattern is substituted to the axial
force that varies continuously. The effective length can be calculated by using the
equations for the effective length of the member subjected to axial force that varies
continuously, which are presented in references 1) and 2).

As for the bracing of the compressive member, there are a lot of studies including
reference 3). The relation between the buckling strength and the bracing stiffness and
the minimum bracing stiffness that the effective length can be taken as brace spacing are
presented when the member is supported by equally spaced brace . The required
nondimensional bracing stiffness k is unity when there is one supporting point and k
=1.5 and 1.7 when there are two and three supporting points respectively ». However,
there are few studies about the buckling strength and the bracing of the member which
Is subjected to varying axial force in a staircase pattern.

On the other hand, the bracing frames of the compressive members should have
sufficient stiffness as well as sufficient strength. As to the problem about the stability of
the top chord of the pony truss, the effective length factor for various values of the
transverse frame and the brace spacing have been presented *.

In reference 1), the relation between the compressive force and the bracing force of
the elastic compressive member and the bracing force of the inelastic compressive
member are shown. And the sufficient bracing force is 2% of the compressive force
when the nondimensional bracing stiffness k is greater than three. However, this result
was derived from the analytical and the experimental study by using the compressive
members subjected to uniform axial force and the relation between the bracing force
and the axial force of the member subjected to varying axial force is not clear.

In this study, the effective length factor of the members subjected to varying axial
force is calculated by using the buckling slope deflection method and the buckling
modes are shown in Section 2.2. The axial force varies in a staircase pattern and the
members have one and two supporting point. In addition, the required nondimensional
bracing stiffness to take the effective length as brace spacing is presented.

Section 2.3 shows the basic findings about the bracing force at the member with
initial deformation subjected to varying axial force in a staircase pattern. The

15



relationship between the axial force and the slope angle are calculated and the
comparison among the axial force, the bracing force and the bracing stiffness are
presented.

16



2.2 Bracing for compressive member subjected to varying axial force

2.2.1 Analytical model

Figure 2.1 shows the analytical model when the compressive member with brace is
subjected to the axial forces that vary in a staircase pattern

Figure 2.1 (a) shows the model when there is one brace at the middle of the member.
The axial force subjected to the right part is N; and the axial force subjected to the left
part is No=aN; (-1=a=1). Figs. 2.1(b) and (c) show the model when there are two
braces set in equal space along the whole member. The axial force pattern of the model
shown in Fig. 2.1 (b) is a staircase pattern. The axial force subjected to the right part is
N1, to the middle part is N,=aN; (0<<a=1) and to the left part is N3=bN; (-1<b=1).
The axial force pattern of the model shown in Fig. 2.1 (c) is a convex pattern. The axial
force subjected to the middle part is N; and to the right and the left parts are N,=aN; (0
<a=1). In this study, N; is the general expression for N1, N and Ns.

2.2.2 Buckling equations

The buckling equations are calculated by using the buckling slope deflection method.
In this section, the procedure to obtain the buckling equation is presented.
a) When there is one brace [Fig. 2.1 (a)].

It is assumed that member 1 and 2 are subjected to the slope angles R and -R
respectively and joint 2 suffers a deflection angle & (Fig. 2.2), and we obtain Eq. (2.1.1)

N,=aNy ||||||]]]] N.=bN, N2=aN Nm |\12:51N1[|]]]]]'\'1 N,=aN;
NN, NN N,-N N,-N
Nz 1 — 2 aNe X Mo g a3 4Nk Mg b2 w2 x
"% iK El A "% T\l »% El A
y = G s IPEIPE LI
R I I B J [ JE | |
(a) One brace (b) Two braces (c) Two braces
(staircase pattern) (staircase pattern) (convex pattern)

Fig. 2.1 Analytical model

N, . Member 1 Member 2 Member 1 Member 2 Member3 Member 1 Member 2 Member3
R -2 7 X Y X 4

4 X 1
Rs}’ ﬁ »i

3 Ni x

LR R

s==zo7

| I | | [
(b-1) Slope angle
(@) One brace (b) Two braces

Fig. 2.2 Calculating model
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and Eq. (2.1.2) by applying the slope-deflection equation for stability.

Mo = SH(E0, —6R) Moy == (50, +6R) (21.1)

Qu = _%(52‘92 —w,R) Q= _%(5182 +oR) (2.1.2)

In the equations mentioned above, E is the Young’s modulus, | is geometrical
moment of inertia. i, G, &, @, 3 and & are the stability functions (i=1, 2, 3).

Assuming z, = |,f% , their relations with Z; are shown as follows.

1) When N; is compressive force

o Zisin Z,-Z7cosz, 5 - z%-2;sinz,
' 2(1-cosZ)-Z;sinZ, ' 2(1-cosZ)-Z;sinZ,
o2 _ﬁ_z ,
G = T w; =& — L (2.2)
7,20!|+ﬂ| 5i:27/i_zi2
2) When N; is tensile force
Z;sinh Z, -2, cosh Z, z?-2;sinh Z,
a; = - Bi = .
' 2(coshZz; —-1)—Z;sinh Z, 2(coshZ; —1) - Z, sinh Z,
a?— B
G =— ' o, =&+27 (2.3)
a;
vi=o+p 5i:27i+zi2

In which, suffix i corresponds to suffix of the axial force N;.
Based on the force balance conditions, we get these equations as follows.

My + My, 22[(51"‘52)92 —(&-&)R]=0

(2.4)
= (5 +&)0,-(&-&,)R=0
Q-Q +F=—ﬂ(§¢9 -, R)+E(§9 +wR)+KIR=0
21~ a3 |2 \92% @ 2 (1% 25)
3(51_52)02+(601+0)2+2|(7Z'2)R=0
In which, F=KIR, k= KZI
27 El

F: the stiffening force, K: the bracing stiffness, k: the nondimensional bracing stiffness,
My; and Mgs: the bending moment at joint 2 of member 1 and 2 respectively, Q,; and
Q23: the shear force of member 1 and 2 respectively.

18



In order that the equation-set that is made of Eq. (2.4) and Eqg. (2.5) have nontrivial
solution, the determinant as follows must be equal to zero, that is

&+& G-%

=0
-6 o +o,+ 2k 72 (2.6)

This is the buckling equation when there is one brace.
b) When there are two braces [Fig. 2.1 (b) and (c)]

As mentioned above, the procedure for the cases of with two braces are similar with
the case of one brace, which is presented previously. The buckling equations when there
are two braces are shown as follows.

i) Situation 1: the axial forces vary in a staircase pattern [Fig. 2.1 (b)].

Gata, f Y2=% 72
+a -
B, Sta, V2 i 72— & -0 2.7)
72— &3 V2 0y + @y + 2Kz 0,
V2 72—& d, 52+a)1+2k7r2

i) Situation 2: the axial forces vary in a convex pattern [Fig. 2.1 (c)].

Sta B V1= "
+a -
B Sty N . n-=6 -0 2.8)
=5 " o+, +2km &
N -5 Oy 51"'602*'2k772

The effective length factor for brace spacing y and the effective length factor for
whole length j, are defined as below.
7°El  7*El  7°El |
N, = = = ,y=—% 2.9
T el @9

In which, n is the number of the members.

2.2.3 Buckling modes

The differential equation of the member subjected to axial force is shown as Eq.
(2.10).

Ely"Y +Ny"=0 (2.10)

In general, the equations of buckling modes are represented as Eq. (2.11) and (2.12).
1) When N is compressive force:

Z v X
yj:lecosT'x+Cj23|nI—'x+Cj3T+Cj4 (2.11)
2) When N is tensile force:
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Z . Z,
yjzcjlcoshT'x+Cj25|nhT'x+Cj3|§+Cj4 (2.12)

3) Specially, when N=0, Eq. (2.10) is rewritten as Eq. (2.13) and the deflection curve is
given by Eq. (2.14)

Eiy — 0 (2.13)
1 X 1 X X
Y :Ecjl(T)z+§C12(T)2+Cj3(|_)+ci4 (2.14)

In which, j is the member number (j =1, 2, 3)

2.2.4 Analytical parameters
1) For Section 2.25~2.27, the ratio of axial force:
(i) One brace [Fig. 2.1(a)]: a=-1,-0.5,0,0.5, 1
(i) Two brace :
staircase pattern[Fig. 2.1(b)]: (a, b) =(1,1), (3/5,1/5), (1/3, -1/3)
convex patten [Fig. 2.1(c)]: a= 2/5
2) For Section 2.2.8, the effective length fator: y=1,1.1,1.2,1.3,14,15

2.2.5 Relation between effective length factor » and nondimensional bracing
stiffness k
Fig. 2.3 shows the relation between the effective length factor » and the
nondimensional bracing stiffness k. Fig. 2.3(a) shows the case that there is one brace
and Figs. 2.3(b) and (c) show the case that there are two braces.

According to Fig. 2.3(a), when the axial force is uniform (a=1) and the
nondimensional bracing stiffness k is greater than unity, the effective length factor for
the whole length »is 0.5 ('in this case, the effective length factor for the brace spacing
y=1). According to Figs. 2.3(b) and (c), when the axial force is uniform (a,b=1) and the
nondimensional bracing stiffness k is greater than 1.5, y»is 0.333 (y=1).

701 o1 ' ' Vo)
NIRRT N T
A\ I I i TR = St
06 / P i B ) SRR SRR A R 06
N L s\ TR s :
02 02 0 I — 1
0 1 2 3 4 ks 0'20 1 2 3 4 5
k
(a-1) One brace (a-2) Two braces (a-3) Two braces ¢
(staircase pattern) (convex pattern)

Fig. 2.3 Relation between bracing stirrness k and effective length factor »
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When the axial force is varying (a,b#1) and the value of the nondimensional bracing
stiffness k is the same, the effective length factor y, becomes smaller as the axial force
ratio decreases. That is to say, the ratio of axial forces is larger, the effective length
factor j is larger when the nondimensional bracing stiffness k is the same value.

The effective length factor decreases as the nondimensional bracing stiffness
increases, however, when the nondimensional bracing stiffness k is more than 2, the
variation of the effective length factor y is very slight.

Fig. 2.4 and 2.5 show the buckling modes when there are one brace and two braces
respectively. These are a series of buckling modes about the ratio of axial force, when

(@k=0 (b) k=0.5 (c)k=3
Fig. 2.4 Buckling mode (one brace)

k=05~ 1

| a _yyg w7

b:—l@ 7
0 ks 0N ,,,,,,,,,,,,,,,,, 0
/i .
0 0.2 0.4 0.6 0.8 1
¢
(a-2) k= 05

¢
(b-1) k=0 (b-2) k=0.5 (b-3) k=3
(b) Convex pattern

Fig. 2.5 Buckling mode (two braces)
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the value of the nondimensional bracing stiffness k is defined. In Figs. 2.4 and 2.5, the
horizontal axis & represents the position on the member. £ is the nondimensional value
obtained by normalizing the whole length of the member. When there is one brace &=
x/21 ,and when there are two braces, &= x/3l.

According to Fig. 2.4, when k equals 0 and 0.5, the position of maximum deflection
moves from the center to the right side as the axial force ratio decreases. When k equals
3, the deflection decreases as the axial force ratio decreases in the left part.

According to Fig. 2.5(a), when k equals 0.5 and 3, the deflection at the right part is
almost same without reference to the axial force ratio and the maximum deflection
decreases as the axial force ratio decreases at the left part (Fig. 2.5(a-2)) and at middle
part and the left part (Fig. 2.5(a-3)). When the axial force varies convexly (Fig. 2.5 (b))
and k equals 0 and 0.5, the buckling modes are similar regardless of the axial force ratio.
When k equals 3, the deflection becomes smaller at the left and the right side as the
axial force ratio decreases.

2.2.6 Comparison with design equations

According to reference 2), there is a rule for the design of the effective length Iy.
When the two parts of the compressive member are subjected to different axial forces as
shown in Fig. 2.1 (a), the member can be designed as the compressive member
subjected to uniform axial force, which is the larger one. Remarkably, if one of the axial
force is tensile, we should use the negative value of the tensile force to calculate.
2

l, >0.5l (2.15)
In which, I: the length of member
N;: the larger axial force N,: the smaller axial force

Table 2.1 shows the comparison of the effective length factor (y:) obtained by using

l, =1(0.75+0.25

Table 2.1 Comparison of the effective length factor

N/N; oL o2 | 1009 4100 (%)
(Eq. 2.6) | (Eq. 2.15) Vo1
1 1.000 1.000 0.00
0.5 0.869 0.875 -0.69
0 0.727 0.750 -3.16
-0.5 0.591 0.625 -5.44
-1 0.500 0.500 0.00
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the buckling slope deflection method and the effective length factor (j0,) obtained by
using Eqg. 2.15 in reference 2). According to Table 1, the maximum error is 5.44% when
the axial force ratio N2/N;=-0.5.

2.2.7 Required bracing stiffness

At this part, the required stiffness ek Will be presented. gk is the bracing stiffness to
take the effective length factor for the brace spacing y. Fig. 2.6 shows the relation
between the effective length factor for the brace spacing yand the required stiffness reqk.
Generally speaking, the value of .k decreases as the value of y increases. Making yas
unity, the value of 4k decreases as the ratio of axial force a becomes smaller.
Remarkably, when there is one brace (Fig. 2.6(a)), the situation that the value of gk is
zero occurred when a is smaller than zero. Tables 2.2 and 2.3 show the required
stiffness when y equals 1 in the cases of one brace and two braces respectively. When
there is one brace, the effective length factor for the whole length 5 is equal to 0.5 and
when there are two braces, j is equal to 0.333.

According to Table 2.2, 4k decreases as the axial force ratio decreases and it is

Table 2.2 gk when there is one brace Table 2.3 reqk when there are two brace
Axial Required Axial force ratio Required
force ratio stiffness stiffness
a b k
a reqk req
1 1.00 1 1 1.50
05 0.750 3/5 1/5 0.818
0 0.500
05 0250 1/3 -1/3 0.597
1 0 2/5 0.528
reqk reqk
! : ' ! ! LANG e O !
BNk 2\ £
N~ 1 X (onoas) o
06N ...t [IINTOD N (9/10,2/5) : ‘
U NG R S N O I
04N fgz0a TN MR TN @) |
' ‘ ; ‘ 0.4 & R E)
o2 L 02iassam)
0 ‘ I

| | ¢ | | 1 =
1.2 1.3 14 1.5 1 11 1.2 13 14 15
4

|
1 11
(a) One brace (b) Two braces

(c) Two braces
(Staircase pattern) (Convex pattern)

Fig. 2.6 Relation between 4k and y
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found that the bracing stiffness is unnecessary when axial force ratio equals -1 in the
case of one brace. According to Table 2.3, gk decreases as the axial force ratio
decreases when there are two braces.

2.2.8 Design chart

Section 2.2.8 focused on the application of this study in design when there are two
braces and the axial force varies in a staircase pattern. It consists of two parts. Part i)
presents a series of figures on the ratio of axial force and the required stiffness k when
the effective length factor for the brace spacing y is constant. Then, Part ii) will give a
specific example to show how to use these in design.

y=1 y=11
0.55
0.650.750.850.951.051.15 1.25 1.35 1.45 b 0.45 0.55 0.75 0.85
b 10.5lo.6 07 080910 11121314 k=15 1 04 [0.5/ 06 07 08 k=09
0.72)- § ...... ARTRHR WY 1.26 |
i i
NZSRT R 1Y HH TR RN S
osi bl sy
I SR
AL ICI R AR Ak
PN I IR NN B N X0 4 L o SERE
1 *‘1%5\3 061 ,07:108:09 | {1 I R N S R R
09k=12 0.3 0.4
0 02 04 06 08 1 0 02 04 06 08 1
a a
(@) y=1 (b) y=1.1

Fig. 2.7 Curves of required stiffness
('staircase pattern )

24



i) Curves of required stiffness

Fig. 2.7 shows the required stiffness k corresponding to different ratio set of axial
forces when the effective length factor y is constant and the axial force varies in a
staircase pattern. In these figures, the horizontal axis is the axial force ratio of the
middle part which is from 0 to 1, and the vertical axis is the axial force ratio of the left
part which is from -1 to 1.

Fig. 2.7(a) shows the case when the effective length factor y is equal to unity. It is
obvious that when the ratio set of the axial force (a, b) is equal to (1, 1), the required
stiffness k equals 1.5 which has been proved in Fig. 2.6(b). The curves of the required
stiffness k shown in this figure are from 0.45 to 1.5. When the axial force ratio of the

y=1.2 y=1.3

0.40.45 k=0.55 1 0.26 k =0.265

,,,,,,,,,,,,,,,,,,,,

e

AL
045

[ o
[ \ [
| ' o
[ oy

C | \ Vo
0. 61 k=02

k=0.3
0 02 04 06 08 1a 0 02 04 06 08 1a
(c) y=1.2 (d) »=1.3

Fig. 2.7 Curves of required stiffness
('staircase pattern )
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middle part a takes the same value, the larger the axial force ratio of the left part b, the
larger the required stiffness k will be. For instance, assuming a=1, when the value of b
equals 0.5, the value of k is between 1.35 and 1.4. However, when b equals 0.2, the
value of k is between 1.3 and 1.35.

Fig. 2.7(b) is the situation when the effective length factor yequals to 1.1. According
to this figure, when the axial force ratio a of the middle part and b of the left part are
both equal to unity, the required stiffness k is between 0.9 and 1 which is smaller than
1.5 when y equals unity. The range of the curves of required stiffness k is from 0.25 to
0.9 which becomes smaller than the case when yis equal to unity (Fig. 2.7(a)).

Fig. 2.7(c) and (d) present the curves of required stiffness k as the ratio set of axial

7/:14 7/=15
b b | | =018

1 k:=0.21‘77:7;\u\‘ 1

k=02 ot

.0.04

N | - o
\ I - \ : \ L ‘ L \\‘ _1 | | \ \ | \ T \ RS S . | \
0.06 01 012 k=0.09 0.02 0.03 0.05 0.07 k=0.09
0 02 04 06 08 1 0 02 04 06 08 1
(€) y=14 a (f) =15 a

Fig. 2.7 Curves of required stiffness
('staircase pattern )
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forces varies when the effective length factor y is equal to 1.2 and 1.3 respectively. In
Fig. 2.7(c), the range of the required stiffness k shown in this figure is from 0.15 to 0.55,
while the range of curves in Fig. 2.7(d) is from 0.09 to 0.265.

Fig. 2.7(e) and (f) show the curves of required stiffness k as the ratio set of axial force
varies when the effective length factor y is equal to 1.4 and 1.5 respectively. In Fig.
2.7(e), the range of the required stiffness k shown in this figure is from 0.06 to 0.21,
while the range of curves in Fig. 2.7(f) is from 0.02 to 0.18.

In these six figures about the curves of required stiffness k when the axial forces vary
in a staircase pattern, the range of the curves of required stiffness k becomes smaller as
the effective length factor y increases. To the same ratio set of axial force, the larger the
effective length factor yis, the larger required stiffness k will be obtained. For example,
assuming the ratio set of axial forces (a, b)=(1,0.5), required stiffness k is between 0.4
and 0.45 when the effective length factor yis equal to 1.2, while in Fig. 2.7(d) the value
is close to 0.265.

Fig. 2.8 presents the relation between the ratio of axial force and the required stiffness
k when the axial force varies convexly. In this figure, the horizontal axis is the ratio of
axial force a that is from 0 to 1, and the vertical axis represents the required stiffness k.
According to Fig. 2.8, when the axial force ratio a is constant, the larger the effective
length factor yis, the larger the required stiffness k will be. As the value of y increases,
the effect of the axial force ratio a on the required stiffness k becomes smaller.

i) Example for design

Figure 2.9 presents an example of
truss beam which has 12 panels and the
length of span is 12000mm. In Fig.
2.9(a), the left end of the beam is a pin
end, while the right end is supported by
a roller joint. To prevent the lateral
deflection, five braces are set on Joint
A~E at the top chord and Joint A’~E’ at
the bottom chord respectively. Each
top-chord joint suffers 6kN in the
vertical direction. The ends of the beam
are subjected to the bending moment
which is 60kN + m on the left and

) ) ) Fig. 2.8 Curves of required stiffness
100kN * m on the right in a clockwise ( convex pattern )

direction. In addition, the height of the
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truss beam is 800mm.

Fig. 2.9(b) shows the material information about the cross section of each member.
As the figure shown, the chord members are 114.3¢4-4.5 and the web members
are48.6¢-3.2.

The top chord between Joint A and B which is covered by dash line in Fig. 2.10(a) is
chosen as the calculating model. The largest axial force N; is compressive force which
is equal to 121.1kN on the right, the axial force N, in the middle is compressive force
which is equal to 109.1kN, and the axial force N3 on the left part is compressive force
which is equal to 87.24kN. The ratio of axial force in each part is shown as Fig. 2.10(b).
The ratio of axial force a in the middle is equal to 0.90, while the ratio of axial forces on
the left b equals 0.72.

In this condition, the effective length factor y can be gotten by the buckling slope
deflection method when the nondimensional bracing stiffness k is equal to 0. In the
same way, the required stiffness k can be obtained when the effective length factor yis
constant such as y=1. The results by the buckling slope deflection method are shown as
Table 2.4,

In addition, if using the figures presented in the preceding sections, the

| 3000 J 3000 | 3000 | 3000 \
T T T
(a) Load condition

1143¢-4.5 ¥

Chord: 114.3¢-4.5
A=1552 mm? -~ . — —J
1:=2340 000 mm*
1=38.9 mm

Web: 48.6 ¢-3.2

A=456.2 mm?
l,=118 000 mm*
i=16.1 mm

TR
Ny

800

. . . 1000
where, i: radius of gyration l

-

(b) Material information
Fig. 2.9 Example of truss beam
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approximation of the results can be gotten quickly. When the bracing stiffness k is set to
equal 0, we can look up Fig. 2.3(b) to find that, the effective length factor for the whole
length » is close to 0.9. When the effective length factor for the brace spacing y is
decided to equal unity, we can use Fig. 2.7(a) to find that, the value of the required
stiffness k is between 1.25 and 1.3.

i -87.24 -109.0-121.1:-127.3-125.6-116.4 -99.77 -75.61-43.94-4.780 41.88 96.04

75.00 99.54 116.6 1262 128.3 122.9 110.0 89.56 61.65 26.24 -16.68 -67.09-125.0

(a) Axial forces of chord members

N;=-121.1kN

=- Ny
N,=-109.0kN N,=aN,
Ng= -87.24kN Na=bNs
a=Na Z109.0_ 44,

N, —121 .1

N, -87.24 _ _ _

b=5"="177 1~ %7  (b) Axial force ratios for calculating model

Fig. 2.10 Calculating model

Table 2.4 Results for the model by buckling slope deflection method

Bracin Effective length Effective length
Axial force ratio ) g factor for the brace | factor for the whole
stiffness )
spacing length
N N, ! l
v ¢ i &k
0 2.79 0.930
0.90 0.72
1.26 1 0.333
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2.3 Bracing for columns with initial deformations subjected to varying
axial force

Following is the procedure of the equilibrium equation about the load-deflection
relationship obtained by the buckling slope deflection method.

2.3.1 Setting of problem

The analytical models are shown as Fig. 2.11 and 2.12. Fig. 2.11 presents the axial
force pattern. Fig. 2.11(a) is the case of one brace. The axial force subjected to right part
is N; and left part is N,=aN; (-0.5=a=1). Fig. 2.11(b) and (c) show the cases of two
braces when the axial force varies in a staircase pattern or convexly. In Fig. 2.11(b), the
axial force subjected to the right part is Ny, the middle part is N,=aN; (0O<a=1) and the

N N, N

N_=aN — -

N,=aN; N ZbN zony \ N _aw N,=aN,
Memberlqz Member 2 Memberwgmbangembfm Member 1 Member 2 Member 3
1 3 1 X 1 wmp2 J4um 4, X

¥z K 3 B 28 "% % % TN "% % % TR il
yy K K yy K K
0 ] | | L] [ | L]
(a) One brace (b) Two braces (c) Two braces
(Staircase pattern) (Convex pattern)

Fig. 2.11 Axial force pattern

(a-1) Initial deformation (a-2) Slope angle (a-3) Deflection angle
(a) One brace

| Fo=K(d-&) Fs=K(&-&)
I

| |

(b-1) Initial deformation (b-2) Slope angle (b-3) Deflection angle
(b) Two braces

Fig. 2.12 Deformation in different cases
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left part is N3=bN; (-1=b=1).in Fig. 2.11(c), the axial force subjected to middle part is
N; and the right and the left parts are subjected to N,=aN; (0<a=1).

Fig. 2.12 shows the deformation in different cases. Fig. 2.12(a) is the case of one
brace. In Fig. 2.12(a-1), Ry is the rotational angle before loading. & is the initial
deformation at the middle point of the member. In Fig. 2.12(a-2), R and ¢ present the
slope angle and the deformation under loading, respectively. F is the bracing force. The
deflection angle & at Point 2 is shown as Fig. 2.12(a-3). Fig. 2.12(b) shows the case of
two braces. In Fig. 2.12(b-1), Ry is the rotational angle before loading. & is the initial
deformation at supporting points of the members. In Fig. 2.12(b-2), R; and Rz are the
slope angles at the supporting ends. & and &; are the deformation at points 2 and 3
respectively when the members are under loading. F, and F3 are the bracing forces
whose relation with deformation is shown in this figure. In Fig. 2.12(b-3), & and & are
the deflection angle at Point 2 and Point 3.

Moreover, K represents the stiffness of brace, El is the bending stiffness and | is the
brace spacing. The initial deformation curve is not determined by any functions,
however, it is assumed that the initial deformation is a symmetric shape and the initial
rotational angle of the member at the middle point is zero.

2.3.2 Buckling equations
a) When there is one brace [Fig. 2.11(a)]

We can obtain Eq. (2.16) and Eq. (2.17) by applying the slope-deflection equation for
stability which is also used in Section 2.2.

My, =${§2‘92 _gz(R_ Ro)} Mg =${§192 +§1(R_RO)} (2.16)

Q= _%(5292 —0,R+5HRy)  Qp= _%(5192 +oR-§R,) (2.17)

In the equations mentioned above, & and @ are the stability functions (i=1, 2)
which has been mentioned in Section 2.2 (Eg. (2.2) and Eq. (2.3)). & is the slope angle
at point 2 and R is the rotational angle under loading.

Based on the force balance conditions, Eq. (2.18) and (2.19) are obtained.

M, +M,; =0

2.18
(951 +&, )92 + (51 =& )R = (51 =& )Ro ( )
Qy—Qu+F =0
(& -&)0, + (o, + w, + 2k7®)R (2.19)
(5 +&+2ka? R,
In which,
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KI KPP _7El

F=KIR-R,), k=——= N, =
(R=Ro) 2N.  27%ElT F P

F: the bracing force, k: the nondimensional bracing stiffness, Ng: the Euler’s buckling
load, M2; and Mas: the bending moment at Point 2 of Member 1 and 2 respectively, Q21
and Qas: the shear forces of Member 1 and 2 respectively.

Eq. (2.20) is the buckling equation obtained by the buckling slope deflection method
when the member with one brace has an initial deformation.

Sté& =% 0,
&E-& o+, +2kr? )\ R
_ (& - SR, (2.20)
(G +&+ 2|(71'2)Ro

b) When there are two braces [Fig.2.12(b) and (c)]

The procedure for the case of two braces is similar to that for the case of one brace.
Therefore, the buckling equations when there are two braces are presented as follows.
i) Situation 1: the axial forces vary in a staircase pattern [Fig. 2.11(b)].

&3+ a, B> 72— V2 0,
P a+& 72 Y2—61 05
P& +a, B t+ay 53"‘272_222_232"'2'(7[2 272_222 Ry
P t+a, a; =&+ 5o 27/2_222 _222_212+272 +§1+2k”2 Rs
-&R, (2.21)
3 &Ry
(&3 +2kz?)R,
—(& +2k7?)R,
i) Situation 2: the axial forces vary convexly [Fig. 2.11(c)].
Sty B n—5% 71 0,
P a+&; " 1% 05
p1—& +ag Pty &2 "‘271_222_212"'2k7f2 27/1_212 Ry
Pty =&+ py 271_212 _222_212+271+52+2k”2 Rs
-&R, (2.22)

&Ry
(&, +2kz%)R,
— (&, +2kz )R,

2.3.3 Analytical parameters
The analytical parameters used to calculate in Section 2.3 are chosen as follows:
(1) The axial force ratio:
(i) One brace [Fig. 2.11(a)]: a=-0.5,0,0.5, 1
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(if) Two braces:
Staircase pattern [Fig. 2.11(b)]: (a, b) = (1, 1), (3/5, 1/5), (1/3, -1/3)
Convex pattern [Fig. 2.11(c)]: a=1, 3/5, 2/5, 1/5
(2) The nondimensional bracing stiffness: k = 0.5, 1,2
(3) The initial rotational angle: Ro = 0.001, 0.004

2.3.4 Relation between rotational angle R and nondimensional axial force p
a) When there is only one brace [ Fig. 2.11(a)]

Fig. 2.13 shows some figures about the relation between rotational angle R and the
nondimensional axial force p when there is only one brace. Fig. (a), (b) and (c) show the
cases when the initial rotational angle Rq equals 0.001 and the nondimensional bracing
stiffness k equals 0.5, 1 and 2 respectively. While Fig. (d), (e) and (f) are the cases in
different nondimensional bracing stiffness k which is equal to 0.5, 1 and 2 when the
initial rotational angle Ry is equal to 0.004 and the nondimensional bracing stiffness k
equals 0.5, 1 and 2 respectively. In each figure, there are four curves shown in different
axial force ratio a which is equal to 1, 0.5, 0 and -0.5 respectively.

Generally speaking, the value of the nondimensional axial force p becomes greater as
the value of the rotational angle R increases, and the effect of the rotational angle R on
the nondimensional axial force p becomes smaller as R increases. However, the value of

p=N,/N_ p=N/N_ p=N,/N_
e e [ e 7%22
12 s 12 —.o..1po 1.zfﬁ\ I I :
o 4| f¥ —L ' A 100
1 1 00 1 : : ‘
ca=05 | a=-05 5o
08 p20 0.8 - o8 S REEEE R
a=1
06§ ‘ : 543 06 0.6 .
0418/ | 04 0.4 . k SRR
=2
02 02 02 U RZ0001
|

0 oLt | |
0 0.005 0.01 0.015 0.02 0 0.005 0.01 0.015 0.02 0.005 0.01 0.015 0.02

R R R
(a) k=0.5, Rp=0.001 (b) k=1, Rp=0.001 (c) k=2, Rp=0.001
p:NllNE p p
e R e e Rt T I I 1 ST IR pe S S v-( R | -
R R RIS SRt | SRS I 1;; 1- : 3 3 100
0.8---- S ....0B20 08 1 ‘ N 0.8 a:O : a;-O,.,{S a=0.5
061§ 068 gy AT05  as05 | gl gl N
7 ‘ k20.5 g 1 k=1 ] ‘ k=2
02§/ —i~a=-0.5— AR Rq}:'0.0(7)4” 0.2~ ¥ ~a=le R(:):O'OO4” 02§ T TTTURG=0.004
5 0.(‘)1 o.(‘)z 003 oos D 00l 00z 003 004 % 00l 00z 003 004
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(d) k=0.5, Rp=0.004 (e) k=1, Rp=0.004 (f) k=2, Rp=0.004

Fig. 2.13 Relation between rotational angle R and
nondimensional axial force p (one brace)
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p will not increase all the time, and it will approach constant as the value of p increases.
the approached values in different axial force ratios are shown in the right side of each
figure. When the rotational angle R is same, the value of the nondimensional axial force
p becomes greater as the axial force ratio a decreases.

When the initial rotational angle Ry and the axial force ratio a is same, the value of
the nondimensional axial force p obtained under the greater nondimensional bracing
stiffness k is greater than that obtained under the smaller k. For instance, Fig. 2.13(a) is
the case when the nondimensional bracing stiffness k equals 0.5, while Fig. 2.13(b) is
the case when the value of k is unity. The bold line represents the case when the axial
force ratio a equals unity. In these two figures, the asymptotic value of p in Fig. 2.13(a)
is 0.643 which is smaller than the value in Fig. 2.13(b) which is equal to 1.00.

When the initial rotational angle Ry is different and other parameters are consistent,
the value of the nondimensional axial force p of the case with smaller initial rotational
angle approaches the final asymptotic value faster than that of the case when the
nondimensional axial force p is larger. For example, the value of the nondimensional
axial force p approches the asymptotic value when the rotitional angle R is 0.02 in Fig.
2.13(a), while the nondimensional axial force p hasn’t reached the asymptotic value,
even though the value of the rotational angle R has been over 0.03 in Fig. 2.13(d).

It should be metioned, when the axial force ratio a and the nondimensional bracing
stiffness k are same, the asymptotic value is consistent even if the initial rotational angle
Ro changes. For example, when the axial force ratio a is equal to 1 in Fig. 2.13(a) and
Fig. 2.13(d), the asymptotic value of the nondimensional axial force p is 0.643,
whatever the initial rotational angle Ry is.

b) when there are two braces
i) Situation 1: the axial force varies in a staircase pattern [Fig. 2.11(b)].

Fig. 2.14 shows the relation between the rotational angle R and the nondimensional
axial force p when there are two braces and the axial force varies in a staircase pattern.
Fig. 2.14(a), (b) and (c) show the cases when the initial rotational angle Ry equals 0.001
and the nondimensional bracing stiffness k equals 0.5, 1 and 2 respectively. While Fig.
2.14(d), (e) and (f) are the cases in different nondimensional bracing stiffness k which is
equal to 0.5, 1 and 2 when the initial rotational angle Ry is equal to 0.004 and the
nondimensional bracing stiffness k equals 0.5, 1 and 2 respectively.In each figure, there
are three curves shown in different axial force ratio set (a, b) which is equal to (1, 1),
(0.6, 0.2) and (1/3, -1/3) respectively.

The basic features of the figures are similar with the situation when there is only one
brace. the value of the nondimensional axial force p becomes greater as the value of the
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Fig. 2.14 Relation between rotational angle R and nondimensional
axial force p (two braces for staircase pattern)

rotational angle R increases, and the effect of the rotational angle R on the
nondimensional axial force p becomes smaller as R increases. The value of p will not
increase all the time, and it will approach constant as the value of p increases. the
approached values in different axial force ratios are shown in the right side of each
figure.

i) Situation 2:  the axial force varies convexly [Fig. 2.11(c)]

Fig. 2.15 shows the relation between the rotational angle R and the nondimensional
axial force p when there are two braces and the axial force varies in a staircase pattern.
Fig. 2.15(a), (b) and (c) show the cases when the initial rotational angle Ry equals 0.001
and the nondimensional bracing stiffness k equals 0.5, 1 and 2 respectively. While Fig.
2.15(d), (e) and (f) are the cases in different nondimensional bracing stiffness k which is
equal to 0.5, 1 and 2 when the initial rotational angle Ry is equal to 0.004 and the
nondimensional bracing stiffness k equals 0.5, 1 and 2 respectively.In each figure, there
are three curves shown in different axial force ratio a which is equal to 1, 0.6, 0.4 and
0.2 respectively.

Because the calculating model used in this part is symmetrical, there is a special
boundary condition than others. That is to say, the buckling load can be reached in some
conditions. For example, in Fig. 2.15(a), there is a salient point in each curve and the
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Fig. 2.15 Relation between rotational angle R and nondimensional
axial force p (two braces for convex pattern)

axial force Nj corresponding to that point is the buckling load. When the initial
rotational angle Ry is different and other parameters are consistent, the value of the
rotational angle R to obtained the buckling load in Fig. 2.15(a) is larger than that in Fig.
2.15(d).

2.3.5 Relation between nondimensional axial force p and bracing force F
a) when there is only one brace [Fig. 2.11(a)]

Figure 2.16 is made of six firgures which are about the relation between the
nondimensional axial force p and the bracing force F. In these firgures, the horizontial
axis is the ratio between the bracing force F and the larger axial force N;, and the
vertical axis represents the nondimensional axial force p. Fig. 2.16(a), (b) and (c) show
the cases that the initial rotational angle Ry equals 0.001 when the nondimensional
bracing stiffness k equals 0.5, 1 and 2 respectively. Fig. 2.16(b), (d) and (f) show the
cases that the initial rotational angle Ry equals 0.004 when the nondimensional bracing
stiffness k equals 0.5, 1 and 2 respectively. In each figure, there are four curves shown
in different axial force ratio a which is equal to 1, 0.5, 0 and -0.5 respectively.

In general, the value of the nondimensional axial force p increases and becomes
constant as the value of the nondimensional axial force p increases. when the value of
F/N; is same, the value of the nondimensional axial force p becomes greater as the axial
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Fig. 2.16 Relation between nondimensional axial
force p and F/N; (one brace)

force ratio a decreases.

When the initial rotational angle Ry is same, the value of the nondimensional axial
force p obtained under the greater nondimensional bracing stiffness k is greater than that
obtained under the smaller k with the same axial force ratio. For instance, Fig. 2.16(a) is
the case when the nondimensional bracing stiffness k equals 0.5, while Fig. 2.16(b) is
the case when the value of k is unity. The positions of the curves in Fig. 2.16(b) are
higher than those shown in Fig. 2.16(a) with the same axial force ratio.

b) when there are two braces
i) Situation 1: the axial force varies in a staircase pattern [Fig. 2.11(b)].

Fig. 2.17 shows some figures about the relation between the nondimensional axial
force p and the stiffening force F when there are two braces and the axial forces vary in
a staircase pattern. The parameters in these figures are same with that set in Fig. 2.14.

The basic features of the figures are similar with the situation when there is only one
brace. The value of F/N; increases as the value of the nondimensional axial force p
increases obviously at the beginning, then approaches some constant in final.In addition,
the asymptotic value of the nondimensional axial force p becomes greater as the ratio
set of axial force (a, b) decreases in the same figure.
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Fig. 2.17 Relation between nondimensional axial force p
and F/N; (two braces for staircase pattern)

i) Situation 2: the axial force varies convexly [Fig. 2.11(c)]

Fig. 2.18 shows the relation between the nondimensional axial force p and the
bracing force F when there are two braces and the axial force varies convexly. The
parameters in Fig. 2.18 are same with these shown in Fig. 2.15.

When R, takes the same one, the value of F/N; obtained under the greater
nondimensional bracing stiffness k is greater than that obtained under the smaller k
corresponding to the nondimensional axial force p with the same axial force ratio. For
instance, Fig. 2.20(a) is the situation when the nondimensional bracing stiffness k equals
0.5, while Fig. 2.20(c) is the situation when the value of k is unity. In these two figures,
the approximation of F/N; corresponding to Fig. 2.20(a) is 0.002 which is smaller than
the value in Fig. 2.20(c) which is equal to 0.012 when the nondimensional axial force p
is equal to 0.4.

The calculating model used in Fig. 2.18 that is same with the case used in Fig. 2.15 is
symmetrical and there is a special boundary condition than others. So that the axial
force N corresponding to the salient point is the buckling load. Comparing Fig. 2.18(a)
and (d), the buckling load is same when the axial force ratio is consistent. However, the
value of F/Ny in Fig. 2.18(b) is larger than that in Fig.2.18(a) when the buckling load is
obtained.
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Fig. 2.18 Relation between nondimensional axial force p
and F/N; (two braces for convex pattern)

2.3.6 Relation between bracing force F and nondimensional bracing stiffness k
Fig. 2.19 shows the relation between the bracing force F and the nondimensional

bracing stiffness k when the nondimensional axial force p is unity. The vertical axis is
the ratio between the bracing force F and the Euler’s buckling load Ng. The horizontial
axis is the bracing stiffness k. Fig. 2.21(a) shows the cases when there is only one brace.
Fig. 2.21(b) and (c) show the cases of two braces when the axial force varies in a
staircase pattern or convexly. The initial rotational angle Ry equals 0.001 or 0.004.

According to these figures, the value of F/Ng decreases as the nondimensional
bracing stiffness k increases. In Fig. 2.19(a) and (c), when the nondimensional bracing
stiffness k is same, the value of F/Ng increases as the axial force ratio a increases, while
the value of F/Ng decreases as the axial force ratio a increases in Fig.2.19. Moreover,
the value of F/Ng is almost same even if the axial force ratio a is different when the
nondemensional bracing stiffness k is larger than 3 in Fig.(b-1) and 8 in Fig.(b-2). That
Is to say, as the nodimensional bracing stiffness k increases, the effect of the axial force
ratio on the value of F/Ng becomes smaller when the axial force varies in a staircase
pattern.
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2.4 Conclusions

The buckling equations when the compressive member with one or two braces is
subjected to varying axial force have been calculated by the buckling slope deflection
method. The main findings are summarized as follows.

i) For Section 2.2

(1) When the ratio of axial forces is larger, the effective length factor yis larger when
the nondimensional bracing stiffness k is the same value.

(2) Buckling modes are presented when the value of the nondimensional bracing
stiffness k is equal to 0, 0.5 and 3. The ratio of axial forces plays an important role
in the variation of buckling mode.

(3) Required bracing stiffness to take the effective length as the brace spacing is
calculated and it decreases as the axial force ratio decreases.

(4) A specific example about the truss beam has been shown in the final part of this
section in order to present the application of this study in structural design.

ii) For Section 2.3

(1) The value of the nondimensional axial force p becomes larger as the value of the
rotational angle R increases. The effect of the rotational angle R on the
nondimensional axial force p becomes smaller as R increases. However, the value
of p will not increase at all times, and it will approach constant as the value of p
increases.

(2) When the value of F/N;is same, the value of the nondimensional axial force p
increases as the axial force ratio a decreases and the value of p with k =1 is greater
than that the value of p with k =0.5, in the case that the axial force ratio is same.

(3) According to Fig. 2.19(a) and (c), when the nondimensional bracing stiffness k is
same, the value of F/Ng increases as the axial force ratio a increases, while the
value of F/Ng decreases as the axial force ratio a increases. Moreover, as the
nondimensional bracing stiffness k increases, the effect of the axial force ratio on
the value of F/Ng becomes smaller when the axial force varies in a staircase
pattern.
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Chapter 3

Relation between Elastic Buckling Strength and
Bracing Stiffness of H-shaped Beam-Column

Simply Supported at Both Ends






3.1 Introduction

The design methods for bracing of steel structure are presented in Design Standard
for Steel Structures ¥, Recommendation for Limit State Design of Steel Structures 2,
Recommendations for the Plastic Design of Steel Structures ® and Recommendations
for Stability Design of Steel Structures .

In Recommendation for Limit State Design, the required bracing stiffness and the
required bracing force are shown for flexural buckling of compressive members, lateral
buckling of members subjected to bending moment and beam-columns respectively.
These design methods for bracing are based on the study results of bracing for flexural
buckling of compressive members subjected to the uniform axial force. That is to say,
most of the studies, including the references 5) and 6), target the members subjected to
the uniform axial force although the studies investigated the flexural buckling of the
members with multiple bracing and with initial imperfection and the inelastic buckling
behavior.

As for the lateral buckling of beams or flexural-torsional buckling of H-shaped
beam-columns, the research results of bracing of compressive members subjected to the
uniform axial force are introduced by considering the lateral buckling and the torsional
buckling as the flexural buckling of the compressive flange. Compressive members
subjected to the uniform axial force correspond to the compressive beam flanges when
the beam and the beam-columns are subjected to the constant bending moment.
However, the bending moment generally varies along the member axis.

In reference 7)~13), problems of bracing of beams and beam-columns are treated,
however, the lateral bracing stiffness and the torsional bracing stiffness, and the
relationship between loading conditions and flexural-torsional buckling strength are not
Clear.

The buckling equation of beam-columns which have sandwich section and which
have one lateral and one torsional bracing at the middle of the member was derived by
using the Rayleigh-Ritz method and the effects of loading conditions, bracing and
resistance by St. Venant torsion on the flexural-torsional buckling strength were
presented™®. However, few studies show systematically the relation between the
buckling strength and the bracing stiffness of the H-shaped member with the lateral
bracing or the torsional bracing subjected to axial force and end moments.

The purpose of this study is to calculate the buckling equation of H-shaped
beam-columns by using the Rayleigh-Ritz method and show the relation between elastic
buckling strength and the lateral and the torsional bracing stiffness. The member is
simply supported at both ends and subjected to compressive force, end moments and
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uniformly distributed load.
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3.2 Analysis

3.2.1 Analytical model

In this Chapter, the flexural-torsional buckling force of H-shaped cross section which
Is subjected axial load and bending moment around the strong axis is presented when
the lateral defection and the torsion are fixed by the brace. The loading conditions and
the boundary conditions are shown as Fig. 3.1. The left end of the member is a hinge
joint and subjected to bending moment M;. The right end is supported by a pin and
subjected to bending moment M,=x M; (x is the end moment ratio, |x|=1). Both ends
are subjected to equal compressive load N and the axial load is constant. w is the
uniformly distributed load. There are four kinds of the bracing attached to the member,
discrete lateral bracing, continuous lateral bracing, discrete torsional bracing and
continuous torsional bracing whose bracing stiffness are denoted by Kiyg, Ky, Kig and
Ku respectively (the subscript i represents the number of the bracing). When the
number of the bracing i=1, the bracing is attached at the midspan of the member, and
when i=2, the bracing is attached at the trisection of the member. This study is to

K2vd
KVC\ 1vd
¢¢¢Q¢¢¢¢‘ VHY Y Y Yy W
Ml h h
N\~ / rad [ |/ 1y
1 v lgd K¢C</ = My=xM;
- KewTyo 112 ,
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(a) Loading conditions and boundary conditions
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% ==A
h

Q z Y1 Nog| (o)
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hog: for discrete bracing \
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>
yyr 2% Kigr Ky
(b) Lateral deflection (c) Position of bracing and
and torsional angle uniform distributed load

Fig. 3.1 Analytical model
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analysis the situation when the both ends of the member are simply supported. The
boundary conditions in this situation are different from the conditions in fact. However,
the boundary conditions of this study are the most basic so that the safe side can be
evaluated.

In Fig. 3.1(b), v(x) and #(x) represent the lateral deflection and the torsional angle of
the center of the cross section respectively. The left supporting point of the member is
selected as the original point and x axis is set along the member as Fig. 3.1(a) shown.
The geometric boundary conditions are v(0)=v(l)=#0)=¢1)=0 and the mechanical
boundary conditions are v"'(0)=v"(l)=¢"(0)=¢"(1)=0. In Fig. 1(c), hog and hg. represent
the distance from the center of the cross-section to the discrete lateral bracing and the
continuous lateral bracing. hy is the distance from the center of the cross-section to the
position subjected to the uniformly distributed load. The torsional bracing is attached at
the center of the cross-section.

In this study, the Rayleigh-Ritz method is used to calculate the approximate value of
the buckling strength, because the exact solution of this problem is hard to obtain.

3.2.2 Total-potential energy

The total-potential energy of this model is shown in Eqg. (3.1). In addition, v(x) and
¢ (X) represent the lateral deflection and the torsional angle along x axis, respectively.
The symbols v', ¢, v and ¢" in Eq. (3.1) represent the first and the second derivatives
of v(x) and ¢ (x) with respect to x.

1El V"2 1 ¢l I+ |El ¢" |
_ y = _ y zZ |42 w! "
H[v,¢]_j0 . dx+2IO[GJ Nt Jadx+J0—2 dx+j0|v|v ddx

—%J.OI Nv'2dx + J:

18 1
+§iZ:l: Ki¢d¢2(xi)+§_[0 K o #dx

W

005 D K)o ) 45 [ Ky oo 3

In Eq. (3.1), the first term is the strain energy of deflection along x axis, the second
term is the strain energy of St.Venant torsion reduced by the axial force effect ', the
third term is the strain energy of warping, the fourth, the fifth and the sixth terms are the
potential energy of external loads corresponding to bending moment M, axial force N
and uniformly distributed load w respectively, other four terms are the strain energy of
discrete lateral bracing, continuous lateral bracing, discrete torsional bracing and
continuous torsional bracing. Definitions of notations are as follows: | is the length of
the member, A is the area of the cross-section, Iy and I, are the second moments of
inertia around y and z axes, J is the St.Venant torsional constant, I, is the warping
constant, E is the elastic modulus and G is the shear modulus. In this paper we define as
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follows:

2
El + 2
MeziNed«/1+R, Ne:ﬂ-—zy’ iy = Y2 = Ml’ ngﬂ’ B ﬂ’ K &’
2 | N, M; M,

(0]

h h GJI? 1 i
UOCE%’ Moa == R= r= , Oy =

Doa. b I
d’ 7°El,,’ 1+R° d

d

Me is the elastic lateral buckling moment when the member is subjected to equal end
moments, N is the elastic buckling load for out-of-plane bending around the weak axis,
ip is the polar radius of gyration of area, m is the nondimensional bending moment, n is
the nondimensional compressive force, £ is the uniformly distributed load ratio, xis the
end moment ratio, d is the distance between the two centroids of the flanges of the
H-shaped cross-section.

Referring the method used in reference 16), the nondimensional bracing stiffness is
defined as follows:

: Kyal®

One lateral bracing: k4 =—4 3.2
g 1vd 167[2E| ( )

: 2K 41°
Two lateral bracing: k,,q = —24 3.3
g 2vd 1672'2E| ( )

: . Kl
Continuous lateral bracing: k,. = —% (3.4)
167°El

- - Klwl
One torsional bracing: k4 =—— (3.5)

7 El

: : 2K ]
Two torsional bracing: Kk, =y (3.6)
T
: . : K el?
Continuous torsional bracing: k"”:z—El (3.7)
VA
3.2.3 Assumption of buckling mode and buckling equation
The buckling modes that satisfy the geometrical boundary conditions and the
mechanical boundary conditions are assumed as follows.
sin &
m’ sin 2
v(x)=>a -d-sinizé=d (, a, - am*) :ﬂg (3.8)
i=1
sinm’ z&
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sin 7&
) sin 2z&

¢(x)=ibi.sini7z§=(b1 b, - b (3.9)

sinm’ z¢&
where £=x/I. By substituting Eqg. (3.8) and (3.9) into Eq. (3.1), Eq. (3.10) is obtained.

H(al,az...am* :bubz,'"bm*>=M2—‘id

where a'=(a;, ay,..., am+ b1, by,..., bm+. Based on the Rayleigh-Ritz method, the
following equation is obtained by partially differentiating Eq. (3.10) by a;, b; (i=1, 2,...,
m") and making it equal to O.

a'Ka (3.10)
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K. K
M aMed [Faa B} (3.11)
2l A (K, Ky,

In this study, Eq.(10) is calculated by setting m” in Eq. (3.8) and (3.9) equal to 5. And
m" is set equal to 7 when the effect of torsional bracing is considered for the
preservation of accuracy. The matrix of Ky, Kap, Kpa and Kyp are presented as Eqg. (3.12)
~ (3.14). In these equations, i is the row position of diagonal elements. In order that Eq.
(3.11) has a nontrivial solution, the buckling equation is presented as follows.

|K|=0 (3.15)

By analyzing Eq. (3.12) ~ (3.15), we find that the parameters which have effects on
the buckling load n and m are the end moment ratio x, the uniformly distributed load
ratio w, the position of the bracing 74 and 7o, the position of the uniformly distributed
load 7, and R, djo, d; which are the various amounts about the section size and the
length. The buckling load can be obtained when these parameters are determined.
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3.3 Analytical results

In this section, the case when one lateral bracing or one torsional bracing is attached
at the member is presented. That is to say, Kovd, Kve, Kogg and Ky in Eq. (3.12) ~ (3.14) are
equal to 0. When the bracing is considered as the brace for the beam-column, the
discussion about the case of plural bracing is important. However, the results for the
cases of two bracing and continuous bracing are similar to that for the case of one
bracing. Therefore, the discussion on two bracing and continuous bracing will be
presented in future.

3.3.1 Analytical parameters
The analytical parameters are set as follows:
1) The end moment ratio: x=-1,0, 1
2) The position of the bracing: 704=-0.6, 0, 0.6
3) The section size: H-600%x200%11x17 (narrow width)
H-588%300x12x20
H-488%x300x11x18
H-300%300x10x15 (wide width)
4) The length of the member: I=6m, 16m
5) The kind of the bracing: lateral bracing and torsional bracing
The section properties for analyzing are shown as Table 3.1. The slenderness ratio Ay
corresponding to the weak axis when the buckling effective length is the whole length
of the member is presented. In Reference 1, the upper limit of the slenderness ratio Ay is

200 and the lower limit of 4, is calculated by +7z°E/(0.6F) (when F=235N/mm? the

lower limit is about 120). In Table 1, the values of A, which are over the upper and
lower limit are chosen as the analytical parameters. That is because it is easy to compare
the results when the length of the member is constant.

3.3.2 Relation between buckling strength and bracing stiffness

The interactions between the nondimensional bending moment m and the
nondimensional axial force n on the buckling load are presented by taking the
nondimensional bracing stiffness as a parameter. The cases of the lateral bracing and the
torsional bracing are presented respectively.
i) Case of lateral bracing
(a) Effect of end moment ratio (Fig. 3.2)

Figure 3.2 shows the m-n interactions when the lateral bracing is attached at the
midspan of the member by taking the bracing stiffness kjq as a parameter. The cross
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Table 3.1 Section properties and member length

H-600x200 H-588x300 H-488x300 H-300%x300
A (mm?) 13170 18720 15920 11850
I,(mm?) 7.56x10° 1.14x10° 6.89x10° 2.02x10°
l,(mm®*) 2.27x10’ 9.01x10’ 8.11x10’ 6.75x10’
io (Mm) 243 257 220 151
J (mm®) 9.14x10° 1.93x10° 1.37x10° 7.70x10°
l,, (mm®) 1.93x10" 7.27x10" 4.48x10% 1.37x10"
| (mm) 6000 6000 6000 6000
16000 16000 16000 16000
144 86.5 84.1 79.5
& 385 231 224 212
0.663 0.372 0.431 0.788
R 472 2.65 3.06 5.60

NOTE For 4y, R, the upper and lower values correspond to the cases of I=6000 and 1=12000, respectively.

section is H-600x200x11x17 and the length of the member is 6m. The bracing is
attached at the middle of the cross section (704=0). Fig. 3.2(a) shows the case when the
end moment ratio x=-1 (symmetric bending). According to this figure, as the bracing
stiffness increases, the field covered by the m-n curve and the axes of coordinates
becomes wider. When m=0 or n=0, the maximum value is n=2.39 and m=3.35
respectively.

When the H-shaped beam supported simply is subjected to the compressive load, the
buckling load is determined by the torsional buckling force or the bending buckling
force around the strong or weak axis. The buckling load when n=2.39 is determined by
the torsional buckling force (referred to Appendix 2). In this situation, when the section
size and the length are constant and the member is subjected to the axial load, the
buckling load will not be larger than the torsional buckling force even though the
bracing stiffness increases. As shown in Eq. (3.2), when the nondimensional bracing
stiffness kivq =1, the required bracing stiffness is equal to the required stiffness bracing
of the compressive member attaching one bracing at the midspan and subjected to
uniform axial force only when the buckling mode becomes the second order distribution
of a sine wave. And when n=2.39, the minimum value of the bracing stiffness ki is
0.441 which is smaller than unity. The maximum value of the nondimensional bending
moment m is 3.35 when the effective length is half of the whole length of the member
(referred to Appendix 2).

In Fig. 3.2(a), LineA means the buckling modes of the deflection and the torsional
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angle are both second order distribution of a sine wave. And as shown in this figure, the
larger the bracing stiffness is, the wider the same part with LineA is.

Figure 3.2(b) shows the case of x=0. According to Fig. 3.2(b), the case of x=0 has the
same tendency as the case of x=-1. However, there is not the obvious limit like LineA in
Fig. 2(b).

Figure 3.2(c) shows the case of x=1 (antisymmetric end moment). According to this
figure, two kinds of the buckling mode (modeA and modeB) can be observed. As shown
in Fig. 3.2(c), modeA is the case that the torsional angle at the bracing point is zero and
modeB is the case that the lateral deflection at the bracing point is zero. When the
nondimensional bracing stiffness is smaller than 0.441, the effect of the bracing can be
observed under large axial force. While the nondimensional bracing stiffness is larger
than 0.441, the buckling mode is modeB and the curves of the m-n interactions are same
whatever the bracing stiffness equals.

(b) Effect of bracing point (Fig. 3.3)

Figure 3 shows the relation of the m-n interaction on the elastic flexural-torsional
buckling strength by taking the nondimensional bracing stiffness ki,q as a parameter
when the bracing is attached at the upper or lower side of the cross section. The size of
the cross section is H-600x200x11x17 and the length of the member is set to 6m. In Fig.
3, the first quadrant shows the case of the bracing at the upper side (704=-0.6) and the
second quadrant shows the case of the bracing at the lower side (7704=0.6). This model
can be considered as the furring strips attaching at the beam-column. The position of the
bracing is determined by the size of the cross section of the member, the size of the
cross section of the bracing and the way of connection. In this study, we assume the
bracing is attached at the surface of the flanges when 74==0.6.

n
25
~ 25 25 k20441 2 .
S o ¢ —

"M

7 > modeA

Torsional angle

modeB

VAR NNDTA TR RO
\ \\1 2 4 N4 P S N R W) N N
0 05 1 15 2 25 3335/3.5 f 005 115 225335 4 0 05115 2 25 3 35 4

(@ x=-1 (b) =0 (c) k=1
Fig. 3.2 m-n interaction (with one lateral bracing at center of the section)
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In Fig. 3.3(a), when the member is subjected to axial load only (m=0), the
nondimensional axial force n becomes larger as the bracing stiffness increases. However,
the maximum value n=2.39 shown in Fig. 3.2(a) cannot be reached when the bracing is
attached at the surface of the flanges. And according to the first quadrant in Fig. 3.2(a),
there are two buckling strengths m to the same buckling strength n when the bracing is
attached at the member. For example, when k;,4=0.420 and n=2.0, the value of m is
0.592 and 1.76 (see Point Al and A2). When the bracing stiffness and the axial force are
constant, two different values of the bending moment are obtained. That is because the
buckling modes corresponding to these two values are different (referred to Appendix 3).
Fig. 3.3(b) shows the case of x=0, the curves of the m-n interaction have the same
tendency with these shown in Fig. 3.3(a).

Figure 3.3(c) shows the case of k=1. The curves of the m-n interaction are symmetric
about the x-axis. When the axial force and the bracing stiffness are same, there is only
one value of m to correspond that is different with the cases of x=-1 and x=0.

(c) Effect of size of cross section and length of member (Fig. 3.4)

In Fig. 3.4(a), the relation of the m-n interaction with different size of the cross
section are presented when x=-1 and 704=0. The sizes of the cross section are included
H-588x300x12%x20, H-488x300x11x18 and H-300x300x10x15 (wide width). The
length of the member is set to 6m. As shown in Fig. 3.4(a), the difference of the size of
the cross section has a little effect on the relation between the m-n interaction and the
bracing stiffness. Fig. 3.4(a) shows the same tendency as Fig. 3.2(a) and the values of
the bracing stiffness when the curve has the same part with LineA are different. The
values are equal to 4.57, 4.37 and 3.61 in Fig. 3.4(a-1), (a-2) and (a-3), respectively.
And the value corresponding to the size of wide width is smaller than the others.

(@) k=-1 (b) =0
Fig. 3.3 m-n interaction (with one lateral bracing at upper side and lower side)
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To present the effect of the length of the member, the cases when the length of the
member 1=16m and the end moment ratio x=-1 (Symmetric end moment) are shown in
Fig. 3.4(b). The sizes of the cross sections are H-588x300x12%20, H-488x300%x11x18
and H-300x300x10x15 (wide width) corresponding to Fig. 3.4(b-1), (b-2) and (b-3),
respectively. As shown in Fig. 3.4(b), when the member is subjected to the axial load
only, the maximum value of the nondimensional axial force n is equal to 4. This value
corresponds to the flexural buckling strength around the weak axis when the effective
length equals half of the whole length (Ix =1/2). Therefore, we can find the length of the
member has effects on the relation of the m-n interaction that the buckling strength is
determined by the flexural buckling strength around the weak axis or the torsional
buckling strength when the member is subjected to the axial load only. The discussion
about the conditions to determining the buckling form is shown as Appendix 4. For this
study, we define the buckling mode when the flexural buckling occurred (shown as the
case of 1=16m) is the flexural buckling mode and the buckling mode when the torsional

25 25 25
H-588 X 300 H-488 <300 H-300< 300
2 I=6m, x=-1 20 I=6m, x=-1

0 05 1 15 \2 25 3 35357 5 1 15 \2 25 3 33552 0 05 1‘ ~15H2 25 3235 o4
(a-1) H-588x300 (a-2) H-488x300 (a-3) H-300x300
(a) Member length 6m (7704=0)
4l 4l
H-600X200 | g5 [ \\ H-488X300 | 55|\ H-300X 300
I=16m, x=-1 SO I=16m, x=-1 SO\ I=16m, x=-1
3;\ SN\ LS 37\\ SN
_ 15 15 =0 O
LmelA 1 ENUETRRARNRV G 1 Line A

SO 16 05 0.5 DoAY
0 ) 0 klvdTO SR
0 05 1 15 2 25 3 35 m4 0 05 1 15 2 25 3 35 m4 0 05 1 15 2 25 3 35 m4

(b-1) H-600%x200 (b-2) H-488%300 (b-3) H-300%x300

(b) Member length 16m (7704=0)
Fig. 3.4 m-n interaction (effect of section size and member length)
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buckling occurred (shown as the case of 1=6m) is the torsional buckling mode. When
the member is subjected to the axial load only, the nondimensional bracing stiffness kiyq
to obtain the maximum value of n is 0.441<1 in Fig. 3.2(a) (I=6m, Nnnx=2.39), while the
value of kyg in the same condition in Fig. 3.4(b-1) (I=16m, nma=4) is exactly equal to
unity. On the effect of the size of the cross section, when the curve has the same part
with LineA and n=0, the value of m is not constant in Fig. 3.4(b-1) that is different from
the situation shown in Fig. 3.2(a) (when n=0, mpna=3.35).

i) Case of torsional bracing (Fig. 3.5)

Fig. 3.5 shows the relation of the m-n interaction when the torsional bracing is
attached at the midspan of the member. The size of the cross section is
H-600x200x11x17 and the length of the member is set to 6m. As shown in Fig. 3.5, the
value of the nondimensional axial force is constant (n=1) even if the bracing stiffness
increases when the member is subjected to the axial load only (m=0). And it is the same
as the case of the lateral bracing, as the bracing stiffness increases, the field covered by
the m-n curve and the axes of coordinates becomes wider. When x=-1 (Fig. 3.5(a)), as
the bracing stiffness increases, the same part with LineA whose deflection and torsional
angle at the bracing point are both zero becomes larger. When x=1 (Fig. 3.5(c)), modeA
when the torsional angle at the bracing point is zero and modeB when the deflection at
the bracing point is zero can be observed. When ki,4=0.156, the buckling mode is
modeB and the curves are constant even if the bracing stiffness increases. According the
analysis about the lateral bracing, we can find that the buckling strength has relations
with the buckling form when the member is subjected to the axial load only, so the
effect of the length of the member has a little effect on the buckling strength when the
torsional bracing is attached at the midspan of the member. However, the term about the
nondimensional bracing stiffness ki.q has a coefficient di>= (I/d)? in Eq. (12)~(15), so

n
1.2 12

I Fe Torsional angle , -

?
1 @
Deflection \N x—Lx'}' N
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that there is a large efficiency of the bracing when the value of I/d is large. Therefore,
when the bracing stiffness is constant, as the value of I/d increases, the field covered by
the m-n curve and the axes of coordinates becomes wider.

3.3.3 Required bracing stiffness to be full-bracing

i) Relation between required bracing stiffness and nondimensional axial force

(a) Case of lateral bracing

In this chapter, when the lateral bracing or the torsional bracing is attached at the
midspan of the member, the buckling mode that the deflection and the torsional angle at
the bracing point are zero is referred to as full-bracing, just like the cases when the
curve has the same part with LineA shown as Fig. 3.2(a) and Fig. 3.4(a). Fig. 3.6 shows
the required bracing stiffness to be full-bracing reqkiva by taking the position of the
bracing as a parameter when the lateral bracing is attached at the midspan of the
member and the end moment ratio x=-1. The horizontal axis represents the
nondimensional axial force n and the vertical axis represents the required bracing
stiffness reqK1va. Because the curves of the m-n interaction has no same part with LineA
when the bracing is attached at the lower side of the cross section shown as the second
quadrant in Fig. 3.3, the parameter 7,¢=0 in Fig. 3.6. Fig. 3.6(a), (b) show the cases
when the length of the member is 6m and 16m respectively. The size of the cross
section is set to H-600x200x11x17 or H-300x300x10x15. The points P1, P2, P3, Q1,
Q2 and Q3 in Fig. 3.6(a-1) correspond to the same points shown in Fig. 3.2(a) and Fig.
3.3(a). And the points R1, R2 and R3 in Fig. 3.6(b-1) correspond to the same points
shown in Fig. 3.4(b-1).

According to Fig. 3.6(a), when n<2.65 in Fig. 3.6(a-1) and n<2.5 in Fig. 3.6(a-2), the
required bracing stiffness decreases as the bracing point is far away from the center of
the cross section. And this decrease becomes slow when the value of 74 is smaller than
-0.2. Comparing Fig. 3.6(a-1) and (a-2), when the required stiffness bracing reqKiva
abruptly increases, the value of the nondimensional axial force n corresponding to the
case of the cross section of the narrow width (Fig. 3.6(a-1)) is larger than that
corresponding to the wide width (Fig. 3.6(a-2)). In Fig. 3.6(b), when n<3.0, as the
bracing point is far away from the center of the cross section, the value of reqkivd
decreases. Comparing Fig. 3.6(b-1) and (b-2), it is not obvious for the effect of the size
of the cross section when the length of the member is 16m. And when the bracing is
attached at the center of the cross section (704=0), as the nondimensional axial force n
increases, the required bracing stiffness reqkiva becomes smaller. As the bracing point is
far away from the center of the cross section, the value of n is close to 4, the required
bracing stiffness abruptly increases. Comparing Fig. 3.6(a) and (b), we can find that the
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relation between rqkiva and n will be different if the length of the member is different.
(b) Case of torsional bracing

The required bracing stiffness when the torsional bracing is attached at the midspan
of the member is shown as Fig. 3.7. In Fig. 3.7(a), the points S;, S, and S3 correspond to
the same points in Fig. 3.5(a). As mentioned before, the position of the torsional bracing
has no effect on the elastic buckling strength, so that we take the size of the cross
section as a parameter to show the required bracing stiffness in Fig. 3.7. Fig. 3.7(a) and
(b) show the cases when the length of the member is set to 6m and 16m respectively.
According to Fig. 3.7(a), the required bracing stiffness when the size of the cross
section belongs to the type of the wide width is smaller than that when the size of the
cross section belongs to the type of the narrow width. According to Fig. 3.7(b), the
tendency of the curve with the different size of the cross section is similar when the
value of the nondimensional axial force n is smaller than 0.6. We have discussed the
coefficient di=l/d has effects on the case of the torsional bracing in Section 3.2.2.
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Because the value of d; is large, the required bracing stiffness corresponding to the cross
section H-300x300x%10x15 is small. While the value of d, is small, the required bracing
stiffness corresponding to the cross section H-600x200x11x17 is large.
ii) Equations to obtain required bracing stiffness
(a) Equations and accuracy

In this study, the simple equations to obtain the required bracing stiffness are
presented. The relation of the m-n interaction to be the full-bracing (LineA) is presented
as Eq. (3.16).

m:r\/(4—n)(4+R—Afdiozn)srmb (3.16)

Equation (3.16) is calculated by the buckling equation whose number of the terms m"
in Eg. (3.8) and (3.9) is set to equal to three. The required bracing stiffness to be the
full-bracing can be calculated by Eqg. (3.17) which uses m, defined by Eqg. (3.16).

The relation of regkivg-n calculated by Eq. (3.16) is shown as the marks @ and O in
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15+ 151
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Fig. 3.7 Required bracing stiffness for full bracing (torsional bracing)

Fig. 3.6. According to Fig.3.6, the difference with the result calculated by Eq. (17) when
the bracing is attached at the center of the cross section (704=0) is larger than the others
whose accuracy is good enough to be used for evaluating.

In the same way, the equation to obtain the required bracing stiffness to be the
full-bracing when the torsional bracing is attached at the midspan of the member is
shown as Eq. (3.18). However, the number of the terms m™ in Eq. (3.8) and (3.9) to
obtain Eqg. (3.18) is set equal to 5 which is the same as that used for calculating the
buckling equation shown as before. Because of this, the results obtained by Eqg. (3.18)
are consistent with the curves in Fig. 3.7.

Figure 3.8 shows the accuracy of the case of the lateral bracing. The horizontal axis is
the nondimensional axial force n and the vertical axis is the accuracy which is
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regivd =

req™gd

4572 7 (42 +1) —2n(4d? +1)(R+9) +(R+13)(R+5)
64 28n* (4d; +1)(d; +1m;, ) - n{ =28m,,, (4] +1)+ 485, +56(R+7)d] +28(R+14)r5, + TR+ 3} —dm,, (TR+95)+12(R+25)m;, + TR* +98R +75

(3.17)

15757 n (4d? +1) = n* (4d? +1) (3R +47)+ n(4d? +1)(3R? +94R +587)— (R +29)(R+13)(R+5)

8d7  437n* (4% +1) = (4 + 1){540d +487(2R +43)}+n{1080d] (R +37) + 487R* + 21080R + 202600} — 45(3R* + 222R +3275)

(3.18)

calculated by Eq. (3.19). In Eq. (3.19), sreqK1va represents the required bracing stiffness
when the number of the terms m” in Eq. (3.8) and (3.9) is set equal to 5.

Accuracy = [2td Sreavd Ku sreqkg x100 (%) (3.19)
5req "vd

Fig. 3.8(a) and (b) show the cases when the length of the member is set equal to 6m
and 16m respectively. According to Fig. 3.8(a), when 74=-0.4, the accuracy becomes
better as the bracing point is far away from the center of the cross section. while when
noa=-0.5, the accuracy becomes worse as the value of 74 decreases. When 7p4=-0.2,
the accuracy is not larger than 5% and the accuracy when 7y =-0.05, -0.1 is quite bad.
According to Fig. 3.8(b), except the case of 704=0, the accuracy becomes worse as the
bracing point becomes far away from the center of the cross section. When 74 =-0.5,
the accuracy is not larger than 5% and when n=-0.5, the accuracy is not larger than 2%.
(b) Correction for equations

About the equations to obtain the required bracing stiffness (Eq. (3.17) and (3.18)), it
should be mentioned that if the nondimensional axial force is large enough, the required
bracing stiffness will increase abruptly. Because of this, the accuracy at this moment
becomes exceeding bad. As the bracing point becomes far away from the center of the
cross section the accuracy becomes worse, especially the case when the torsional
buckling mode occurred (Fig. 3.8(a)). The analytical method used for this study is the
Rayleigh-Ritz method which cannot keep the evaluation safety. Therefore, there is
necessary to set a correction coefficient for the required bracing stiffness and define the
range of application. The required bracing stiffness corrected is shown as Eq. (3.20).

req I(lvd*:req k1vd x1.1 (3.20)

The scope of application is shown as follows.
(1) When the torsional buckling mode occurred and the buckling load n is smaller than
the torsional buckling load, if 703=-0.05, the required bracing stiffness should be
confined to the range of regkiva = 10.
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Fig. 3.8 Accuracy of required stiffness obtained by Eq.(3.17) compared
with the required stiffness obtained by Eq. (3.15)
(2) When the flexural buckling mode occurred, if 7704=-0.3, the buckling load n should
be satisfied with the condition of n=3.

When the torsional buckling mode occurred and the buckling load n is smaller than
the torsional buckling load, the results calculated by Eq. (3.17) include the part of bold
dashes which cannot be obtained in fact. So that Limit (1) is necessary for the simple
equation to evaluate th
e required bracing stiffness. About Limit (2), when the flexural buckling mode occurred
and g7 0, as the bracing point becomes far away from the center of the cross section,
the required bracing stiffness becomes larger. And the situation when n=4 cannot be
come true even if the required bracing stiffness becomes infinite. Therefore, the part
when the required bracing stiffness increases abruptly shown as Fig. 3.6(b) should be
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when 775,=0 and re(iklvd =10

reaKavr reqKava Accuracy(%) n=1.87 by Eq. (3
10 600 % 200 | 10 NN g%
g =0 1704=0 8 %
Eq.(15) —-0.05
6 lEao) \ L/ 6
L _
4= 10a=0
3.66
2 1600 % 200
= i o LI=6m| | | |
2, 42 5 4 0 05 1 15 2 /25 3
’ n 1.87 2.39 n
(a-1) modified reqKivg (a-2) difference after modification
(a) H-600%200
. when 7704=0 and (e klvd =10
reqKtvah reqKivd Acc%racy(%) n=1.18 by Eq. (3.
10 : 1

H-300 % 300
I=6m

H-300 x 300 T e
LA o 1=6m, | | T mees
3 35 4 0 05 1\15,,2 25 3
1.18 .
n n
(b-1) modified reaKivd- (b-2) difference after modification

(b) H-300x300

Fig. 3.9 Relation between n and required bracing stiffness reqkivg Obtained by
modified equation (3.20) and accuracy

deleted.

Fig. 3.9 shows the accuracy which has been corrected by Eq. (3.20) and Limit (1).
The sizes of the cross section are set to H-600x200x11x17 and H-300x300x%10%15 and
the length of the member is set equal to 6m. According to Fig. 3.9, when 704=0 and
reqk1va=10, the accuracy of the cases of n=1.87, 1.18 is 3.66% and 3.9% respectively. In
the scope of application, the results calculated by these equations are in safety.

On the bracing attached at the beam-column used in real structure, the
Recommendation for Stability Design of Steel Structures published in 1980 presents an
example for the evaluation of the bracing which is attached at the midspan of the

63



H-shaped steel beam-column. We calculated the same case by the method used in that
example and the procedure of the calculation is not presented there. However, the
results are larger than the required bracing stiffness shown in Fig. 3.6.
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3.4 Conclusions
The general buckling equation of the H-shaped member pinned at both ends and

subjected to the axial load, the end moments and the uniformly distributed load with the

lateral bracing and torsional bracing is calculated by using the Rayleigh-Ritz method.

The moment — axial force interaction of the elastic buckling strength when the lateral

bracing or the torsional bracing are attached at the midspan of the member is presented.

The conclusions derived from this chapter are shown as follows:

1) When the lateral bracing is attached at the midspan of the member, the deflection and
the torsional angle at the bracing point are zero as the bracing stiffness increases in
case of the end moment ratio x=-1 (symmetric end moment, Fig. 3.2(a)). As for the
case of k=1 (antisymmetric end moment), bracing is effective when the compressive
force is large. However, the m-n interaction is same when the bracing stiffness is
above a certain value (Fig. 3.2(c)).

2) There are two different buckling moments for one buckling axial force when the
bracing is attached at the compressive flange (Fig. 3.3(a)).

3) When the length of the member is same, the effect of the cross section on the m-n
interaction is not so remarkable (Fig. 3.4(a)). As for the influence of the member
length, the difference of bucking modes affects the m-n interaction. The weak axis
buckling or torsional buckling occurs depending on the member length when the
member is subjected to axial force and the bracing stiffness increases.

4) About the effect of the torsional bracing, the deflection and the torsional angle at the
bracing point are zero as the bracing stiffness increases in case of the end moment
ratio xk=-1 (Fig. 3.5(a)).

5) When the lateral bracing or the torsional bracing is attached at the midspan of the
member, the buckling mode that the deflection and the torsional angle at the bracing
point are zero is referred to as full-bracing. The relation between the nondimensional
buckling axial force and the required bracing stiffness for full-bracing is presented by
Fig. 3.6 and Fig. 3.7. The simple equations to obtain the required bracing stiffness
and the scope of the application are presented (Eqg. (3.17), (3.18) and (3.20)).
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Appendix 3.1 Discussion about accuracy of analysis

In this chapter, the number of the terms m” in Eq. (3.8) and (3.9) is set equal to 5 to
analysis. When the torsional bracing is attached at the midspan of the member and the
nondimensional axial force n is set equal to 0.8, the accuracy is shown as Fig.Al by
taking the bracing stiffness ki,q as a parameter. In Fig.Al, the length of the member is
6m and the value of kyq is equal to 0.05 or 1000. The vertical axis is the value of jm/;m
and the horizontal axis is the number of the terms. jm means the buckling strength of the
member subjected to the end moments only when m’=i (i =1, 2, 3, 4, 5, 6, 7) and 7m is
the nondimensional bending moment when the number of the terms m™ equals 7 to
calculate. According to Fig.Al, the maximum difference between the cases of m =7 and
m'=5 is 1.1% when the size of the cross section is H-600x200x11x17 (Fig. Al(a)) and
the maximum difference is 1.4% when size of the cross section is H-300%x300%10x15
(Fig. A1(b)).

Therefore, we think the accuracy of the analysis is sufficient by taking m'=5 to
analysis.

m/m m/m
12 12
! ! ! ' H-600 % 200 'H-300:x 300
1150 [ Lo L. l=6mn=08 | 115 AL 1=6m, n=0.¢
R e k1000
105 oSN
1 kw:OOS R A P
0.95 | maximum valye =1,1% 0.95 | maximum valpe =1,4%
1 2 3 4 5 6 7 1 2 3 4 5 6 7
m* m*
(a) H-600x200 (b) H-300%300

Fig. A3.1 Difference by the number of terms of basis

Appendix 3.2 Buckling load when the end moment ratio x=-1 (H-600%x200x11x17)
The value of R can be calculated by the equations shown as follows, when the length
of the member is set to 3m and 6m respectively.

_ GJI? 78846 x9.14x10° x 3000°
7°El,  7°x205000 x1.93x10"
5 2
- 7822346 x9.14x10 ><600?2 _ 0.6644
7° % 205000 x1.93x10

1=3 =0.1661

(A3.1)

The torsional buckling load can be calculated the equation shown as follows.
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1 (7°El,
Pcrw:j[ |2 +GJJ (A32)

Iy

Then the nondimensional axial force can be calculated by Eq. (A.3.3) in which P,
represents the elastic buckling load for out-of-plane bending around the weak axis. And
the result calculated by this equation is consistent with the maximum value of n shown
in Fig. 3.2(a).

PP, = TR 1H066M ., 4 (A3.3)

4d,,>  4x(243.1/583)

The elastic lateral buckling moment M, when the member is subjected to symmetric
end moment only is calculated by Eq. (A.3.4).

M, :% N, dvI+R (A3.4)

The elastic buckling load when the length of the member is 3m is four times of that
when the length of the member is 6m. The ratio of the elastic lateral buckling moment
in these two situations is presented as Eq. (A.3.5).

N../1+ _-R
1-3 e\/ 1-3 :4\/1+ 0.1661 ~3.35 A2
eNoyIH R +/1+0.6644

This value obtained by Eq. (A.3.5) is consistent with the maximum value of m shown
in Fig. 3.2(a) when the member is subjected to the symmetric end moment only (x=-1).
Appendix 3.3 Buckling modes when lateral bracing is attached at upper side of

cross section

Figure A3.2 shows the buckling modes corresponding to Point Al and A2 (Fig.
3.3(a)) when the lateral bracing is attached ate the upper side of the cross section. The

4 o

v(S), #() T\ V(é) ¢(§) ‘ /
1E ‘ - 1

v N
upper flange : “z.
05 PP‘ g :

0¥ 0&  lowertian pe. forslonat angie:
05 05 rrrrrrrrrrrrrrrrrr -
-1 | A [ ‘ ,,,,,,,, ‘Azﬁ‘,
: 0 025 05 075 51
(@) Point A; (b) Point A,

Fig. A3.2 Buckling mode at point A; and point A in Fig. 3.3(a)
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horizontal axis represents the position along the member and the vertical axis represents
the lateral deflection or the torsional angle. The lateral deflection of upper and borrow
flange is defined as Eq. (A.3.6).

Values calculated by Eq.(1)+¢(¢)/2 (A.3.6)

According to Fig. A3.2, the deflection of borrow flange is larger than that of upper
flange at Point Al, while the opposite result is obtained at Point A2. Moreover, the
deflection of the torsional angle is opposite at Point Al and A2.
Appendix 3.4 Discussion about buckling modes when the member is subjected to

axial load only

When the member is subjected to axial load only and the lateral bracing is attached at
the midspan of the member, if the bracing stiffness is large than some value, the
torsional buckling or the flexural buckling around the weak axis whose buckling length
equals half of the length of the member will occur. The critical value of the
nondimensional axial force to determine the flexural buckling or the torsional buckling
will occur (Eq. (A.3.2)) is equal to 4. Therefore, the conditions to determine the types of
the buckling are shown as follows.

Flexural buckling mode :  16d,,” —R<1 (A.3.7)

Tosional buckling mode :  16d,,> —R>1 (A.3.8)

Table A3.1 Slenderness ratio and Length of members when torsional buckling and
bending buckling occur simultaneously
H-600x200 | H-588x300 | H-488x%300 | H-300x300
Ay 237 214 203 167
[(mm) 9833 14813 14459 15101

The values of the slenderness ratio around the weak axis A, and the length of the
member | when the situation 16d;,>-R=1 is satisfied are shown in Table A3.1. According
to this table, the value of A, corresponding to the narrow width is larger than the others.
The cross section of H-300x300%10%15 is the only one whose slenderness ratio is not
over the critical value 200 in Table Al. If the real length of the member is shorter than
that shown in this Table, the torsional buckling will occur, while if the real length is
longer than that shown in Table Al, the flexural buckling will occur. Moreover, when
the lateral bracing is attached at the midspan of the member and the slenderness ratio is
not over the critical value 200, the flexural buckling is easy to occur for the case of the
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wide width and the torsional buckling is easy to occur for the narrow width.
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Chapter 4

Bracing for Buckling of Members with Pinned
Ends Subjected to End Moments and Uniformly

Distributed Load






4.1 Introduction

The design methods for bracing of steel structure are presented in Design Standard
for Steel Structures ¥, Recommendation for Limit State Design of Steel Structures ),
Recommendations for the Plastic Design of Steel Structures ® and Recommendations
for Stability Design of Steel Structures .

As the lateral bracing for beam members, it is often considered to be discrete
corresponding to the case of secondary beams and continuous corresponding to the case
of floor slabs or purlins. In these situations, the lateral deflection and torsion can be
restrained by the bracing. In addition, the position attached bracing has an influence on
the effect of bracing in practice. The beam members subjected to symmetric end
moments only is considered as the most simply loading condition. In fact, the end
moments are not symmetric and the effect of distributed load should be taken into
account. For this complexity of loading condition, there are a small number of studies
related to the lateral bracing for beam members.

Some studies on the lateral bracing for beam members under the complex loading
condition mentioned above have been provided. In references 7) and 8), the lateral
buckling strength was calculated by the Energy method when the beam members with
the continuous bracing are subjected to end moments and distributed loading. The
lateral buckling strength of H-shaped steel beam member with two axes of symmetry
was calculated by numerical analysis when the beam members subjected to end
moments and distributed load in reference 9), and the relation between buckling
strength and end moments is also presented when the lateral deflection of upper flange
is restrained by the continuous bracing. The equation of equilibrium to calculate lateral
buckling strength has been given by Reference 10), when the lateral deflection and
torsion of the upper flanges of H-shaped beam members are restrained by continuous
bracing. However, these studies all are about the continuous bracing, and the relation
between buckling strength and bracing stiffness and the influence on bracing force are
not clarified when the lateral deflection and torsion of beam members are restrained by
the discrete bracing such as secondary beams. In this situation, the influence of the
number of bracing should be discussed when the bracing is not single.

Moreover, reference 11) relates to the influence of lateral bracing and torsional
bracing on the lateral buckling strength, and the relation between buckling strength and
bracing stiffness and the influence on bracing force are presented. However, the
distributed load is not included in the loading condition for analysis. For the
combination of end moments and distributed load, the position of bracing is not always
the compressive or tensional side. Therefore, there is necessary to clarify the relation
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between buckling strength and bracing stiffness for the design of bracing when the
distributed load is in general condition. In addition, because the calculation of buckling
strength and the design for bracing are complicated, it is necessary to develop evaluative
methods as easy as possible for design.

In this chapter, | aim to clarify the relation between buckling strength and bracing
stiffness when the beam member with lateral bracing or torsional bracing is subjected to
end moments and uniformly distributed load. The number of bracing is one or two and
the bracing is attached at equal space along the length of the beam member. in addition,
the required bracing stiffness is presented in order that the buckling strength of the beam
member subjected to end moments and uniformly distributed load is equal to the
buckling strength of the beam member which is subjected to end moments only.
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4.2 Analysis

This section presents the method to calculate the buckling equations which has been
shown in Chapter 3 when the H-shaped member simply supported at both ends is
subjected to axial load, end moments and uniformly distributed load.

4.2.1  Analytical model

The analytical model is shown as Fig. 4.1. The member is simply supported at both
ends. The left end is subjected to bending moment M; and the right end is subjected to
bending moment M,=xM; (x is the end moment ratio). Both ends are subjected to equal
compressive force N. the uniformly distributed load is w. there are two kinds of bracing,
lateral bracing and torsional bracing whose stiffness are denoted by kg and Kig
respectively. The number of bracing is one or two and the bracing is attached at equal
space along the length of the beam member. In this study, the warping restraint is not
considered. Both ends are pinned and turn free around the weak axis.

In Fig. 4.1(b) which has been shown in Chapter 3, v(x) and #(x) represent the lateral
deflection and the torsional angle of the center of the cross section respectively. The left
supporting point of the member is selected as the original point and x axis is set along

v(x)

K2vd N
P EEERE ¢/¢¢¢¢¢¢Hw Q z
IVI‘] h h = =]
X T od | W
C A 7 ) 1 )
Ty i = Mo=xy e
K b) Lateral deflection
. e . V2 | ( )and torsional angle
| /3 1/3 1/3 | | Kiva (i=1, 2)
flange h =

— — " hOd
- o — { ____________________ J-- T8 @/@ d

web ! =\

Ki¢d (i=1, 2)

(a) Loading conditions and boundary conditions . .
(c) Position of bracing and
uniform distributed load

Fig. 4.1 Analytical model
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the member as Fig. 4.1(a) shown. The geometric boundary conditions are
v(0)=v()=¢(0)=¢(1)=0 and the mechanical boundary conditions are v"(0)=v"(l)=¢"(0)
=¢"'(1)=0. In Fig. 4.1(c), hog represents the distance from the center of the cross-section
to the discrete lateral bracing. h,, is the distance from the center of the cross-section to
the position subjected to the uniformly distributed load. The torsional bracing is
attached at the center of the cross-section.
In this study, the Rayleigh-Ritz method is used to calculate the approximate value of

the buckling strength, because the exact solution of this problem is hard to obtain.

4.2.2  Total-potential energy

The total-potential energy of this model is shown in Eq. (4.1). In addition, v(x) and
¢ (X) represent the lateral deflection and the torsional angle along x axis, respectively.
The symbols v', ¢, v and ¢" in Eq. (3.1) represent the first and the second derivatives
of v(x) and ¢ (x) with respect to x.

—j (GJ N y+ }7 j ¢ x+.|:Mv”¢dx

__I Nv'"2dx + J' wh,¢* dx + ZKwd ~hoad (X ZKwﬁd¢

(4.1)

In Eq. (4.1), the first term is the strain energy of deflection along x axis, the second
term is the strain energy of St.Venant torsion reduced by the axial force effect, the third
term is the strain energy of warping, the fourth, the fifth and the sixth terms are the
potential energy of external loads corresponding to bending moment M, axial force N
and uniformly distributed load w respectively, other two terms are the strain energy of
discrete lateral bracing and discrete torsional bracing. Definitions of notations are as
follows: 1 is the length of the member, A is the area of the cross-section, Iy and I, are the
second moments of inertia around y and z axes, J is the St.Venant torsional constant, I,
is the warping constant, E is the elastic modulus and G is the shear modulus. In this
paper we define as follows:

2
El 2
N.dv1+R, N, =—>, mEMl, nzl’ ﬁEWI ,KE&,
I M, N, 8M, M
_hOd _hw
oy = d Ny = d

Me is the elastic lateral buckling moment when the member is subjected to equal end
moments, Ne is the elastic buckling load for out-of-plane bending around the weak axis,
m is the nondimensional bending moment, n is the nondimensional compressive force, g
is the uniformly distributed load ratio, xis the end moment ratio, d is the distance
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between the two centroids of the flanges of the H-shaped cross-section.
The nondimensional bracing stiffness is defined as follows:

. K, 4l 2K, I°
For lateral bracing: k., =—=4_— (one brace Kk, = —2u two braces
g 1vd 167[2E| ( ) 2vd 167Z2E| ( )
: _ Koyl 2K
For torsional bracing: Ky =g (one brace) Lo =g, (two braces)
T T

The buckling modes that satisfy the geometrical boundary conditions and the
mechanical boundary conditions are assumed as follows.

sin z&
V(X) = iai -d-sinizé=d (a1 a, am*) sin :27[5 (4.2)
- sinm’ z¢&
sin z&
() = ibi sinize=lb, b, - b )| ™" o 4.3)
- sinm’z&

where £=x/I. By substituting Eq. (4.2) and (4.3) into Eq. (4.1), the buckling equation
for this model can be obtained.

77



4.3 Results and discussion

4.3.1 Analytical parameters
The analytical parameters are set as follows:
1) The end moment ratio: k=-1~1
2) The uniformly distributed load ratio: £=0, 0.5, 1, 1.5and 2
3) The position of the bracing: 704=-0.6~ 0.6
4) The section size: H-600x200x11x17 (narrow width, referred to as cross-section 1)
H-300x300x10x15 (wide width, referred to as cross-section 2)
5) The length of the member: I=6m, 12m
6) The kind of the bracing: lateral bracing and torsional bracing

The moment diagrams corresponding to different composition of x and £ are shown
as Fig. 4.2.

[N A [N [N l\\/ [N
B2 ‘ ‘ ‘ —
N D% I N e R\_/ N
e (T P s e
@\ ~1 V\: — [N : D : D
+ = A [ T —
A, ‘ ‘ = B
0.5/ R SRRRREREES
0 \ \ \ -
-1 05 0 0.5 1K

Fig. 4.2 Moment diagrams

4.3.2 Relation between end moment ratio and nondimensional bending moment
i) Effect of number of bracing

Figure 4.3 and Figure 4.4 respectively shows the relation between end moment ratio
x and nondimensional bending moment m by taking the uniformly distributed load ratio
[ as a parameter, when the length of the member
(cross-section 1) is 6m and the lateral bracing is
attached at the upper side of the cross section.

Figure 4.3 presents the case when there is no
bracing attached at the member and the results
are identical with that shown in reference 9). The
effect of end moment ratio x when =1 is
smaller than that when f<1.

Figure 4.4 includes the cases with different
bracing stiffness for one or two braces. Figures Fig. 4.3 Case of no bracing

m
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(c) Two braces (kayg=1) (d) Two braces (kayg=5)

Fig. 4.4 Case of lateral bracing (704=-0.6 upper side)

(@), (b) show the cases of one brace whose bracing stiffness ki4 equals land 5
respectively. In the situation of f#0, the end moment ratio x has much effect on the
buckling strength m when the bracing stiffness is large. For the same uniformly
distributed load g, the value of xwhen buckling strength m becomes maximum value in
Fig. 4.4(a) is larger than that with the same conditions in Fig. 4.3.

Figures 4.4(c), (d) present the cases of two braces and the nondimensional bracing
stiffness in these figures corresponds to that in Figures 4.4(a), (b). The result of the case
of two braces is similar with the case of one brace that the end moment ratio x has much
effect on the buckling strength m when the bracing stiffness is large.

Comparing the cases of one brace and two braces, the value of x obtained in the case
of one brace when buckling strength m becomes maximum value is larger than that
obtained in the case of two braces. In the situation with the same g, x and kiq (=1, 2),
the relation of magnitude of m between the cases of one brace and two braces is not
constant. For instance, the dash line in Fig. 4.4(d) shows the case of one brace when
F=1 and ki,4q=5. When the end moment ratio « is approximately smaller than 0.2, the
buckling strength of the case of one brace is larger than that of the case of two braces;
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when « is approximately larger
than 0.2, the relation of — jfereidefecton
magnitude of m is opposite. os
Figure 4.5 shows the buckling 0
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Fig. 4.5 Buckling modes
one brace are completely

different with those in the case of two braces. That is to say, the effect of bracing on the
buckling strength depends on the number of bracing in some way, even though the
bracing stiffness is identical. Therefore, the effect of the number of bracing should not
be ignored in the design of bracing for beam members.

Figure 4.6 shows the relation of m-x when torsional bracing is attached at the member.
Fig. 4.6(a), (b) shows the case of one brace when the bracing stiffness ki,4 equals 0.005
and 0.05 respectively. Fig. 4.6(c), (d) shows the case of two braces and the bracing
stiffness kayg corresponding to the case of one brace is equal to 0.005 and 0.05
respectively. According to Fig. 4.6, the buckling strength m of the case of one brace is
larger than that of the case of two braces in the situation with the same £, xand ki (=1,
2). For example, the dash line in Fig. 4.6(d) presents the case of one brace when p=1
and k1 4=0.05.

i) Effect of bracing stiffness

Figure 4.7 shows the effect of bracing stiffness on the relation of m-xwhen one brace
is attached at the member (H-600%200x11x17, I=6m). The uniformly distributed load
ratio S is set to equal 0.5. Fig. 4.7(a) shows the case of lateral bracing. In the situation of
x=-1 (symmetric end moment), the buckling strength m has little change even though
the bracing stiffness increases. However, as the end moment ratio x increases, the
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(k1 4=0.005) (k1 44=0.05)

(c) Two torsional braces (d) Two torsional braces
(k2¢d:0.005) (k2¢d:0.05)
Fig. 4.6 Case of torsional bracing

buckling strength m increases and the effect of bracing stiffness becomes larger. This is
because that when the lateral bracing is attached at the compressive side, the buckling
strength will be developed, while the buckling strength has a little change when the
lateral bracing is attached at the tensile side. According to Fig. 4.2, the strength of the
bracing point is not identical and it depends on the composition of x and g. Therefore,
to increase the lateral bracing cannot always develop the buckling strength when the
member is subjected to end moments and distributed load currently.

Figure 4.7(b) shows the result of torsional bracing in the same conditions with the
case of lateral bracing. Because the position of torsional bracing has no influence on the
buckling strength, as the bracing stiffness increases (ki =0.5, approximately), the
value of m increases regardless of the end moment ratio x.

Compared Fig. 4.7(a) and Fig. 4.7(b), setting torsional bracing is more efficiency to
increase the buckling strength than setting lateral bracing. Fig. 4.8 presents the
comparison between lateral bracing and torsional bracing when the bracing stiffness is
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Fig. 4.8 Effect of size of cross section and length
of member (4=1)

large enough to make the buckling strength m be maximum value. The uniformly
distributed load ratio £ is equal to 0, 0.5, 1 and 2 in Fig. 4.7(a), (b), (c) and (d),
respectively. According to Fig. 4.7(a), setting lateral bracing at the compressive side or
setting torsional bracing has roughly similar effect to increase the buckling strength
when x=0.5. And the buckling strength corresponding to torsional bracing is larger
than that corresponding to lateral bracing when x>0.5. In Fig. 4.7(b) and (c), the effect
to increase buckling strength of the case of torsional bracing is better than that of the
case of lateral bracing. When p=2, the results of the cases of lateral bracing and
torsional bracing are approximately consistent. Generally speaking, setting torsional
bracing is better to develop buckling strength than that setting lateral bracing.
iii) Effect of cross section and length of member

Figure 4.8 shows the relation of m-x by taking the cross section and length of
member as parameters when one brace is attached at the member. The uniformly
distributed load ratio g is set equal to unity. Figures 4.8(a), (b) and (c) show the cases of
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no bracing, one lateral brace and one torsional brace, respectively. According to Figures
4.8(a), the relation of m-x has little change when the cross section is different, and the
buckling strength corresponding to the case of 1=12m is larger than that corresponding
to the case of I=6m when the cross section is set to be cross-section 1. In the case of one
lateral brace (Figure 4.8(b)), the curves of m-x of cross-sections 1 and 2 are almost
same when the length of member is 6m. However, comparing the cases with different
length, the relation of magnitude of m is not constant. In Figure 4.8(c), both cross
section and length of member have much effect on the buckling strength.

iv) Effect of position of bracing

Figure 4.9(a), (b) and (c) show the relation of m-« by taking the position of bracing
Mog @s a parameter when the uniformly distributed load ratio £ is set to equal 0, 0.5 and
2, respectively.

When the member is subjected to end moments only (Fig. 4.9(a), 5=0), the lateral
bracing set at the lower side is better than that set at the upper side because the lower
side is subjected to compressive strength.

When p=0.5 (Fig. 4.9(b)), the portion subjected to compressive strength changes
from the lower side only to the upper side as the end moment ratio x increases. When
noa= 0 (lower side) and the value of x is constant, the buckling strength increases as the
value of 704 increases. And the increase of m becomes smaller as the end moment ratio
x increases. When x=1, the buckling strength m of 704>0 is smaller than that of 774=0
and the value of m is approximately equal to 1.3 regardless of the value of 74. The
tendency of the situation of 7704<0 is opposite to the situation of 7754>0.

When =2 (Fig. 4.9(c)), the portion subjected to compressive strength is wide so that
the buckling strength m has little increase when 704=0. The effect of bracing on the
buckling strength m when 704<0 is larger than that when 704=0.

m m m
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Fig. 4.9 Effect of position of bracing (kyg=1)
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4.3.3 Required bracing stiffness when buckling strength of beam member
subjected to end moments and uniformly distributed load is equal to that
of beam member subjected end moments only

The design equations of elastic buckling strength when the member is subjected to
arbitrary end moments at both ends have been presented. In order to find the design
equations of elastic buckling strength when the member with lateral bracing or torsional
bracing is subjected to end moments and uniformly distributed load concurrently, this
section aims to present the required bracing stiffness when the buckling strength of the
beam member which is subjected to end moments and uniformly distributed load is
equal to the buckling strength of the beam member which is subjected to end moments
only. Because the main purpose is to present the idea and the method, the parameters
used in following discussion are not arbitrarily.

Firstly, an example to obtain the required bracing stiffness is shown as Fig. 4.10. The
cross section is set to H-600x200x11x17 (cross-section 1) and the length of member is

1 #=0nd bracing

I—\l\)oo-b(.!'loﬁ3

| Thet el
0 \ i \ 05 ge0] S
-1 0.5 0 0.5 1 0 0.5 1 15 2
K B
(a) Relation_of m-xwhen (b) Relation of m-g of (c) Relation of m-4 of
member is subjected to one lateral brace two lateral braces

end moment only
Fig. 4.10 Method to obtain required bracing stiffness

B, By

(a) One lateral brace (b) One torsional brace (c) Effect of position
(7704=-0.6) of bracing

Fig.4.11 Examples of required bracing stiffness
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6m. Figure 4.10(a) shows the elastic buckling strength when the member is subjected to
end moments only. The coordinate values of Points A~E (x, m) are shown in the
brackets. Fig. 4.10(b) and (c) show the relation of m-£ by taking the end moment ratio
as a parameter when one and two lateral braces (ki,g=k2,q=1) are respectively attached at
lower side (704=0.6) of the member which is subjected to end moments and uniformly
distributed load. Comparing these two figures, we can find the tendency of the case of
two braces is almost same as the case of one brace. In Fig. 4.10(b), the coordinate
values of Points A’~E” (5, m) whose vertical coordinate value m is identical to that of
Points A~E shown in Fig. 4.10(a) are presented in the brackets. According to this figure,
when the uniformly distributed load ratio S is smaller than the horizontal values shown
in the brackets, the buckling strength m are always larger than the elastic buckling
strength obtained in Fig. 4.10(a). For instance, when x=-1 and p=1.5 (Point A"), if =
1.5, the buckling strength in this condition can be evaluated in the safety margin by
using the elastic buckling strength shown in Fig. 4.10(a) when the member is subjected
to end moments only.

Based on this idea, we can obtain the values of £ by determining the values of end
moment ratio x and the bracing stiffness ki and kig. and the relation of S-x are
presented in Fig. 4.11. The cross section is H-600x200x11x17 (cross-section 1) and the
length of member is 6m. Fig. 4.11(a) and (b) respectively shows the cases of one lateral
brace (704=-0.6, upper side) and one torsional brace by taking the bracing stiffness as a
parameter. Using this method, when the end moment ratio x and the uniformly
distributed load ratio £ of beam member are determined, the required bracing stiffness
when the buckling strength may be evaluated directly by the elastic buckling strength
which is used to the case of the member subjected to end moments only.
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4.4 Conclusions
The nondimensional elastic buckling strength of H-shaped member subjected to end

moments and uniformly distributed load concurrently when discrete lateral or torsional
bracing is attached at the member has been calculated by Rayleigh-Ritz method. The
relation between end moment ratio x and the nondimensional bending moment m has
been presented by taking the number of brace, bracing stiffness, size of cross section,
length of member and position of bracing as parameters.

In addition, the method to obtain the required bracing stiffness has also been
presented. When the bracing has the required bracing stiffness, the buckling strength of
the beam subjected to end moments and uniformly distributed load is equal to the
buckling strength of the beam subjected to end moments only (Fig. 4.10). And some
figures of required bracing stiffness as examples have been presented (Fig. 4.11). The
main findings are shown as follows:

1) About the effect of number of bracing, when the uniformly distributed load g, the
bracing stiffness ki,q (i=1, 2) and the end moment ratio « is identical, the elastic
buckling strength of the case of one lateral brace is not always larger or smaller than
that of the case of two lateral braces because of the variety of buckling modes (Fig.
4.4). Because the position of bracing has no influence on the torsional bracing, the
buckling strength m become larger and the value of x when the buckling strength m
becomes the maximum value has a little change as the bracing stiffness increases.
This is different from the case of lateral bracing whose result of x has much change
as the bracing stiffness increases (Fig. 4.7).

2) As for the effect of size of cross section and length of member on the buckling
strength, the relation of m-« in the case of lateral bracing is much the same even if
the size of cross section is different and the buckling strength m in the case of 1=12 is
larger than that in the case of 1=6m when the cross section is identical (Fig. 4.8(b)).
In the case of torsional bracing, both the size of cross section and the length of
member have much influence on the relation of m-x (Fig. 4.8(c)).

3) As regards the effect of position of bracing, the part subjected to compressive stress is
changed to the upper side from the lower side only as the end moment ratio x
increases (Fig. 4.9(b)). And in the case of =2 (Fig. 4.9(c)), the buckling strength m
is affected little by the position of bracing as the end moment ratio varies.
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5. Summary

This dissertation is concerned with the design methods for bracing of steel members
and aimed at developing the methods for increasing the elastic buckling strength. The
main findings for each chapter are shown as follows.

In Chapter 2, the buckling equations when the compressive member with one or two
braces is subjected to varying axial force have been calculated by the buckling slope
deflection method. The main findings concerned with the stiffness and the strength for
bracing are summarized respectively.

As for the stiffness for bracing, the effective length factor j, becomes larger as the
ratio of axial forces increases, when the nondimensional bracing stiffness k is constant.
The buckling modes are presented when the value of the nondimensional bracing
stiffness k is equal to 0, 0.5 and 3. The ratio of axial forces plays an important role in
the variation of buckling mode. In addition, the required bracing stiffness to take the
effective length as the brace spacing is calculated and it decreases as the axial force
ratio decreases. A specific example about the truss beam has been displayed in the final
part of this section in order to present the application of this study in structural design.

As for the strength for bracing, the value of the nondimensional axial force p
becomes larger as the value of the rotational angle R increases. The effect of the
rotational angle R on the nondimensional axial force p becomes smaller as R increases.
However, the value of p will not increase at all times, and it will approach constant as
the value of p increases. When the value of F/N; is same, the value of the
nondimensional axial force p increases as the axial force ratio a decreases and the value
of p with k =1 is greater than that the value of p with k =0.5, in the case that the axial
force ratio is same. According to Fig. 2.19(a) and (c), when the nondimensional bracing
stiffness k is same, the value of F/Ng increases as the axial force ratio a increases, while
the value of F/Ng decreases as the axial force ratio a increases. Moreover, as the
nondimensional bracing stiffness k increases, the effect of the axial force ratio on the
value of F/Ng becomes smaller when the axial force varies in a staircase pattern.

In Chapter 3, the general buckling equation of the H-shaped member pinned at both
ends and subjected to the axial load, the end moments and the uniformly distributed
load with the lateral bracing and torsional bracing is calculated by using the
Rayleigh-Ritz method. The moment — axial force interaction of the elastic buckling
strength when the lateral bracing or the torsional bracing are attached at the midspan of
the member is presented.
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When the lateral bracing is attached at the midspan of the member, the deflection and
the torsional angle at the bracing point are zero as the bracing stiffness increases in case
of the end moment ratio x=-1 (Ssymmetric end moment, Fig. 3.2(a)). As for the case of
k=1 (antisymmetric end moment), bracing is effective when the compressive force is
large. However, the m-n interaction is same when the bracing stiffness is above a certain
value (Fig. 3.2(c)).

There are two different buckling moments for one buckling axial force when the
bracing is attached at the compressive flange (Fig. 3.3(a)).

When the length of the member is same, the effect of the cross section on the m-n
interaction is not so remarkable (Fig. 3.4(a)). As for the influence of the member length,
the difference of bucking modes affects the m-n interaction. The weak axis buckling or
torsional buckling occurs depending on the member length when the member is
subjected to axial force and the bracing stiffness increases.

About the effect of the torsional bracing, the deflection and the torsional angle at the
bracing point are zero as the bracing stiffness increases in case of the end moment ratio
x=-1 (Fig. 3.5(a)).

When the lateral bracing or the torsional bracing is attached at the midspan of the
member, the buckling mode that the deflection and the torsional angle at the bracing
point are zero is referred to as full-bracing. The relation between the nondimensional
buckling axial force and the required bracing stiffness for full-bracing is presented by
Fig. 3.6 and Fig. 3.7. The simple equations to obtain the required bracing stiffness and
the scope of the application are presented (Eq. (3.17), (3.18) and (3.20)).

In Chapter 4, the nondimensional elastic buckling strength of H-shaped member
subjected to end moments and uniformly distributed load concurrently when discrete
lateral or torsional bracing is attached at the member has been calculated by
Rayleigh-Ritz method. The relation between end moment ratio x and the
nondimensional bending moment m has been presented by taking the number of brace,
bracing stiffness, size of cross section, length of member and position of bracing as
parameters.

As for the effect of number of bracing, when the uniformly distributed load g, the
bracing stiffness kiyg (i=1, 2) and the end moment ratio x is identical, the elastic
buckling strength of the case of one lateral brace is not always larger or smaller than
that of the case of two lateral braces because of the variety of buckling modes (Fig. 4.4).
Because the position of bracing has no influence on the torsional bracing, the buckling
strength m become larger and the value of x when the buckling strength m becomes the
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maximum value has a little change as the bracing stiffness increases. This is different
from the case of lateral bracing whose result of x has much change as the bracing
stiffness increases (Fig. 4.7).

As for the effect of size of cross section and length of member on the buckling
strength, the relation of m-« in the case of lateral bracing is much the same even if the
size of cross section is different and the buckling strength m in the case of 1=12 is larger
than that in the case of I=6m when the cross section is identical (Fig. 4.8(b)). In the case
of torsional bracing, both the size of cross section and the length of member have much
influence on the relation of m-« (Fig. 4.8(c)).

As regards the effect of position of bracing, the part subjected to compressive stress is
changed to the upper side from the lower side only as the end moment ratio x increases
(Fig. 4.9(b)). And in the case of p=2 (Fig. 4.9(c)), the buckling strength m is affected
little by the position of bracing as the end moment ratio varies.

In addition, the method to obtain the required bracing stiffness has also been
presented. When the bracing has the required bracing stiffness, the buckling strength of
the beam subjected to end moments and uniformly distributed load is equal to the
buckling strength of the beam subjected to end moments only (Fig. 4.10). And some
figures of required bracing stiffness as examples have been presented (Fig. 4.11).

In the future, the establishment of integrative evaluation method of bracing stiffness
and bracing force for steel beams and steel beam-columns will be discussed as a
continuation of my present research. Series of detail analysis on the H-shaped members
with composite effect of lateral bracing and torsional bracing under general loading
conditions will be carried out by considering several parameters, such as loading
conditions, types of combination of bracing, bracing position, size of cross section,
length of member and so on. The influence of these parameters will be given by the
relation between lateral or flexural-torsional buckling strength and bracing stiffness. In
addition, the relation between bracing force and deflection behavior should be discussed
as well. Based on these analytical results, simple equations for evaluating bracing
stiffness and bracing force will be developed for design.
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