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1.1 Purposes 

This dissertation is concerned with the design methods for bracing of steel members 

and aimed at developing the methods for increasing the elastic buckling strength. 

The design methods for bracing of steel structure are presented in Design Standard 

for Steel Structures
1)

, Recommendation for Limit Design of Steel Structures
2)

, 

Recommendations for the Plastic Design of Steel Structures
3)

 and Recommendations for 

Stability Design of Steel Structures
4)

. 

  This study referred to bracing of steel member consists of 1) bracing for compressive 

members to varying axial force in a staircase pattern, 2) relation between elastic 

buckling strength and bracing stiffness of H-shaped members with lateral bracing or 

torsional bracing when subjected to axial force, end moments and uniformly distributed 

load. The purposes of each part are shown as follows. 

 

1) As for the members subjected to varying axial forces in a staircase pattern such as 

pony truss, the buckling strength of the members is larger than that of the members 

subjected to uniform axial force
4)

. In references 1) and 4), the equation is presented for 

calculating the effective length factor of members that has two parts subjected to 

different axial forces (Fig. 1(b-1) and (c-1)). When calculating the effective length 

factor of the member that has three parts subjected to different axial forces, the axial 

force in a staircase pattern is considered as that subjected to the axial force that varies 

continuously( Fig. 1(b-2) and (c-2)). The effective length can be calculating by using the 

equations for the effective length of the members subjected to axial force that varies 

Truss beam 

Fig. 1.1 Models of compressive members subjected to 
varying axial force in a staircase pattern 

(a) Truss beam (b) Truss 

(b-1) 

(b-2) 

(c) Axial force for 
top chords 

Real 

(c-1) 

Approximate  

Real 

Approximate  

(c-2) 

Top chords 

Top chords 

Bottom chords 

Bottom chords 
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continuously which are presented in references 1) and 4).  

The relation between the buckling strength and the bracing stiffness and the minimum 

bracing stiffness that the effective length can be taken as brace spacing are presented 

when the member is supported by equally spaced brace
4)

. The required nondimensional 

bracing stiffness k is unity when there is one supporting point and k=1.5 and 1.7 when 

there are two or three supporting points respectively
4)

. However, there are few studies 

about the buckling strength and bracing of members subjected to varying axial force in a 

staircase pattern.  

The bracing frames should have sufficient stiffness and strength. In reference 4), the 

relation between the compressive force and bracing force of the elastic compressive 

members and the bracing force of the inelastic compressive members are presented. And 

the sufficient bracing force is 2% of the compressive force when the bracing stiffness k 

is greater than 3. However, this result was derived from the analytical and the 

experimental studies by using the compressive members subjected to uniform axial 

force and the relation between bracing force and axial force of the members subjected to 

varying axial force is not clear. 

Therefore, as the first target of this dissertation, the problems of bracing for 

compressive member subjected to varying axial force in a staircase pattern will be 

discussed. 

 

2) H-shaped beam or beam-column members are sometimes restrained laterally 

between their ends by elastic lateral supports to prevent lateral buckling and 

flexural-torsional buckling. Typical examples include (1) the beam-column members 

Girder 

Beam-column 

Tie beam 

Tie beam 

(a) 

Girder 

Beam-colum
n 

Roof purlins 

Tie beam 

Fig. 1.2 Examples of bracing used in industrial buildings 

Purlins 

(b) 
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which are laterally restrained by tie beams used for industrial buildings and (2) the 

girders which are supported by secondary beams in general steel structures or tie beams 

in industrial buildings. Figure 1.2(a) presents a typical steel industrial building whose 

H-shaped beams and beam-columns are supported by tie beams as bracing. Figure 

1.2(b) shows an example of continuous bracing that the H-shaped beams or 

beam-columns are supported by purlins.  

In Recommendation for Limit State Design, the required bracing stiffness and the 

required bracing force are shown for flexural buckling of compressive members, lateral 

buckling of members subjected to bending moment and beam-columns respectively. 

These design methods for bracing are based on the study results of bracing for flexural 

buckling of compressive members subjected to the uniform axial force. Most of studies 

commencing with references 5) and 6) target the members subjected to uniform axial 

force although the studies investigated the flexural buckling of the members with 

multiple bracing, initial imperfection and inelastic buckling behavior. 

As for the flexural-torsional buckling of H-shaped beam-columns or the lateral 

buckling of beams, the research results of bracing of compressive members subjected to 

uniform axial force are introduced by considering the flexural-torsional buckling or the 

lateral buckling as the flexural buckling of the compressive flange. Compressive 

member subjected to uniform axial force corresponds to the compressive flange of 

H-shaped beam which is subjected to uniform bending moment. However, the bending 

moment generally varies along the member axis.  

Some studies have focused on the problems of bracing for beam-columns, such as 

references 7) and 8). The buckling equation of beam-columns with a sandwich section 

when single lateral bracing and single torsional bracing is attached at the midspan of the 

member was derived by using the Rayleigh-Ritz method. The effects of loading 

conditions, bracing stiffness and resistance by St. Venant torsion on the 

flexural-torsional buckling strength were presented
9)

. However, few studies show 

systematically the relation between buckling strength and bracing stiffness of the 

H-shaped member with lateral bracing or torsional bracing subjected to axial force, end 

moments concurrently. The effects of the size of cross section, the length of member 

and the position of bracing on the buckling strength are not clear. 

 

As for the bracing for beams, most of studies referred to the lateral bracing when the 

beam members are subjected end moments and distributed load concurrently, such as 

references 10) ~14). However, all of these studies are about the continuous bracing, and 

the relation between buckling strength and bracing stiffness and the influence on 
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bracing force in the cases of discrete lateral bracing and discrete torsional bracing are 

not clarified. Although reference 15) relates to the influence of lateral bracing and 

torsional bracing on the lateral buckling strength of beams, and the relation between 

buckling strength and bracing stiffness is presented, the distributed load is not 

considered in the analytical model.  

Hence, the problems on discrete lateral bracing and discrete torsional bracing for 

beam-columns and beams under the real loading conditions will be discussed and the 

influences of size of cross section, length of member and position of bracing will be 

taken as parameters.  
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1.2 Outline  

  This dissertation consists five chapters. Chapter 1 is the introduction of this 

dissertation and Chapter 5 summaries the results of this research. The abstract of other 

chapters are shown as follows. 

  

  Chapter 2 Bracing for Compressive Members Subjected to Varying Axial Force 

  Chapter 3 Relation between Elastic Buckling Strength and Bracing Stiffness of 

H-shaped Beam-column simply supported at Both Ends 

  Chapter 4 Bracing for buckling of members with pinned ends subjected to end 

moments and uniformly distributed load 

  Detail introduction for each chapter is shown as follows. 

  Chapter 2 is aimed to calculate the effective length factor of compressive member 

which is subjected to varying axial forces in a staircase pattern by using the buckling 

slope deflection method. The required bracing stiffness to take the effective length as 

brace spacing is presented. In addition, the behavior of deflection and the bracing force 

are shown when the member with initial deformation is subjected varying axial force in 

a staircase pattern. 

  Chapter 3 is concerned with the effect of the bracing stiffness on the elastic buckling 

strength of H-shaped members that are subjected to compressive force and end moments. 

The buckling equations are presented by Rayleigh-Ritz method when the H-shaped 

member is simply supported at both ends and discrete or continuous lateral bracing and 

torsional bracing are attached. The relation between elastic buckling strength and 

bracing stiffness are presented when the member is subjected to axial force and end 

moments and the bracing is attached at the midspan of the member. The relation 

between the compressive force and the required bracing stiffness in order that the 

deflection and the torsional angle at the bracing point are zero and the equation to obtain 

the required bracing stiffness is presented. 

  Chapter 4 focus on the effect of bracing stiffness on the elastic buckling strength of 

H-shaped members that are subjected to end moments and uniformly distributed load. 

The relation between the end moment ratio and the nondimensional bending moment 

are presented by taking the nondimensional distributed load ratio, the bracing stiffness, 

the cross section, the length and the position of bracing as parameters. Examples of the 

required bracing stiffness when the bracing strength equals the elastic buckling strength 

equals the elastic buckling strength when the member is subjected to end moment only 

is presented. 
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2.1  Introduction 

The buckling strength of the members in truss structures subjected to varying axial 

force in a staircase pattern is larger than that of the members subjected to uniform axial 

force
 1)

. In references 1) and 2), the equation is presented for calculating the effective 

length factor of the member that has two parts subjected to different axial forces. When 

calculating the effective length factor of the member that has three parts subjected to 

different axial forces, the axial force in a staircase pattern is substituted to the axial 

force that varies continuously. The effective length can be calculated by using the 

equations for the effective length of the member subjected to axial force that varies 

continuously, which are presented in references 1) and 2).  

As for the bracing of the compressive member, there are a lot of studies including 

reference 3).  The relation between the buckling strength and the bracing stiffness and 

the minimum bracing stiffness that the effective length can be taken as brace spacing are 

presented when the member is supported by equally spaced brace 
1)

. The required 

nondimensional bracing stiffness k is unity when there is one supporting point and k 

=1.5 and 1.7 when there are two and three supporting points respectively 
1)

. However, 

there are few studies about the buckling strength and the bracing of the member which 

is subjected to varying axial force in a staircase pattern. 

On the other hand, the bracing frames of the compressive members should have 

sufficient stiffness as well as sufficient strength. As to the problem about the stability of 

the top chord of the pony truss, the effective length factor for various values of the 

transverse frame and the brace spacing have been presented 
4)

. 

In reference 1), the relation between the compressive force and the bracing force of 

the elastic compressive member and the bracing force of the inelastic compressive 

member are shown. And the sufficient bracing force is 2% of the compressive force 

when the nondimensional bracing stiffness k is greater than three. However, this result 

was derived from the analytical and the experimental study by using the compressive 

members subjected to uniform axial force and the relation between the bracing force 

and the axial force of the member subjected to varying axial force is not clear. 

  In this study, the effective length factor of the members subjected to varying axial 

force is calculated by using the buckling slope deflection method and the buckling 

modes are shown in Section 2.2. The axial force varies in a staircase pattern and the 

members have one and two supporting point. In addition, the required nondimensional 

bracing stiffness to take the effective length as brace spacing is presented. 

Section 2.3 shows the basic findings about the bracing force at the member with 

initial deformation subjected to varying axial force in a staircase pattern. The 
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relationship between the axial force and the slope angle are calculated and the 

comparison among the axial force, the bracing force and the bracing stiffness are 

presented. 
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2.2  Bracing for compressive member subjected to varying axial force  

2.2.1 Analytical model  

Figure 2.1 shows the analytical model when the compressive member with brace is 

subjected to the axial forces that vary in a staircase pattern  

Figure 2.1 (a) shows the model when there is one brace at the middle of the member. 

The axial force subjected to the right part is N1 and the axial force subjected to the left 

part is N2=aN1 (-1≦a≦1). Figs. 2.1(b) and (c) show the model when there are two 

braces set in equal space along the whole member. The axial force pattern of the model 

shown in Fig. 2.1 (b) is a staircase pattern. The axial force subjected to the right part is 

N1, to the middle part is N2=aN1 (0＜a≦1) and to the left part is N3=bN1 (-1＜b≦1). 

The axial force pattern of the model shown in Fig. 2.1 (c) is a convex pattern. The axial 

force subjected to the middle part is N1 and to the right and the left parts are N2=aN1 (0

＜a≦1). In this study, Ni is the general expression for N1, N2 and N3. 

2.2.2 Buckling equations 

The buckling equations are calculated by using the buckling slope deflection method. 

In this section, the procedure to obtain the buckling equation is presented.  

a) When there is one brace [Fig. 2.1 (a)]. 

It is assumed that member 1 and 2 are subjected to the slope angles R and -R 

respectively and joint 2 suffers a deflection angle 2 (Fig. 2.2), and we obtain Eq. (2.1.1) 
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and Eq. (2.1.2) by applying the slope-deflection equation for stability.  

)()( 1212322221 R
l

EI
MR

l

EI
M    (2.1.1) 
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l

EI
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EI
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  In the equations mentioned above, E is the Young’s modulus, I is geometrical 

moment of inertia. iiiii and iare the stability functions (i=1, 2, 3). 
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2) When Ni is tensile force 
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In which, suffix i corresponds to suffix of the axial force Ni. 

Based on the force balance conditions, we get these equations as follows. 
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F: the stiffening force, K: the bracing stiffness, k: the nondimensional bracing stiffness, 

M21 and M23: the bending moment at joint 2 of member 1 and 2 respectively, Q21 and 

Q23: the shear force of member 1 and 2 respectively. 
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In order that the equation-set that is made of Eq. (2.4) and Eq. (2.5) have nontrivial 

solution, the determinant as follows must be equal to zero, that is 

0
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(2.6) 

This is the buckling equation when there is one brace. 

b) When there are two braces [Fig. 2.1 (b) and (c)] 

As mentioned above, the procedure for the cases of with two braces are similar with 

the case of one brace, which is presented previously. The buckling equations when there 

are two braces are shown as follows. 

i) Situation 1: the axial forces vary in a staircase pattern [Fig. 2.1 (b)]. 
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(2.7) 

ii) Situation 2: the axial forces vary in a convex pattern [Fig. 2.1 (c)]. 
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(2.8) 

  The effective length factor for brace spacing  and the effective length factor for 

whole length 0 are defined as below.  
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In which, n is the number of the members. 

2.2.3 Buckling modes 

The differential equation of the member subjected to axial force is shown as Eq. 

(2.10). 

0 yNEIyⅣ  (2.10) 

In general, the equations of buckling modes are represented as Eq. (2.11) and (2.12).  

1) When N is compressive force: 
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(2.11)

 

2) When N is tensile force: 
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(2.12) 

3) Specially, when N=0, Eq. (2.10) is rewritten as Eq. (2.13) and the deflection curve is 

given by Eq. (2.14) 
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In which, j is the member number (j =1, 2, 3) 

2.2.4 Analytical parameters 

1) For Section 2.25~2.27, the ratio of axial force:  

  (i) One brace [Fig. 2.1(a)]: a = -1, -0.5, 0, 0.5, 1 

   (ii) Two brace :  

staircase pattern[Fig. 2.1(b)]: (a, b) =(1,1), (3/5,1/5), (1/3, -1/3)  

convex patten [Fig. 2.1(c)]: a= 2/5  

2) For Section 2.2.8, the effective length fator:  =1, 1.1, 1.2, 1.3, 1.4, 1.5 

2.2.5 Relation between effective length factor 0 and nondimensional bracing 

stiffness k 

Fig. 2.3 shows the relation between the effective length factor0 and the 

nondimensional bracing stiffness k. Fig. 2.3(a) shows the case that there is one brace 

and Figs. 2.3(b) and (c) show the case that there are two braces.  

According to Fig. 2.3(a), when the axial force is uniform (a=1) and the 

nondimensional bracing stiffness k is greater than unity, the effective length factor for 

the whole length 0 is 0.5 ( in this case, the effective length factor for the brace spacing 

=1). According to Figs. 2.3(b) and (c), when the axial force is uniform (a,b=1) and the 

nondimensional bracing stiffness k is greater than 1.5, 0 is 0.333 (=1). 
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Fig. 2.3 Relation between bracing stirrness k and effective length factor 0   
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When the axial force is varying (a,b≠1) and the value of the nondimensional bracing 

stiffness k is the same, the effective length factor 0 becomes smaller as the axial force 

ratio decreases. That is to say, the ratio of axial forces is larger, the effective length 

factor 0 is larger when the nondimensional bracing stiffness k is the same value. 

The effective length factor decreases as the nondimensional bracing stiffness 

increases, however, when the nondimensional bracing stiffness k is more than 2, the 

variation of the effective length factor 0 is very slight. 

Fig. 2.4 and 2.5 show the buckling modes when there are one brace and two braces 

respectively. These are a series of buckling modes about the ratio of axial force, when 
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the value of the nondimensional bracing stiffness k is defined. In Figs. 2.4 and 2.5, the 

horizontal axis  represents the position on the member.  is the nondimensional value 

obtained by normalizing the whole length of the member. When there is one brace = 

x/2l ,and when there are two braces,  = x/3l. 

According to Fig. 2.4, when k equals 0 and 0.5, the position of maximum deflection 

moves from the center to the right side as the axial force ratio decreases. When k equals 

3, the deflection decreases as the axial force ratio decreases in the left part. 

According to Fig. 2.5(a), when k equals 0.5 and 3, the deflection at the right part is 

almost same without reference to the axial force ratio and the maximum deflection 

decreases as the axial force ratio decreases at the left part (Fig. 2.5(a-2)) and at middle 

part and the left part (Fig. 2.5(a-3)). When the axial force varies convexly (Fig. 2.5 (b)) 

and k equals 0 and 0.5, the buckling modes are similar regardless of the axial force ratio. 

When k equals 3, the deflection becomes smaller at the left and the right side as the 

axial force ratio decreases. 

2.2.6 Comparison with design equations 

According to reference 2), there is a rule for the design of the effective lengthlk. 

When the two parts of the compressive member are subjected to different axial forces as 

shown in Fig. 2.1 (a), the member can be designed as the compressive member 

subjected to uniform axial force, which is the larger one. Remarkably, if one of the axial 

force is tensile, we should use the negative value of the tensile force to calculate. 
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In which, l: the length of member  

N1: the larger axial force N2: the smaller axial force 

Table 2.1 shows the comparison of the effective length factor (01) obtained by using 

Table 2.1 Comparison of the effective length factor 

N2/N1 
01 

(Eq. 2.6) 

02 

(Eq. 2.15) 
100

01

0201 





(%) 

1 1.000 1.000 0.00 

0.5 0.869 0.875 -0.69 

0 0.727 0.750 -3.16 

-0.5 0.591 0.625 -5.44 

-1 0.500 0.500 0.00 
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the buckling slope deflection method and the effective length factor (02) obtained by 

using Eq. 2.15 in reference 2). According to Table 1, the maximum error is 5.44% when 

the axial force ratio N2/N1=-0.5. 

2.2.7 Required bracing stiffness 

At this part, the required stiffness reqk will be presented. reqk is the bracing stiffness to 

take the effective length factor for the brace spacing . Fig. 2.6 shows the relation 

between the effective length factor for the brace spacing and the required stiffness reqk. 

Generally speaking, the value of reqk decreases as the value of  increases. Making as 

unity, the value of reqk decreases as the ratio of axial force a becomes smaller. 

Remarkably, when there is one brace (Fig. 2.6(a)), the situation that the value of reqk is 

zero occurred when a is smaller than zero. Tables 2.2 and 2.3 show the required 

stiffness when equals 1 in the cases of one brace and two braces respectively. When 

there is one brace, the effective length factor for the whole length 0 is equal to 0.5 and 

when there are two braces, 0 is equal to 0.333. 

According to Table 2.2, reqk decreases as the axial force ratio decreases and it is 

Table 2.2 reqk when there is one brace 

Axial 

force ratio 

a 

Required 

stiffness 

reqk 

1 1.00 

0.5 0.750 

0 0.500 

-0.5 0.250 

-1 0 

 

Table 2.3 reqk when there are two brace 

Axial force ratio Required 

stiffness 

reqk a b 

1 1 1.50 

3/5 1/5 0.818 

1/3 -1/3 0.597 

2/5  0.528 
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found that the bracing stiffness is unnecessary when axial force ratio equals -1 in the 

case of one brace. According to Table 2.3, reqk decreases as the axial force ratio 

decreases when there are two braces. 

2.2.8 Design chart 

Section 2.2.8 focused on the application of this study in design when there are two 

braces and the axial force varies in a staircase pattern. It consists of two parts. Part i) 

presents a series of figures on the ratio of axial force and the required stiffness k when 

the effective length factor for the brace spacing  is constant. Then, Part ii) will give a 

specific example to show how to use these in design. 
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i) Curves of required stiffness 

Fig. 2.7 shows the required stiffness k corresponding to different ratio set of axial 

forces when the effective length factor  is constant and the axial force varies in a 

staircase pattern. In these figures, the horizontal axis is the axial force ratio of the 

middle part which is from 0 to 1, and the vertical axis is the axial force ratio of the left 

part which is from -1 to 1. 

Fig. 2.7(a) shows the case when the effective length factor  is equal to unity. It is 

obvious that when the ratio set of the axial force (a, b) is equal to (1, 1), the required 

stiffness k equals 1.5 which has been proved in Fig. 2.6(b). The curves of the required 

stiffness k shown in this figure are from 0.45 to 1.5. When the axial force ratio of the 
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middle part a takes the same value, the larger the axial force ratio of the left part b, the 

larger the required stiffness k will be. For instance, assuming a=1, when the value of b 

equals 0.5, the value of k is between 1.35 and 1.4. However, when b equals 0.2, the 

value of k is between 1.3 and 1.35.  

Fig. 2.7(b) is the situation when the effective length factor  equals to 1.1. According 

to this figure, when the axial force ratio a of the middle part and b of the left part are 

both equal to unity, the required stiffness k is between 0.9 and 1 which is smaller than 

1.5 when  equals unity. The range of the curves of required stiffness k is from 0.25 to 

0.9 which becomes smaller than the case when  is equal to unity (Fig. 2.7(a)). 

Fig. 2.7(c) and (d) present the curves of required stiffness k as the ratio set of axial 

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
a 

k=0.1

k =0.21

k =0.090.06

=1.4

0.1 0.12

0.140.13

0.12

0.11

0.09

0.08

0.07

0.06

0.16

k=0.15

0.17

0.19

0.18

k=0.2

b 

(f)  =1.5 

 

(e)  =1.4 

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1
a 

k=0.1

k =0.18

k =0.090.03

=1.5

0.05 0.07

0.14

0.13

0.12

0.11

0.09

0.03

0.07

0.06

0.16
k=0.15

0.17

0.04

k=0.05

0.08

0.02

b 

Fig. 2.7 Curves of required stiffness 
( staircase pattern ) 



27 

 

forces varies when the effective length factor  is equal to 1.2 and 1.3 respectively. In 

Fig. 2.7(c), the range of the required stiffness k shown in this figure is from 0.15 to 0.55, 

while the range of curves in Fig. 2.7(d) is from 0.09 to 0.265.  

Fig. 2.7(e) and (f) show the curves of required stiffness k as the ratio set of axial force 

varies when the effective length factor  is equal to 1.4 and 1.5 respectively. In Fig. 

2.7(e), the range of the required stiffness k shown in this figure is from 0.06 to 0.21, 

while the range of curves in Fig. 2.7(f) is from 0.02 to 0.18.  

In these six figures about the curves of required stiffness k when the axial forces vary 

in a staircase pattern, the range of the curves of required stiffness k becomes smaller as 

the effective length factor  increases. To the same ratio set of axial force, the larger the 

effective length factor  is, the larger required stiffness k will be obtained. For example, 

assuming the ratio set of axial forces (a, b)=(1,0.5), required stiffness k is between 0.4 

and 0.45 when the effective length factor  is equal to 1.2, while in Fig. 2.7(d) the value 

is close to 0.265. 

Fig. 2.8 presents the relation between the ratio of axial force and the required stiffness 

k when the axial force varies convexly. In this figure, the horizontal axis is the ratio of 

axial force a that is from 0 to 1, and the vertical axis represents the required stiffness k. 

According to Fig. 2.8, when the axial force ratio a is constant, the larger the effective 

length factor  is, the larger the required stiffness k will be. As the value of  increases, 

the effect of the axial force ratio a on the required stiffness k becomes smaller. 

ii) Example for design 

  Figure 2.9 presents an example of 

truss beam which has 12 panels and the 

length of span is 12000mm. In Fig. 

2.9(a), the left end of the beam is a pin 

end, while the right end is supported by 

a roller joint. To prevent the lateral 

deflection, five braces are set on Joint 

A~E at the top chord and Joint A’~E’ at 

the bottom chord respectively. Each 

top-chord joint suffers 6kN in the 

vertical direction. The ends of the beam 

are subjected to the bending moment 

which is 60kN・m on the left and 

100kN・m on the right in a clockwise 

direction. In addition, the height of the 
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truss beam is 800mm. 

Fig. 2.9(b) shows the material information about the cross section of each member. 

As the figure shown, the chord members are 114.3-4.5 and the web members 

are48.6-3.2.  

The top chord between Joint A and B which is covered by dash line in Fig. 2.10(a) is 

chosen as the calculating model. The largest axial force N1 is compressive force which 

is equal to 121.1kN on the right, the axial force N2 in the middle is compressive force 

which is equal to 109.1kN, and the axial force N3 on the left part is compressive force 

which is equal to 87.24kN. The ratio of axial force in each part is shown as Fig. 2.10(b). 

The ratio of axial force a in the middle is equal to 0.90, while the ratio of axial forces on 

the left b equals 0.72. 

In this condition, the effective length factor  can be gotten by the buckling slope 

deflection method when the nondimensional bracing stiffness k is equal to 0. In the 

same way, the required stiffness k can be obtained when the effective length factor  is 

constant such as =1. The results by the buckling slope deflection method are shown as 

Table 2.4.  

In addition, if using the figures presented in the preceding sections, the 

(a) Load condition 

Fig. 2.9 Example of truss beam 

(b) Material information 

Chord: 114.3-4.5 

    A=1552 mm
2
 

 Ic=2340 000 mm
4
 

 i=38.9 mm 

Web: 48.6-3.2 

     A=456.2 mm
2
 

 Iw=118 000 mm
4
  

i=16.1 mm 

where, i: radius of gyration 
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approximation of the results can be gotten quickly. When the bracing stiffness k is set to 

equal 0, we can look up Fig. 2.3(b) to find that, the effective length factor for the whole 

length 0 is close to 0.9. When the effective length factor for the brace spacing  is 

decided to equal unity, we can use Fig. 2.7(a) to find that, the value of the required 

stiffness k is between 1.25 and 1.3. 

 

  

(a) Axial forces of chord members 

Fig. 2.10 Calculating model 

N3=bN1 

N2=aN1 
N1 

N1= -121.1kN 

N2= -109.0kN 

N3= -87.24kN 

 

(b) Axial force ratios for calculating model 

Table 2.4 Results for the model by buckling slope deflection method 

Axial force ratio 
Bracing 

stiffness 

Effective length 

factor for the brace 

spacing 

Effective length 

factor for the whole 

length 

  
   

0.90 0.72 
0 2.79 0.930 

1.26 1 0.333 
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2.3  Bracing for columns with initial deformations subjected to varying 

axial force 

Following is the procedure of the equilibrium equation about the load-deflection 

relationship obtained by the buckling slope deflection method. 

2.3.1 Setting of problem 

The analytical models are shown as Fig. 2.11 and 2.12. Fig. 2.11 presents the axial 

force pattern. Fig. 2.11(a) is the case of one brace. The axial force subjected to right part 

is N1 and left part is N2=aN1 (-0.5≦a≦1). Fig. 2.11(b) and (c) show the cases of two 

braces when the axial force varies in a staircase pattern or convexly. In Fig. 2.11(b), the 

axial force subjected to the right part is N1, the middle part is N2=aN1 (0< a≦1) and the  
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(a) One brace 

N2=aN1 

Member 1 Member 2 
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(a) One brace 

(b) Two braces 
(Staircase pattern) 

(c) Two braces 
(Convex pattern) 

Fig. 2.12 Deformation in different cases 
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(b) Two braces 

(a-1) Initial deformation (a-2) Slope angle (a-3) Deflection angle 

(b-2) Slope angle (b-3) Deflection angle 

Fig. 2.11 Axial force pattern 
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left part is N3=bN1 (-1≦b≦1).in Fig. 2.11(c), the axial force subjected to middle part is 

N1 and the right and the left parts are subjected to N2=aN1 (0< a≦1). 

Fig. 2.12 shows the deformation in different cases. Fig. 2.12(a) is the case of one 

brace. In Fig. 2.12(a-1), R0 is the rotational angle before loading. 0 is the initial 

deformation at the middle point of the member. In Fig. 2.12(a-2), R and  present the 

slope angle and the deformation under loading, respectively. F is the bracing force. The 

deflection angle 2 at Point 2 is shown as Fig. 2.12(a-3). Fig. 2.12(b) shows the case of 

two braces. In Fig. 2.12(b-1), R0 is the rotational angle before loading. 0 is the initial 

deformation at supporting points of the members. In Fig. 2.12(b-2), R1 and R3 are the 

slope angles at the supporting ends. 2 and 3 are the deformation at points 2 and 3 

respectively when the members are under loading. F2 and F3 are the bracing forces 

whose relation with deformation is shown in this figure. In Fig. 2.12(b-3),2 and 3 are 

the deflection angle at Point 2 and Point 3. 

Moreover, K represents the stiffness of brace, EI is the bending stiffness and l is the 

brace spacing. The initial deformation curve is not determined by any functions, 

however, it is assumed that the initial deformation is a symmetric shape and the initial 

rotational angle of the member at the middle point is zero. 

2.3.2 Buckling equations 

a) When there is one brace [Fig. 2.11(a)] 

We can obtain Eq. (2.16) and Eq. (2.17) by applying the slope-deflection equation for 

stability which is also used in Section 2.2.   
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In the equations mentioned above, iandiare the stability functions (i=1, 2) 

which has been mentioned in Section 2.2 (Eq. (2.2) and Eq. (2.3)). 2 is the slope angle 

at point 2 and R is the rotational angle under loading.   

Based on the force balance conditions, Eq. (2.18) and (2.19) are obtained. 
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F: the bracing force, k: the nondimensional bracing stiffness, NE: the Euler’s buckling 

load, M21 and M23: the bending moment at Point 2 of Member 1 and 2 respectively, Q21 

and Q23: the shear forces of Member 1 and 2 respectively. 

Eq. (2.20) is the buckling equation obtained by the buckling slope deflection method 

when the member with one brace has an initial deformation.  
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b) When there are two braces [Fig.2.12(b) and (c)] 

The procedure for the case of two braces is similar to that for the case of one brace. 

Therefore, the buckling equations when there are two braces are presented as follows. 

i) Situation 1: the axial forces vary in a staircase pattern [Fig. 2.11(b)]. 
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ii) Situation 2: the axial forces vary convexly [Fig. 2.11(c)]. 
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2.3.3 Analytical parameters 

The analytical parameters used to calculate in Section 2.3 are chosen as follows: 

(1) The axial force ratio:  

(i) One brace [Fig. 2.11(a)]: a = -0.5, 0, 0.5, 1 



33 

 

(ii) Two braces:  

Staircase pattern [Fig. 2.11(b)]: (a, b) = (1, 1), (3/5, 1/5), (1/3, -1/3) 

Convex pattern [Fig. 2.11(c)]: a = 1, 3/5, 2/5, 1/5 

(2) The nondimensional bracing stiffness: k = 0.5, 1,2 

(3) The initial rotational angle: R0 = 0.001, 0.004 

2.3.4 Relation between rotational angle R and nondimensional axial force p  

a) When there is only one brace [ Fig. 2.11(a)] 

Fig. 2.13 shows some figures about the relation between rotational angle R and the 

nondimensional axial force p when there is only one brace. Fig. (a), (b) and (c) show the 

cases when the initial rotational angle R0 equals 0.001 and the nondimensional bracing 

stiffness k equals 0.5, 1 and 2 respectively. While Fig. (d), (e) and (f) are the cases in 

different nondimensional bracing stiffness k which is equal to 0.5, 1 and 2 when the 

initial rotational angle R0 is equal to 0.004 and the nondimensional bracing stiffness k 

equals 0.5, 1 and 2 respectively. In each figure, there are four curves shown in different 

axial force ratio a which is equal to 1, 0.5, 0 and -0.5 respectively. 

Generally speaking, the value of the nondimensional axial force p becomes greater as 

the value of the rotational angle R increases, and the effect of the rotational angle R on 

the nondimensional axial force p becomes smaller as R increases. However, the value of 
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Fig. 2.13 Relation between rotational angle R and 
nondimensional axial force p (one brace) 
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p will not increase all the time, and it will approach constant as the value of p increases. 

the approached values in different axial force ratios are shown in the right side of each 

figure. When the rotational angle R is same, the value of the nondimensional axial force 

p becomes greater as the axial force ratio a decreases. 

When the initial rotational angle R0 and the axial force ratio a is same, the value of 

the nondimensional axial force p obtained under the greater nondimensional bracing 

stiffness k is greater than that obtained under the smaller k. For instance, Fig. 2.13(a) is 

the case when the nondimensional bracing stiffness k equals 0.5, while Fig. 2.13(b) is 

the case when the value of k is unity. The bold line represents the case when the axial 

force ratio a equals unity. In these two figures, the asymptotic value of p in Fig. 2.13(a) 

is 0.643 which is smaller than the value in Fig. 2.13(b) which is equal to 1.00. 

When the initial rotational angle R0 is different and other parameters are consistent, 

the value of the nondimensional axial force p of the case with smaller initial rotational 

angle approaches the final asymptotic value faster than that of the case when the 

nondimensional axial force p is larger. For example, the value of the nondimensional 

axial force p approches the asymptotic value when the rotitional angle R is 0.02 in Fig. 

2.13(a), while the nondimensional axial force p hasn’t reached the asymptotic value, 

even though the value of the rotational angle R has been over 0.03 in Fig. 2.13(d).  

It should be metioned, when the axial force ratio a and the nondimensional bracing 

stiffness k are same, the asymptotic value is consistent even if the initial rotational angle 

R0 changes. For example, when the axial force ratio a is equal to 1 in Fig. 2.13(a) and 

Fig. 2.13(d), the asymptotic value of the nondimensional axial force p is 0.643, 

whatever the initial rotational angle R0 is. 

b) when there are two braces 

i) Situation 1: the axial force varies in a staircase pattern [Fig. 2.11(b)]. 

Fig. 2.14 shows the relation between the rotational angle R and the nondimensional 

axial force p when there are two braces and the axial force varies in a staircase pattern. 

Fig. 2.14(a), (b) and (c) show the cases when the initial rotational angle R0 equals 0.001 

and the nondimensional bracing stiffness k equals 0.5, 1 and 2 respectively. While Fig. 

2.14(d), (e) and (f) are the cases in different nondimensional bracing stiffness k which is 

equal to 0.5, 1 and 2 when the initial rotational angle R0 is equal to 0.004 and the 

nondimensional bracing stiffness k equals 0.5, 1 and 2 respectively.In each figure, there 

are three curves shown in different axial force ratio set (a, b) which is equal to (1, 1), 

( 0.6, 0.2) and (1/3, -1/3) respectively. 

The basic features of the figures are similar with the situation when there is only one 

brace. the value of the nondimensional axial force p becomes greater as the value of the 
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rotational angle R increases, and the effect of the rotational angle R on the 

nondimensional axial force p becomes smaller as R increases. The value of p will not 

increase all the time, and it will approach constant as the value of p increases. the 

approached values in different axial force ratios are shown in the right side of each 

figure. 

ii) Situation 2:  the axial force varies convexly [Fig. 2.11(c)] 

Fig. 2.15 shows the relation between the rotational angle R and the nondimensional 

axial force p when there are two braces and the axial force varies in a staircase pattern. 

Fig. 2.15(a), (b) and (c) show the cases when the initial rotational angle R0 equals 0.001 

and the nondimensional bracing stiffness k equals 0.5, 1 and 2 respectively. While Fig. 

2.15(d), (e) and (f) are the cases in different nondimensional bracing stiffness k which is 

equal to 0.5, 1 and 2 when the initial rotational angle R0 is equal to 0.004 and the 

nondimensional bracing stiffness k equals 0.5, 1 and 2 respectively.In each figure, there 

are three curves shown in different axial force ratio a which is equal to 1, 0.6, 0.4 and 

0.2 respectively. 

Because the calculating model used in this part is symmetrical, there is a special 

boundary condition than others. That is to say, the buckling load can be reached in some 

conditions. For example, in Fig. 2.15(a), there is a salient point in each curve and the 
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Fig. 2.14 Relation between rotational angle R and nondimensional 
axial force p (two braces for staircase pattern) 
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axial force N1 corresponding to that point is the buckling load. When the initial 

rotational angle R0 is different and other parameters are consistent, the value of the 

rotational angle R to obtained the buckling load in Fig. 2.15(a) is larger than that in Fig. 

2.15(d).  

2.3.5 Relation between nondimensional axial force p and bracing force F 

a) when there is only one brace [Fig. 2.11(a)] 

Figure 2.16 is made of six firgures which are about the relation between the 

nondimensional axial force p and the bracing force F. In these firgures, the horizontial 

axis is the ratio between the bracing force F and the larger axial force N1, and the 

vertical axis represents the nondimensional axial force p. Fig. 2.16(a), (b) and (c) show 

the cases that the initial rotational angle R0 equals 0.001 when the nondimensional 

bracing stiffness k equals 0.5, 1 and 2 respectively. Fig. 2.16(b), (d) and (f) show the 

cases that the initial rotational angle R0 equals 0.004 when the nondimensional bracing 

stiffness k equals 0.5, 1 and 2 respectively. In each figure, there are four curves shown 

in different axial force ratio a which is equal to 1, 0.5, 0 and -0.5 respectively. 

In general, the value of the nondimensional axial force p increases and becomes 

constant as the value of the nondimensional axial force p increases. when the value of 

F/N1 is same, the value of the nondimensional axial force p becomes greater as the axial 
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force ratio a decreases. 

When the initial rotational angle R0 is same, the value of the nondimensional axial 

force p obtained under the greater nondimensional bracing stiffness k is greater than that 

obtained under the smaller k with the same axial force ratio. For instance, Fig. 2.16(a) is 

the case when the nondimensional bracing stiffness k equals 0.5, while Fig. 2.16(b) is 

the case when the value of k is unity. The positions of the curves in Fig. 2.16(b) are 

higher than those shown in Fig. 2.16(a) with the same axial force ratio. 

b) when there are two braces 

i) Situation 1: the axial force varies in a staircase pattern [Fig. 2.11(b)]. 

Fig. 2.17 shows some figures about the relation between the nondimensional axial 

force p and the stiffening force F when there are two braces and the axial forces vary in 

a staircase pattern. The parameters in these figures are same with that set in Fig. 2.14. 

The basic features of the figures are similar with the situation when there is only one 

brace. The value of F/N1 increases as the value of the nondimensional axial force p 

increases obviously at the beginning, then approaches some constant in final.In addition, 

the asymptotic value of the nondimensional axial force p becomes greater as the ratio 

set of axial force (a, b) decreases in the same figure.  
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ii) Situation 2: the axial force varies convexly [Fig. 2.11(c)] 

Fig. 2.18 shows the relation between the nondimensional axial force p and the 

bracing force F when there are two braces and the axial force varies convexly. The 

parameters in Fig. 2.18 are same with these shown in Fig. 2.15. 

When R0 takes the same one, the value of F/N1 obtained under the greater 

nondimensional bracing stiffness k is greater than that obtained under the smaller k 

corresponding to the nondimensional axial force p with the same axial force ratio. For 

instance, Fig. 2.20(a) is the situation when the nondimensional bracing stiffness k equals 

0.5, while Fig. 2.20(c) is the situation when the value of k is unity. In these two figures, 

the approximation of F/N1 corresponding to Fig. 2.20(a) is 0.002 which is smaller than 

the value in Fig. 2.20(c) which is equal to 0.012 when the nondimensional axial force p 

is equal to 0.4. 

The calculating model used in Fig. 2.18 that is same with the case used in Fig. 2.15 is 

symmetrical and there is a special boundary condition than others. So that the axial 

force N1 corresponding to the salient point is the buckling load. Comparing Fig. 2.18(a) 

and (d), the buckling load is same when the axial force ratio is consistent. However, the 

value of F/N1 in Fig. 2.18(b) is larger than that in Fig.2.18(a) when the buckling load is 

obtained. 
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2.3.6 Relation between bracing force F and nondimensional bracing stiffness k 

Fig. 2.19 shows the relation between the bracing force F and the nondimensional 

bracing stiffness k when the nondimensional axial force p is unity. The vertical axis is 

the ratio between the bracing force F and the Euler’s buckling load NE. The horizontial 

axis is the bracing stiffness k. Fig. 2.21(a) shows the cases when there is only one brace. 

Fig. 2.21(b) and (c) show the cases of two braces when the axial force varies in a 

staircase pattern or convexly. The initial rotational angle R0 equals 0.001 or 0.004. 

According to these figures, the value of F/NE decreases as the nondimensional 

bracing stiffness k increases. In Fig. 2.19(a) and (c), when the nondimensional bracing 

stiffness k is same, the value of F/NE increases as the axial force ratio a increases, while 

the value of F/NE decreases as the axial force ratio a increases in Fig.2.19. Moreover, 

the value of F/NE is almost same even if the axial force ratio a is different when the 

nondemensional bracing stiffness k is larger than 3 in Fig.(b-1) and 8 in Fig.(b-2). That 

is to say, as the nodimensional bracing stiffness k increases, the effect of the axial force 

ratio on the value of F/NE becomes smaller when the axial force varies in a staircase 

pattern. 
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2.4  Conclusions  

The buckling equations when the compressive member with one or two braces is 

subjected to varying axial force have been calculated by the buckling slope deflection 

method. The main findings are summarized as follows. 

 

i) For Section 2.2 

(1) When the ratio of axial forces is larger, the effective length factor 0 is larger when 

the nondimensional bracing stiffness k is the same value. 

(2) Buckling modes are presented when the value of the nondimensional bracing 

stiffness k is equal to 0, 0.5 and 3. The ratio of axial forces plays an important role 

in the variation of buckling mode. 

(3) Required bracing stiffness to take the effective length as the brace spacing is 

calculated and it decreases as the axial force ratio decreases. 

(4) A specific example about the truss beam has been shown in the final part of this 

section in order to present the application of this study in structural design. 

 

ii) For Section 2.3 

(1) The value of the nondimensional axial force p becomes larger as the value of the 

rotational angle R increases. The effect of the rotational angle R on the 

nondimensional axial force p becomes smaller as R increases. However, the value 

of p will not increase at all times, and it will approach constant as the value of p 

increases. 

(2) When the value of F/N1 is same, the value of the nondimensional axial force p 

increases as the axial force ratio a decreases and the value of p with k =1 is greater 

than that the value of p with k =0.5, in the case that the axial force ratio is same. 

(3) According to Fig. 2.19(a) and (c), when the nondimensional bracing stiffness k is 

same, the value of F/NE increases as the axial force ratio a increases, while the 

value of F/NE decreases as the axial force ratio a increases. Moreover, as the 

nondimensional bracing stiffness k increases, the effect of the axial force ratio on 

the value of F/NE becomes smaller when the axial force varies in a staircase 

pattern. 
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3.1  Introduction 

  The design methods for bracing of steel structure are presented in Design Standard 

for Steel Structures 
1)

, Recommendation for Limit State Design of Steel Structures 
2)

, 

Recommendations for the Plastic Design of Steel Structures
 3)

 and Recommendations 

for Stability Design of Steel Structures 
4)

. 

In Recommendation for Limit State Design, the required bracing stiffness and the 

required bracing force are shown for flexural buckling of compressive members, lateral 

buckling of members subjected to bending moment and beam-columns respectively. 

These design methods for bracing are based on the study results of bracing for flexural 

buckling of compressive members subjected to the uniform axial force. That is to say, 

most of the studies, including the references 5) and 6), target the members subjected to 

the uniform axial force although the studies investigated the flexural buckling of the 

members with multiple bracing and with initial imperfection and the inelastic buckling 

behavior. 
As for the lateral buckling of beams or flexural-torsional buckling of H-shaped 

beam-columns, the research results of bracing of compressive members subjected to the 

uniform axial force are introduced by considering the lateral buckling and the torsional 

buckling as the flexural buckling of the compressive flange. Compressive members 

subjected to the uniform axial force correspond to the compressive beam flanges when 

the beam and the beam-columns are subjected to the constant bending moment. 

However, the bending moment generally varies along the member axis. 

  In reference 7)~13), problems of bracing of beams and beam-columns are treated, 

however, the lateral bracing stiffness and the torsional bracing stiffness, and the 

relationship between loading conditions and flexural-torsional buckling strength are not 

clear. 
The buckling equation of beam-columns which have sandwich section and which 

have one lateral and one torsional bracing at the middle of the member was derived by 

using the Rayleigh-Ritz method and the effects of loading conditions, bracing and 

resistance by St. Venant torsion on the flexural-torsional buckling strength were 

presented
14)

. However, few studies show systematically the relation between the 

buckling strength and the bracing stiffness of the H-shaped member with the lateral 

bracing or the torsional bracing subjected to axial force and end moments. 

  The purpose of this study is to calculate the buckling equation of H-shaped 

beam-columns by using the Rayleigh-Ritz method and show the relation between elastic 

buckling strength and the lateral and the torsional bracing stiffness. The member is 

simply supported at both ends and subjected to compressive force, end moments and 
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uniformly distributed load. 
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3.2 Analysis 

3.2.1 Analytical model 

  In this Chapter, the flexural-torsional buckling force of H-shaped cross section which 

is subjected axial load and bending moment around the strong axis is presented when 

the lateral defection and the torsion are fixed by the brace. The loading conditions and 

the boundary conditions are shown as Fig. 3.1. The left end of the member is a hinge 

joint and subjected to bending moment M1. The right end is supported by a pin and 

subjected to bending moment M2= M1 ( is the end moment ratio, ||≦1). Both ends 

are subjected to equal compressive load N and the axial load is constant. w is the 

uniformly distributed load. There are four kinds of the bracing attached to the member, 

discrete lateral bracing, continuous lateral bracing, discrete torsional bracing and 

continuous torsional bracing whose bracing stiffness are denoted by Kivd, Kvc, Kid and 

Kd respectively (the subscript i represents the number of the bracing). When the 

number of the bracing i=1, the bracing is attached at the midspan of the member, and 

when i=2, the bracing is attached at the trisection of the member. This study is to 

Fig. 3.1 Analytical model 
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analysis the situation when the both ends of the member are simply supported. The 

boundary conditions in this situation are different from the conditions in fact. However, 

the boundary conditions of this study are the most basic so that the safe side can be 

evaluated. 

  In Fig. 3.1(b), v(x) and (x) represent the lateral deflection and the torsional angle of 

the center of the cross section respectively. The left supporting point of the member is 

selected as the original point and x axis is set along the member as Fig. 3.1(a) shown. 

The geometric boundary conditions are v(0)=v(l)=(0)=(l)=0 and the mechanical 

boundary conditions are v"(0)=v"(l)="(0)="(l)=0. In Fig. 1(c), h0d and h0c represent 

the distance from the center of the cross-section to the discrete lateral bracing and the 

continuous lateral bracing. hw is the distance from the center of the cross-section to the 

position subjected to the uniformly distributed load. The torsional bracing is attached at 

the center of the cross-section. 
In this study, the Rayleigh-Ritz method is used to calculate the approximate value of 

the buckling strength, because the exact solution of this problem is hard to obtain. 

3.2.2 Total-potential energy 

The total-potential energy of this model is shown in Eq. (3.1). In addition, v(x) and 

(x) represent the lateral deflection and the torsional angle along x axis, respectively. 

The symbols v´, ´, v" and " in Eq. (3.1) represent the first and the second derivatives 

of v(x) and (x) with respect to x. 
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 (3.1) 

In Eq. (3.1), the first term is the strain energy of deflection along x axis, the second 

term is the strain energy of St.Venant torsion reduced by the axial force effect 
15)

, the 

third term is the strain energy of warping, the fourth, the fifth and the sixth terms are the 

potential energy of external loads corresponding to bending moment M, axial force N 

and uniformly distributed load w respectively, other four terms are the strain energy of 

discrete lateral bracing, continuous lateral bracing, discrete torsional bracing and 

continuous torsional bracing. Definitions of notations are as follows: l is the length of 

the member, A is the area of the cross-section, Iy and Iz are the second moments of 

inertia around y and z axes, J is the St.Venant torsional constant, Iw is the warping 

constant, E is the elastic modulus and G is the shear modulus. In this paper we define as 
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follows: 
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Me is the elastic lateral buckling moment when the member is subjected to equal end 

moments, Ne is the elastic buckling load for out-of-plane bending around the weak axis, 

i0 is the polar radius of gyration of area, m is the nondimensional bending moment, n is 

the nondimensional compressive force,  is the uniformly distributed load ratio, is the 

end moment ratio, d is the distance between the two centroids of the flanges of the 

H-shaped cross-section. 

  Referring the method used in reference 16), the nondimensional bracing stiffness is 

defined as follows: 

One lateral bracing: 
EI

lK
k vd

vd 2

3
1

1
16

  (3.2) 

Two lateral bracing: 
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Continuous lateral bracing: 
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One torsional bracing: 
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Two torsional bracing: 
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Continuous torsional bracing: 
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   (3.7) 

3.2.3 Assumption of buckling mode and buckling equation 

The buckling modes that satisfy the geometrical boundary conditions and the 

mechanical boundary conditions are assumed as follows. 
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where ≡x/l. By substituting Eq. (3.8) and (3.9) into Eq. (3.1), Eq. (3.10) is obtained. 
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where a
T
=(a1, a2,…, am*, b1, b2,…, bm*). Based on the Rayleigh-Ritz method, the 

following equation is obtained by partially differentiating Eq. (3.10) by ai, bi (i=1, 2,…, 

m
*
) and making it equal to 0. 
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In this study, Eq.(10) is calculated by setting m
*
 in Eq. (3.8) and (3.9) equal to 5. And 

m
*
 is set equal to 7 when the effect of torsional bracing is considered for the 

preservation of accuracy. The matrix of Kaa, Kab, Kba and Kbb are presented as Eq. (3.12) 

~ (3.14). In these equations, i is the row position of diagonal elements. In order that Eq. 

(3.11) has a nontrivial solution, the buckling equation is presented as follows. 

0K   (3.15)  

  By analyzing Eq. (3.12) ~ (3.15), we find that the parameters which have effects on 

the buckling load n and m are the end moment ratio , the uniformly distributed load 

ratio w, the position of the bracing 0d and 0c, the position of the uniformly distributed 

load w and R, di0, dl which are the various amounts about the section size and the 

length. The buckling load can be obtained when these parameters are determined. 
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3.3  Analytical results 

  In this section, the case when one lateral bracing or one torsional bracing is attached 

at the member is presented. That is to say, k2vd, kvc, k2d and kc in Eq. (3.12) ~ (3.14) are 

equal to 0. When the bracing is considered as the brace for the beam-column, the 

discussion about the case of plural bracing is important. However, the results for the 

cases of two bracing and continuous bracing are similar to that for the case of one 

bracing. Therefore, the discussion on two bracing and continuous bracing will be 

presented in future. 

3.3.1 Analytical parameters 

  The analytical parameters are set as follows: 

1) The end moment ratio: =-1, 0, 1 

2) The position of the bracing: 0d=-0.6, 0, 0.6 

3) The section size: H-600×200×11×17 (narrow width) 

 H-588×300×12×20  

 H-488×300×11×18 

 H-300×300×10×15 (wide width) 

4) The length of the member: l=6m, 16m 

5) The kind of the bracing: lateral bracing and torsional bracing 

  The section properties for analyzing are shown as Table 3.1. The slenderness ratio y 

corresponding to the weak axis when the buckling effective length is the whole length 

of the member is presented. In Reference 1, the upper limit of the slenderness ratio y is 

200 and the lower limit of y is calculated by )6.0/(2 FE  (when F=235N/mm
2
, the 

lower limit is about 120). In Table 1, the values of y which are over the upper and 

lower limit are chosen as the analytical parameters. That is because it is easy to compare 

the results when the length of the member is constant.  

3.3.2 Relation between buckling strength and bracing stiffness 

  The interactions between the nondimensional bending moment m and the 

nondimensional axial force n on the buckling load are presented by taking the 

nondimensional bracing stiffness as a parameter. The cases of the lateral bracing and the 

torsional bracing are presented respectively. 

i) Case of lateral bracing 

(a) Effect of end moment ratio (Fig. 3.2) 

  Figure 3.2 shows the m-n interactions when the lateral bracing is attached at the 

midspan of the member by taking the bracing stiffness k1vd as a parameter. The cross 
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section is H-600×200×11×17 and the length of the member is 6m. The bracing is 

attached at the middle of the cross section (0d=0). Fig. 3.2(a) shows the case when the 

end moment ratio =-1 (symmetric bending). According to this figure, as the bracing 

stiffness increases, the field covered by the m-n curve and the axes of coordinates 

becomes wider. When m=0 or n=0, the maximum value is n=2.39 and m=3.35 

respectively. 

  When the H-shaped beam supported simply is subjected to the compressive load, the 

buckling load is determined by the torsional buckling force or the bending buckling 

force around the strong or weak axis. The buckling load when n=2.39 is determined by 

the torsional buckling force (referred to Appendix 2). In this situation, when the section 

size and the length are constant and the member is subjected to the axial load, the 

buckling load will not be larger than the torsional buckling force even though the 

bracing stiffness increases. As shown in Eq. (3.2), when the nondimensional bracing 

stiffness k1vd =1, the required bracing stiffness is equal to the required stiffness bracing 

of the compressive member attaching one bracing at the midspan and subjected to 

uniform axial force only when the buckling mode becomes the second order distribution 

of a sine wave. And when n=2.39, the minimum value of the bracing stiffness k1vd is 

0.441 which is smaller than unity. The maximum value of the nondimensional bending 

moment m is 3.35 when the effective length is half of the whole length of the member 

(referred to Appendix 2). 

  In Fig. 3.2(a), LineA means the buckling modes of the deflection and the torsional 

Table 3.1 Section properties and member length 

  H-600×200 H-588×300 H-488×300 H-300×300 

A (mm
2
) 13170 18720 15920 11850 

Iz(mm
4
) 7.56×10

8
 1.14×10

9
 6.89×10

8
 2.02×10

8
 

Iy(mm
4
) 2.27×10

7
 9.01×10

7
 8.11×10

7
 6.75×10

7
 

i0 (mm) 243 257 220 151 

J (mm
4
) 9.14×10

5
 1.93×10

6
 1.37×10

6
 7.70×10

5
 

Iw (mm
6
) 1.93×10

12
 7.27×10

12
 4.48×10

12
 1.37×10

12
 

l (mm) 
6000 6000 6000 6000 

16000 16000 16000 16000 

y 
144 86.5 84.1 79.5 

385 231 224 212 

R 
0.663 0.372 0.431 0.788 

4.72 2.65 3.06 5.60 

NOTE For y, R, the upper and lower values correspond to the cases of l=6000 and l=12000, respectively. 
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angle are both second order distribution of a sine wave. And as shown in this figure, the 

larger the bracing stiffness is, the wider the same part with LineA is.  

  Figure 3.2(b) shows the case of =0. According to Fig. 3.2(b), the case of =0 has the 

same tendency as the case of =-1. However, there is not the obvious limit like LineA in 

Fig. 2(b). 

  Figure 3.2(c) shows the case of =1 (antisymmetric end moment). According to this 

figure, two kinds of the buckling mode (modeA and modeB) can be observed. As shown 

in Fig. 3.2(c), modeA is the case that the torsional angle at the bracing point is zero and 

modeB is the case that the lateral deflection at the bracing point is zero. When the 

nondimensional bracing stiffness is smaller than 0.441, the effect of the bracing can be 

observed under large axial force. While the nondimensional bracing stiffness is larger 

than 0.441, the buckling mode is modeB and the curves of the m-n interactions are same 

whatever the bracing stiffness equals. 

(b) Effect of bracing point (Fig. 3.3) 

  Figure 3 shows the relation of the m-n interaction on the elastic flexural-torsional 

buckling strength by taking the nondimensional bracing stiffness k1vd as a parameter 

when the bracing is attached at the upper or lower side of the cross section. The size of 

the cross section is H-600×200×11×17 and the length of the member is set to 6m. In Fig. 

3, the first quadrant shows the case of the bracing at the upper side (0d=-0.6) and the 

second quadrant shows the case of the bracing at the lower side (0d=0.6). This model 

can be considered as the furring strips attaching at the beam-column. The position of the 

bracing is determined by the size of the cross section of the member, the size of the 

cross section of the bracing and the way of connection. In this study, we assume the 

bracing is attached at the surface of the flanges when 0d=±0.6.  
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  In Fig. 3.3(a), when the member is subjected to axial load only (m=0), the 

nondimensional axial force n becomes larger as the bracing stiffness increases. However, 

the maximum value n=2.39 shown in Fig. 3.2(a) cannot be reached when the bracing is 

attached at the surface of the flanges. And according to the first quadrant in Fig. 3.2(a), 

there are two buckling strengths m to the same buckling strength n when the bracing is 

attached at the member. For example, when k1vd=0.420 and n=2.0, the value of m is 

0.592 and 1.76 (see Point A1 and A2). When the bracing stiffness and the axial force are 

constant, two different values of the bending moment are obtained. That is because the 

buckling modes corresponding to these two values are different (referred to Appendix 3). 

Fig. 3.3(b) shows the case of =0, the curves of the m-n interaction have the same 

tendency with these shown in Fig. 3.3(a). 

  Figure 3.3(c) shows the case of =1. The curves of the m-n interaction are symmetric 

about the x-axis. When the axial force and the bracing stiffness are same, there is only 

one value of m to correspond that is different with the cases of =-1 and =0. 

(c) Effect of size of cross section and length of member (Fig. 3.4) 

  In Fig. 3.4(a), the relation of the m-n interaction with different size of the cross 

section are presented when =-1 and 0d=0. The sizes of the cross section are included 

H-588×300×12×20, H-488×300×11×18 and H-300×300×10×15 (wide width). The 

length of the member is set to 6m. As shown in Fig. 3.4(a), the difference of the size of 

the cross section has a little effect on the relation between the m-n interaction and the 

bracing stiffness. Fig. 3.4(a) shows the same tendency as Fig. 3.2(a) and the values of 

the bracing stiffness when the curve has the same part with LineA are different. The 

values are equal to 4.57, 4.37 and 3.61 in Fig. 3.4(a-1), (a-2) and (a-3), respectively. 

And the value corresponding to the size of wide width is smaller than the others. 

(a)=-1 (b)=0 (c)=1 

Fig. 3.3 m-n interaction (with one lateral bracing at upper side and lower side) 
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  To present the effect of the length of the member, the cases when the length of the 

member l=16m and the end moment ratio =-1 (symmetric end moment) are shown in 

Fig. 3.4(b). The sizes of the cross sections are H-588×300×12×20, H-488×300×11×18 

and H-300×300×10×15 (wide width) corresponding to Fig. 3.4(b-1), (b-2) and (b-3), 

respectively. As shown in Fig. 3.4(b), when the member is subjected to the axial load 

only, the maximum value of the nondimensional axial force n is equal to 4. This value 

corresponds to the flexural buckling strength around the weak axis when the effective 

length equals half of the whole length (lk =l/2). Therefore, we can find the length of the 

member has effects on the relation of the m-n interaction that the buckling strength is 

determined by the flexural buckling strength around the weak axis or the torsional 

buckling strength when the member is subjected to the axial load only. The discussion 

about the conditions to determining the buckling form is shown as Appendix 4. For this 

study, we define the buckling mode when the flexural buckling occurred (shown as the 

case of l=16m) is the flexural buckling mode and the buckling mode when the torsional 
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buckling occurred (shown as the case of l=6m) is the torsional buckling mode. When 

the member is subjected to the axial load only, the nondimensional bracing stiffness k1vd 

to obtain the maximum value of n is 0.441<1 in Fig. 3.2(a) (l=6m, nmax=2.39), while the 

value of k1vd in the same condition in Fig. 3.4(b-1) (l=16m, nmax=4) is exactly equal to 

unity. On the effect of the size of the cross section, when the curve has the same part 

with LineA and n=0, the value of m is not constant in Fig. 3.4(b-1) that is different from 

the situation shown in Fig. 3.2(a) (when n=0, mmax=3.35). 

ii) Case of torsional bracing (Fig. 3.5) 

  Fig. 3.5 shows the relation of the m-n interaction when the torsional bracing is 

attached at the midspan of the member. The size of the cross section is 

H-600×200×11×17 and the length of the member is set to 6m. As shown in Fig. 3.5, the 

value of the nondimensional axial force is constant (n=1) even if the bracing stiffness 

increases when the member is subjected to the axial load only (m=0). And it is the same 

as the case of the lateral bracing, as the bracing stiffness increases, the field covered by 

the m-n curve and the axes of coordinates becomes wider. When =-1 (Fig. 3.5(a)), as 

the bracing stiffness increases, the same part with LineA whose deflection and torsional 

angle at the bracing point are both zero becomes larger. When =1 (Fig. 3.5(c)), modeA 

when the torsional angle at the bracing point is zero and modeB when the deflection at 

the bracing point is zero can be observed. When k1vd≧0.156, the buckling mode is 

modeB and the curves are constant even if the bracing stiffness increases. According the 

analysis about the lateral bracing, we can find that the buckling strength has relations 

with the buckling form when the member is subjected to the axial load only, so the 

effect of the length of the member has a little effect on the buckling strength when the 

torsional bracing is attached at the midspan of the member. However, the term about the 

nondimensional bracing stiffness k1vd has a coefficient dl
2
= (l/d)

2
 in Eq. (12)~(15), so 
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that there is a large efficiency of the bracing when the value of l/d is large. Therefore, 

when the bracing stiffness is constant, as the value of l/d increases, the field covered by 

the m-n curve and the axes of coordinates becomes wider. 

3.3.3 Required bracing stiffness to be full-bracing 

i) Relation between required bracing stiffness and nondimensional axial force 

(a) Case of lateral bracing 

  In this chapter, when the lateral bracing or the torsional bracing is attached at the 

midspan of the member, the buckling mode that the deflection and the torsional angle at 

the bracing point are zero is referred to as full-bracing, just like the cases when the 

curve has the same part with LineA shown as Fig. 3.2(a) and Fig. 3.4(a). Fig. 3.6 shows 

the required bracing stiffness to be full-bracing reqk1vd by taking the position of the 

bracing as a parameter when the lateral bracing is attached at the midspan of the 

member and the end moment ratio =-1. The horizontal axis represents the 

nondimensional axial force n and the vertical axis represents the required bracing 

stiffness reqk1vd. Because the curves of the m-n interaction has no same part with LineA 

when the bracing is attached at the lower side of the cross section shown as the second 

quadrant in Fig. 3.3, the parameter 0d≦0 in Fig. 3.6. Fig. 3.6(a), (b) show the cases 

when the length of the member is 6m and 16m respectively. The size of the cross 

section is set to H-600×200×11×17 or H-300×300×10×15. The points P1, P2, P3, Q1, 

Q2 and Q3 in Fig. 3.6(a-1) correspond to the same points shown in Fig. 3.2(a) and Fig. 

3.3(a). And the points R1, R2 and R3 in Fig. 3.6(b-1) correspond to the same points 

shown in Fig. 3.4(b-1).  

  According to Fig. 3.6(a), when n<2.65 in Fig. 3.6(a-1) and n<2.5 in Fig. 3.6(a-2), the 

required bracing stiffness decreases as the bracing point is far away from the center of 

the cross section. And this decrease becomes slow when the value of 0d is smaller than 

-0.2. Comparing Fig. 3.6(a-1) and (a-2), when the required stiffness bracing reqk1vd 

abruptly increases, the value of the nondimensional axial force n corresponding to the 

case of the cross section of the narrow width (Fig. 3.6(a-1)) is larger than that 

corresponding to the wide width (Fig. 3.6(a-2)). In Fig. 3.6(b), when n<3.0, as the 

bracing point is far away from the center of the cross section, the value of reqk1vd 

decreases. Comparing Fig. 3.6(b-1) and (b-2), it is not obvious for the effect of the size 

of the cross section when the length of the member is 16m. And when the bracing is 

attached at the center of the cross section (0d=0), as the nondimensional axial force n 

increases, the required bracing stiffness reqk1vd becomes smaller. As the bracing point is 

far away from the center of the cross section, the value of n is close to 4, the required 

bracing stiffness abruptly increases. Comparing Fig. 3.6(a) and (b), we can find that the 
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relation between reqk1vd and n will be different if the length of the member is different.  

(b) Case of torsional bracing 

  The required bracing stiffness when the torsional bracing is attached at the midspan 

of the member is shown as Fig. 3.7. In Fig. 3.7(a), the points S1, S2 and S3 correspond to 

the same points in Fig. 3.5(a). As mentioned before, the position of the torsional bracing 

has no effect on the elastic buckling strength, so that we take the size of the cross 

section as a parameter to show the required bracing stiffness in Fig. 3.7. Fig. 3.7(a) and 

(b) show the cases when the length of the member is set to 6m and 16m respectively. 

According to Fig. 3.7(a), the required bracing stiffness when the size of the cross 

section belongs to the type of the wide width is smaller than that when the size of the 

cross section belongs to the type of the narrow width. According to Fig. 3.7(b), the 

tendency of the curve with the different size of the cross section is similar when the 

value of the nondimensional axial force n is smaller than 0.6. We have discussed the 

coefficient dl=l/d has effects on the case of the torsional bracing in Section 3.2.2. 

Fig. 3.6 Required bracing stiffness for full bracing (lateral bracing) 
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Because the value of dl is large, the required bracing stiffness corresponding to the cross 

section H-300×300×10×15 is small. While the value of dl is small, the required bracing 

stiffness corresponding to the cross section H-600×200×11×17 is large. 

ii) Equations to obtain required bracing stiffness 

(a) Equations and accuracy 

  In this study, the simple equations to obtain the required bracing stiffness are 

presented. The relation of the m-n interaction to be the full-bracing (LineA) is presented 

as Eq. (3.16).  

   bi rmndRnrm 
2

0444  (3.16) 

  Equation (3.16) is calculated by the buckling equation whose number of the terms m
*
 

in Eq. (3.8) and (3.9) is set to equal to three. The required bracing stiffness to be the 

full-bracing can be calculated by Eq. (3.17) which uses mb defined by Eq. (3.16). 

  The relation of reqk1vd-n calculated by Eq. (3.16) is shown as the marks ● and ○ in 

Fig. 3.6. According to Fig.3.6, the difference with the result calculated by Eq. (17) when 

the bracing is attached at the center of the cross section (0d=0) is larger than the others 

whose accuracy is good enough to be used for evaluating.  

  In the same way, the equation to obtain the required bracing stiffness to be the 

full-bracing when the torsional bracing is attached at the midspan of the member is 

shown as Eq. (3.18). However, the number of the terms m
*
 in Eq. (3.8) and (3.9) to 

obtain Eq. (3.18) is set equal to 5 which is the same as that used for calculating the 

buckling equation shown as before. Because of this, the results obtained by Eq. (3.18) 

are consistent with the curves in Fig. 3.7.  

  Figure 3.8 shows the accuracy of the case of the lateral bracing. The horizontal axis is 

the nondimensional axial force n and the vertical axis is the accuracy which is 
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calculated by Eq. (3.19). In Eq. (3.19), 5reqk1vd represents the required bracing stiffness 

when the number of the terms m
*
 in Eq. (3.8) and (3.9) is set equal to 5.  

 %100Accuracy
15

151





vdreq

vdreqvdreq

k

kk
 (3.19) 

  Fig. 3.8(a) and (b) show the cases when the length of the member is set equal to 6m 

and 16m respectively. According to Fig. 3.8(a), when 0d≧-0.4, the accuracy becomes 

better as the bracing point is far away from the center of the cross section. while when 

0d≦-0.5, the accuracy becomes worse as the value of 0d decreases. When 0d≦-0.2, 

the accuracy is not larger than 5% and the accuracy when 0d =-0.05, -0.1 is quite bad. 

According to Fig. 3.8(b), except the case of 0d=0, the accuracy becomes worse as the 

bracing point becomes far away from the center of the cross section. When 0d≦-0.5, 

the accuracy is not larger than 5% and when n≦-0.5, the accuracy is not larger than 2%. 

(b) Correction for equations 

  About the equations to obtain the required bracing stiffness (Eq. (3.17) and (3.18)), it 

should be mentioned that if the nondimensional axial force is large enough, the required 

bracing stiffness will increase abruptly. Because of this, the accuracy at this moment 

becomes exceeding bad. As the bracing point becomes far away from the center of the 

cross section the accuracy becomes worse, especially the case when the torsional 

buckling mode occurred (Fig. 3.8(a)). The analytical method used for this study is the 

Rayleigh-Ritz method which cannot keep the evaluation safety. Therefore, there is 

necessary to set a correction coefficient for the required bracing stiffness and define the 

range of application. The required bracing stiffness corrected is shown as Eq. (3.20). 

1.11

*

1  vdreqvdreq kk  (3.20) 

  The scope of application is shown as follows. 

(1) When the torsional buckling mode occurred and the buckling load n is smaller than 

the torsional buckling load, if 0d≧-0.05, the required bracing stiffness should be 

confined to the range of reqk1vd≦10. 

 (3.17) 

  

 (3.18) 
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(2) When the flexural buckling mode occurred, if 0d≦-0.3, the buckling load n should 

be satisfied with the condition of n≦3. 

  When the torsional buckling mode occurred and the buckling load n is smaller than 

the torsional buckling load, the results calculated by Eq. (3.17) include the part of bold 

dashes which cannot be obtained in fact. So that Limit (1) is necessary for the simple 

equation to evaluate th 

e required bracing stiffness. About Limit (2), when the flexural buckling mode occurred 

and 0d≠0, as the bracing point becomes far away from the center of the cross section, 

the required bracing stiffness becomes larger. And the situation when n=4 cannot be 

come true even if the required bracing stiffness becomes infinite. Therefore, the part 

when the required bracing stiffness increases abruptly shown as Fig. 3.6(b) should be 
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deleted.  

  Fig. 3.9 shows the accuracy which has been corrected by Eq. (3.20) and Limit (1). 

The sizes of the cross section are set to H-600×200×11×17 and H-300×300×10×15 and 

the length of the member is set equal to 6m. According to Fig. 3.9, when 0d=0 and 

reqk1vd=10, the accuracy of the cases of n=1.87, 1.18 is 3.66% and 3.9% respectively. In 

the scope of application, the results calculated by these equations are in safety.  

  On the bracing attached at the beam-column used in real structure, the 

Recommendation for Stability Design of Steel Structures published in 1980 presents an 

example for the evaluation of the bracing which is attached at the midspan of the 
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H-shaped steel beam-column. We calculated the same case by the method used in that 

example and the procedure of the calculation is not presented there. However, the 

results are larger than the required bracing stiffness shown in Fig. 3.6.  
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3.4 Conclusions 

  The general buckling equation of the H-shaped member pinned at both ends and 

subjected to the axial load, the end moments and the uniformly distributed load with the 

lateral bracing and torsional bracing is calculated by using the Rayleigh-Ritz method. 

The moment – axial force interaction of the elastic buckling strength when the lateral 

bracing or the torsional bracing are attached at the midspan of the member is presented. 

The conclusions derived from this chapter are shown as follows: 

1) When the lateral bracing is attached at the midspan of the member, the deflection and 

the torsional angle at the bracing point are zero as the bracing stiffness increases in 

case of the end moment ratio =-1 (symmetric end moment, Fig. 3.2(a)). As for the 

case of =1 (antisymmetric end moment), bracing is effective when the compressive 

force is large. However, the m-n interaction is same when the bracing stiffness is 

above a certain value (Fig. 3.2(c)). 

2) There are two different buckling moments for one buckling axial force when the 

bracing is attached at the compressive flange (Fig. 3.3(a)). 

3) When the length of the member is same, the effect of the cross section on the m-n 

interaction is not so remarkable (Fig. 3.4(a)). As for the influence of the member 

length, the difference of bucking modes affects the m-n interaction. The weak axis 

buckling or torsional buckling occurs depending on the member length when the 

member is subjected to axial force and the bracing stiffness increases.  

4) About the effect of the torsional bracing, the deflection and the torsional angle at the 

bracing point are zero as the bracing stiffness increases in case of the end moment 

ratio =-1 (Fig. 3.5(a)). 

5) When the lateral bracing or the torsional bracing is attached at the midspan of the 

member, the buckling mode that the deflection and the torsional angle at the bracing 

point are zero is referred to as full-bracing. The relation between the nondimensional 

buckling axial force and the required bracing stiffness for full-bracing is presented by 

Fig. 3.6 and Fig. 3.7. The simple equations to obtain the required bracing stiffness 

and the scope of the application are presented (Eq. (3.17), (3.18) and (3.20)). 
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Appendix 3.1 Discussion about accuracy of analysis 

  In this chapter, the number of the terms m
*
 in Eq. (3.8) and (3.9) is set equal to 5 to 

analysis. When the torsional bracing is attached at the midspan of the member and the 

nondimensional axial force n is set equal to 0.8, the accuracy is shown as Fig.A1 by 

taking the bracing stiffness k1vd as a parameter. In Fig.A1, the length of the member is 

6m and the value of k1vd is equal to 0.05 or 1000. The vertical axis is the value of im/7m 

and the horizontal axis is the number of the terms. im means the buckling strength of the 

member subjected to the end moments only when m
*
=i (i =1, 2, 3, 4, 5, 6, 7) and 7m is 

the nondimensional bending moment when the number of the terms m
*
 equals 7 to 

calculate. According to Fig.A1, the maximum difference between the cases of m
*
=7 and 

m
*
=5 is 1.1% when the size of the cross section is H-600×200×11×17 (Fig. A1(a)) and 

the maximum difference is 1.4% when size of the cross section is H-300×300×10×15 

(Fig. A1(b)).  

  Therefore, we think the accuracy of the analysis is sufficient by taking m
*
=5 to 

analysis. 

Appendix 3.2 Buckling load when the end moment ratio =-1 (H-600×200×11×17) 

  The value of R can be calculated by the equations shown as follows, when the length 

of the member is set to 3m and 6m respectively. 
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  The torsional buckling load can be calculated the equation shown as follows. 
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Fig. A3.1 Difference by the number of terms of basis 
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  Then the nondimensional axial force can be calculated by Eq. (A.3.3) in which Pe 

represents the elastic buckling load for out-of-plane bending around the weak axis. And 

the result calculated by this equation is consistent with the maximum value of n shown 

in Fig. 3.2(a). 
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  The elastic lateral buckling moment Me when the member is subjected to symmetric 

end moment only is calculated by Eq. (A.3.4). 
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  The elastic buckling load when the length of the member is 3m is four times of that 

when the length of the member is 6m. The ratio of the elastic lateral buckling moment 

in these two situations is presented as Eq. (A.3.5). 
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  This value obtained by Eq. (A.3.5) is consistent with the maximum value of m shown 

in Fig. 3.2(a) when the member is subjected to the symmetric end moment only (=-1). 

Appendix 3.3 Buckling modes when lateral bracing is attached at upper side of 

cross section 

  Figure A3.2 shows the buckling modes corresponding to Point A1 and A2 (Fig. 

3.3(a)) when the lateral bracing is attached ate the upper side of the cross section. The 
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horizontal axis represents the position along the member and the vertical axis represents 

the lateral deflection or the torsional angle. The lateral deflection of upper and borrow 

flange is defined as Eq. (A.3.6).  

  2(1)Eq.bycalculatedValues   (A.3.6) 

  According to Fig. A3.2, the deflection of borrow flange is larger than that of upper 

flange at Point A1, while the opposite result is obtained at Point A2. Moreover, the 

deflection of the torsional angle is opposite at Point A1 and A2. 

Appendix 3.4 Discussion about buckling modes when the member is subjected to 

axial load only 

  When the member is subjected to axial load only and the lateral bracing is attached at 

the midspan of the member, if the bracing stiffness is large than some value, the 

torsional buckling or the flexural buckling around the weak axis whose buckling length 

equals half of the length of the member will occur. The critical value of the 

nondimensional axial force to determine the flexural buckling or the torsional buckling 

will occur (Eq. (A.3.2)) is equal to 4. Therefore, the conditions to determine the types of 

the buckling are shown as follows. 

116:modebucklingFlexural
2

0 Rdi  (A.3.7) 

116:modebucklingTosional
2

0 Rdi  (A.3.8) 

  The values of the slenderness ratio around the weak axis y and the length of the 

member l when the situation 16di0
2
-R=1 is satisfied are shown in Table A3.1. According 

to this table, the value of y corresponding to the narrow width is larger than the others. 

The cross section of H-300×300×10×15 is the only one whose slenderness ratio is not 

over the critical value 200 in Table A1. If the real length of the member is shorter than 

that shown in this Table, the torsional buckling will occur, while if the real length is 

longer than that shown in Table A1, the flexural buckling will occur. Moreover, when 

the lateral bracing is attached at the midspan of the member and the slenderness ratio is 

not over the critical value 200, the flexural buckling is easy to occur for the case of the 

Table A3.1 Slenderness ratio and Length of members when torsional buckling and 

bending buckling occur simultaneously 

  H-600×200 H-588×300 H-488×300 H-300×300 

y 237 214 203 167 

l(mm) 9833 14813 14459 15101 
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wide width and the torsional buckling is easy to occur for the narrow width.  
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4.1  Introduction 

  The design methods for bracing of steel structure are presented in Design Standard 

for Steel Structures 
1)

, Recommendation for Limit State Design of Steel Structures 
2)

, 

Recommendations for the Plastic Design of Steel Structures
 3)

 and Recommendations 

for Stability Design of Steel Structures 
4)

. 

  As the lateral bracing for beam members, it is often considered to be discrete 

corresponding to the case of secondary beams and continuous corresponding to the case 

of floor slabs or purlins. In these situations, the lateral deflection and torsion can be 

restrained by the bracing. In addition, the position attached bracing has an influence on 

the effect of bracing in practice. The beam members subjected to symmetric end 

moments only is considered as the most simply loading condition. In fact, the end 

moments are not symmetric and the effect of distributed load should be taken into 

account. For this complexity of loading condition, there are a small number of studies 

related to the lateral bracing for beam members. 

  Some studies on the lateral bracing for beam members under the complex loading 

condition mentioned above have been provided. In references 7) and 8), the lateral 

buckling strength was calculated by the Energy method when the beam members with 

the continuous bracing are subjected to end moments and distributed loading. The 

lateral buckling strength of H-shaped steel beam member with two axes of symmetry 

was calculated by numerical analysis when the beam members subjected to end 

moments and distributed load in reference 9), and the relation between buckling 

strength and end moments is also presented when the lateral deflection of upper flange 

is restrained by the continuous bracing. The equation of equilibrium to calculate lateral 

buckling strength has been given by Reference 10), when the lateral deflection and 

torsion of the upper flanges of H-shaped beam members are restrained by continuous 

bracing. However, these studies all are about the continuous bracing, and the relation 

between buckling strength and bracing stiffness and the influence on bracing force are 

not clarified when the lateral deflection and torsion of beam members are restrained by 

the discrete bracing such as secondary beams. In this situation, the influence of the 

number of bracing should be discussed when the bracing is not single.  

  Moreover, reference 11) relates to the influence of lateral bracing and torsional 

bracing on the lateral buckling strength, and the relation between buckling strength and 

bracing stiffness and the influence on bracing force are presented. However, the 

distributed load is not included in the loading condition for analysis. For the 

combination of end moments and distributed load, the position of bracing is not always 

the compressive or tensional side. Therefore, there is necessary to clarify the relation 
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between buckling strength and bracing stiffness for the design of bracing when the 

distributed load is in general condition. In addition, because the calculation of buckling 

strength and the design for bracing are complicated, it is necessary to develop evaluative 

methods as easy as possible for design. 

  In this chapter, I aim to clarify the relation between buckling strength and bracing 

stiffness when the beam member with lateral bracing or torsional bracing is subjected to 

end moments and uniformly distributed load. The number of bracing is one or two and 

the bracing is attached at equal space along the length of the beam member. in addition, 

the required bracing stiffness is presented in order that the buckling strength of the beam 

member subjected to end moments and uniformly distributed load is equal to the 

buckling strength of the beam member which is subjected to end moments only.  
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4.2 Analysis 

  This section presents the method to calculate the buckling equations which has been 

shown in Chapter 3 when the H-shaped member simply supported at both ends is 

subjected to axial load, end moments and uniformly distributed load.  

4.2.1 Analytical model  

  The analytical model is shown as Fig. 4.1. The member is simply supported at both 

ends. The left end is subjected to bending moment M1 and the right end is subjected to 

bending moment M2=M1 ( is the end moment ratio). Both ends are subjected to equal 

compressive force N. the uniformly distributed load is w. there are two kinds of bracing, 

lateral bracing and torsional bracing whose stiffness are denoted by kivd and kid 

respectively. The number of bracing is one or two and the bracing is attached at equal 

space along the length of the beam member. In this study, the warping restraint is not 

considered. Both ends are pinned and turn free around the weak axis.  

  In Fig. 4.1(b) which has been shown in Chapter 3, v(x) and (x) represent the lateral 

deflection and the torsional angle of the center of the cross section respectively. The left 

supporting point of the member is selected as the original point and x axis is set along 

Fig. 4.1 Analytical model 
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the member as Fig. 4.1(a) shown. The geometric boundary conditions are 

v(0)=v(l)=(0)=(l)=0 and the mechanical boundary conditions are v"(0)=v"(l)="(0) 

="(l)=0. In Fig. 4.1(c), h0d represents the distance from the center of the cross-section 

to the discrete lateral bracing. hw is the distance from the center of the cross-section to 

the position subjected to the uniformly distributed load. The torsional bracing is 

attached at the center of the cross-section. 
In this study, the Rayleigh-Ritz method is used to calculate the approximate value of 

the buckling strength, because the exact solution of this problem is hard to obtain.  

4.2.2 Total-potential energy 

  The total-potential energy of this model is shown in Eq. (4.1). In addition, v(x) and 

(x) represent the lateral deflection and the torsional angle along x axis, respectively. 

The symbols v´, ´, v" and " in Eq. (3.1) represent the first and the second derivatives 

of v(x) and (x) with respect to x. 
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 (4.1) 

In Eq. (4.1), the first term is the strain energy of deflection along x axis, the second 

term is the strain energy of St.Venant torsion reduced by the axial force effect, the third 

term is the strain energy of warping, the fourth, the fifth and the sixth terms are the 

potential energy of external loads corresponding to bending moment M, axial force N 

and uniformly distributed load w respectively, other two terms are the strain energy of 

discrete lateral bracing and discrete torsional bracing. Definitions of notations are as 

follows: l is the length of the member, A is the area of the cross-section, Iy and Iz are the 

second moments of inertia around y and z axes, J is the St.Venant torsional constant, Iw 

is the warping constant, E is the elastic modulus and G is the shear modulus. In this 

paper we define as follows: 
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Me is the elastic lateral buckling moment when the member is subjected to equal end 

moments, Ne is the elastic buckling load for out-of-plane bending around the weak axis, 

m is the nondimensional bending moment, n is the nondimensional compressive force,  

is the uniformly distributed load ratio, is the end moment ratio, d is the distance 
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between the two centroids of the flanges of the H-shaped cross-section. 

  The nondimensional bracing stiffness is defined as follows: 

For lateral bracing:    
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For torsional bracing:  
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The buckling modes that satisfy the geometrical boundary conditions and the 

mechanical boundary conditions are assumed as follows. 
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where ≡x/l. By substituting Eq. (4.2) and (4.3) into Eq. (4.1), the buckling equation 

for this model can be obtained. 
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4.3  Results and discussion 

4.3.1 Analytical parameters 

  The analytical parameters are set as follows: 

1) The end moment ratio: =-1 ~ 1 

2) The uniformly distributed load ratio: =0, 0.5, 1, 1.5 and 2 

3) The position of the bracing: 0d=-0.6~ 0.6 

4) The section size: H-600×200×11×17 (narrow width, referred to as cross-section 1) 

 H-300×300×10×15 (wide width, referred to as cross-section 2) 

5) The length of the member: l=6m, 12m 

6) The kind of the bracing: lateral bracing and torsional bracing 

  The moment diagrams corresponding to different composition of  and  are shown 

as Fig. 4.2. 

4.3.2 Relation between end moment ratio and nondimensional bending moment 

i) Effect of number of bracing  

  Figure 4.3 and Figure 4.4 respectively shows the relation between end moment ratio 

 and nondimensional bending moment m by taking the uniformly distributed load ratio 

 as a parameter, when the length of the member 

(cross-section 1) is 6m and the lateral bracing is 

attached at the upper side of the cross section.  

  Figure 4.3 presents the case when there is no 

bracing attached at the member and the results 

are identical with that shown in reference 9). The 

effect of end moment ratio  when ≧1 is 

smaller than that when <1. 

  Figure 4.4 includes the cases with different 

bracing stiffness for one or two braces. Figures 

Fig. 4.2 Moment diagrams  
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(a), (b) show the cases of one brace whose bracing stiffness k1vd equals 1and 5 

respectively. In the situation of ≠0, the end moment ratio  has much effect on the 

buckling strength m when the bracing stiffness is large. For the same uniformly 

distributed load , the value of  when buckling strength m becomes maximum value in 

Fig. 4.4(a) is larger than that with the same conditions in Fig. 4.3. 

  Figures 4.4(c), (d) present the cases of two braces and the nondimensional bracing 

stiffness in these figures corresponds to that in Figures 4.4(a), (b). The result of the case 

of two braces is similar with the case of one brace that the end moment ratio  has much 

effect on the buckling strength m when the bracing stiffness is large. 

  Comparing the cases of one brace and two braces, the value of  obtained in the case 

of one brace when buckling strength m becomes maximum value is larger than that 

obtained in the case of two braces. In the situation with the same ,  and k1vd (i=1, 2), 

the relation of magnitude of m between the cases of one brace and two braces is not 

constant. For instance, the dash line in Fig. 4.4(d) shows the case of one brace when 

=1 and k1vd=5. When the end moment ratio  is approximately smaller than 0.2, the 

buckling strength of the case of one brace is larger than that of the case of two braces; 
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when  is approximately larger 

than 0.2, the relation of 

magnitude of m is opposite. 

Figure 4.5 shows the buckling 

modes corresponding to the 

points P1, P2, P1’ and P2’ in 

Figure 4.4(d). Fig. 4.5(a) shows 

the lateral deflection and the 

torsional angle when =0 

(<0.2). According to Fig. 4.5(a), 

the buckling mode of the case 

of one brace is similar to that of 

the case of two braces. Fig. 

4.5(b) shows the buckling 

mode when =1 (>0.2). The 

lateral deflection and the 

torsional angle in the case of 

one brace are completely 

different with those in the case of two braces. That is to say, the effect of bracing on the 

buckling strength depends on the number of bracing in some way, even though the 

bracing stiffness is identical. Therefore, the effect of the number of bracing should not 

be ignored in the design of bracing for beam members. 

  Figure 4.6 shows the relation of m- when torsional bracing is attached at the member. 

Fig. 4.6(a), (b) shows the case of one brace when the bracing stiffness k1vd equals 0.005 

and 0.05 respectively. Fig. 4.6(c), (d) shows the case of two braces and the bracing 

stiffness k2vd corresponding to the case of one brace is equal to 0.005 and 0.05 

respectively. According to Fig. 4.6, the buckling strength m of the case of one brace is 

larger than that of the case of two braces in the situation with the same ,  and k1d (i=1, 

2). For example, the dash line in Fig. 4.6(d) presents the case of one brace when =1 

and k1d=0.05.  

ii) Effect of bracing stiffness 

  Figure 4.7 shows the effect of bracing stiffness on the relation of m- when one brace 

is attached at the member (H-600×200×11×17, l=6m). The uniformly distributed load 

ratio  is set to equal 0.5. Fig. 4.7(a) shows the case of lateral bracing. In the situation of 

=-1 (symmetric end moment), the buckling strength m has little change even though 

the bracing stiffness increases. However, as the end moment ratio  increases, the 
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buckling strength m increases and the effect of bracing stiffness becomes larger. This is 

because that when the lateral bracing is attached at the compressive side, the buckling 

strength will be developed, while the buckling strength has a little change when the 

lateral bracing is attached at the tensile side. According to Fig. 4.2, the strength of the 

bracing point is not identical and it depends on the composition of  and . Therefore, 

to increase the lateral bracing cannot always develop the buckling strength when the 

member is subjected to end moments and distributed load currently. 

  Figure 4.7(b) shows the result of torsional bracing in the same conditions with the 

case of lateral bracing. Because the position of torsional bracing has no influence on the 

buckling strength, as the bracing stiffness increases (k1d≦0.5, approximately), the 

value of m increases regardless of the end moment ratio .  

Compared Fig. 4.7(a) and Fig. 4.7(b), setting torsional bracing is more efficiency to 

increase the buckling strength than setting lateral bracing. Fig. 4.8 presents the 

comparison between lateral bracing and torsional bracing when the bracing stiffness is 
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large enough to make the buckling strength m be maximum value. The uniformly 

distributed load ratio  is equal to 0, 0.5, 1 and 2 in Fig. 4.7(a), (b), (c) and (d), 

respectively. According to Fig. 4.7(a), setting lateral bracing at the compressive side or 

setting torsional bracing has roughly similar effect to increase the buckling strength 

when ≦0.5. And the buckling strength corresponding to torsional bracing is larger 

than that corresponding to lateral bracing when  >0.5. In Fig. 4.7(b) and (c), the effect 

to increase buckling strength of the case of torsional bracing is better than that of the 

case of lateral bracing. When =2, the results of the cases of lateral bracing and 

torsional bracing are approximately consistent. Generally speaking, setting torsional 

bracing is better to develop buckling strength than that setting lateral bracing. 

iii) Effect of cross section and length of member 

  Figure 4.8 shows the relation of m- by taking the cross section and length of 

member as parameters when one brace is attached at the member. The uniformly 

distributed load ratio is set equal to unity. Figures 4.8(a), (b) and (c) show the cases of 
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no bracing, one lateral brace and one torsional brace, respectively. According to Figures 

4.8(a), the relation of m- has little change when the cross section is different, and the 

buckling strength corresponding to the case of l=12m is larger than that corresponding 

to the case of l=6m when the cross section is set to be cross-section 1. In the case of one 

lateral brace (Figure 4.8(b)), the curves of m- of cross-sections 1 and 2 are almost 

same when the length of member is 6m. However, comparing the cases with different 

length, the relation of magnitude of m is not constant. In Figure 4.8(c), both cross 

section and length of member have much effect on the buckling strength.  

iv) Effect of position of bracing 

  Figure 4.9(a), (b) and (c) show the relation of m- by taking the position of bracing 

0d as a parameter when the uniformly distributed load ratio  is set to equal 0, 0.5 and 

2, respectively.  

When the member is subjected to end moments only (Fig. 4.9(a), =0), the lateral 

bracing set at the lower side is better than that set at the upper side because the lower 

side is subjected to compressive strength.  

When =0.5 (Fig. 4.9(b)), the portion subjected to compressive strength changes 

from the lower side only to the upper side as the end moment ratio  increases. When 

0d≧0 (lower side) and the value of  is constant, the buckling strength increases as the 

value of 0d increases. And the increase of m becomes smaller as the end moment ratio 

 increases. When =1, the buckling strength m of 0d>0 is smaller than that of 0d=0 

and the value of m is approximately equal to 1.3 regardless of the value of 0d. The 

tendency of the situation of 0d<0 is opposite to the situation of 0d>0. 

When =2 (Fig. 4.9(c)), the portion subjected to compressive strength is wide so that 

the buckling strength m has little increase when 0d≧0. The effect of bracing on the 

buckling strength m when 0d<0 is larger than that when 0d≧0. 
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Fig. 4.9 Effect of position of bracing（k1vd=1） 
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4.3.3 Required bracing stiffness when buckling strength of beam member 

subjected to end moments and uniformly distributed load is equal to that 

of beam member subjected end moments only 

  The design equations of elastic buckling strength when the member is subjected to 

arbitrary end moments at both ends have been presented. In order to find the design 

equations of elastic buckling strength when the member with lateral bracing or torsional 

bracing is subjected to end moments and uniformly distributed load concurrently, this 

section aims to present the required bracing stiffness when the buckling strength of the 

beam member which is subjected to end moments and uniformly distributed load is 

equal to the buckling strength of the beam member which is subjected to end moments 

only. Because the main purpose is to present the idea and the method, the parameters 

used in following discussion are not arbitrarily.  

  Firstly, an example to obtain the required bracing stiffness is shown as Fig. 4.10. The 

cross section is set to H-600×200×11×17 (cross-section 1) and the length of member is 
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6m. Figure 4.10(a) shows the elastic buckling strength when the member is subjected to 

end moments only. The coordinate values of Points A~E (, m) are shown in the 

brackets. Fig. 4.10(b) and (c) show the relation of m- by taking the end moment ratio  

as a parameter when one and two lateral braces (k1vd=k2vd=1) are respectively attached at 

lower side (0d=0.6) of the member which is subjected to end moments and uniformly 

distributed load. Comparing these two figures, we can find the tendency of the case of 

two braces is almost same as the case of one brace. In Fig. 4.10(b), the coordinate 

values of Points A’~E’ (, m) whose vertical coordinate value m is identical to that of 

Points A~E shown in Fig. 4.10(a) are presented in the brackets. According to this figure, 

when the uniformly distributed load ratio  is smaller than the horizontal values shown 

in the brackets, the buckling strength m are always larger than the elastic buckling 

strength obtained in Fig. 4.10(a). For instance, when =-1 and =1.5 (Point A’), if ≦

1.5, the buckling strength in this condition can be evaluated in the safety margin by 

using the elastic buckling strength shown in Fig. 4.10(a) when the member is subjected 

to end moments only. 

  Based on this idea, we can obtain the values of  by determining the values of end 

moment ratio  and the bracing stiffness k1vd and k1d. and the relation of - are 

presented in Fig. 4.11. The cross section is H-600×200×11×17 (cross-section 1) and the 

length of member is 6m. Fig. 4.11(a) and (b) respectively shows the cases of one lateral 

brace (0d=-0.6, upper side) and one torsional brace by taking the bracing stiffness as a 

parameter. Using this method, when the end moment ratio  and the uniformly 

distributed load ratio  of beam member are determined, the required bracing stiffness 

when the buckling strength may be evaluated directly by the elastic buckling strength 

which is used to the case of the member subjected to end moments only.  
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4.4 Conclusions 

  The nondimensional elastic buckling strength of H-shaped member subjected to end 

moments and uniformly distributed load concurrently when discrete lateral or torsional 

bracing is attached at the member has been calculated by Rayleigh-Ritz method. The 

relation between end moment ratio  and the nondimensional bending moment m has 

been presented by taking the number of brace, bracing stiffness, size of cross section, 

length of member and position of bracing as parameters. 

  In addition, the method to obtain the required bracing stiffness has also been 

presented. When the bracing has the required bracing stiffness, the buckling strength of 

the beam subjected to end moments and uniformly distributed load is equal to the 

buckling strength of the beam subjected to end moments only (Fig. 4.10). And some 

figures of required bracing stiffness as examples have been presented (Fig. 4.11). The 

main findings are shown as follows: 

1) About the effect of number of bracing, when the uniformly distributed load , the 

bracing stiffness kivd (i=1, 2) and the end moment ratio  is identical, the elastic 

buckling strength of the case of one lateral brace is not always larger or smaller than 

that of the case of two lateral braces because of the variety of buckling modes (Fig. 

4.4). Because the position of bracing has no influence on the torsional bracing, the 

buckling strength m become larger and the value of  when the buckling strength m 

becomes the maximum value has a little change as the bracing stiffness increases. 

This is different from the case of lateral bracing whose result of  has much change 

as the bracing stiffness increases (Fig. 4.7). 

2) As for the effect of size of cross section and length of member on the buckling 

strength, the relation of m- in the case of lateral bracing is much the same even if 

the size of cross section is different and the buckling strength m in the case of l=12 is 

larger than that in the case of l=6m when the cross section is identical (Fig. 4.8(b)). 

In the case of torsional bracing, both the size of cross section and the length of 

member have much influence on the relation of m- (Fig. 4.8(c)). 

3) As regards the effect of position of bracing, the part subjected to compressive stress is 

changed to the upper side from the lower side only as the end moment ratio  

increases (Fig. 4.9(b)). And in the case of =2 (Fig. 4.9(c)), the buckling strength m 

is affected little by the position of bracing as the end moment ratio varies.  
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5. Summary 

This dissertation is concerned with the design methods for bracing of steel members 

and aimed at developing the methods for increasing the elastic buckling strength. The 

main findings for each chapter are shown as follows. 

 

In Chapter 2, the buckling equations when the compressive member with one or two 

braces is subjected to varying axial force have been calculated by the buckling slope 

deflection method. The main findings concerned with the stiffness and the strength for 

bracing are summarized respectively. 

As for the stiffness for bracing, the effective length factor 0 becomes larger as the 

ratio of axial forces increases, when the nondimensional bracing stiffness k is constant. 

The buckling modes are presented when the value of the nondimensional bracing 

stiffness k is equal to 0, 0.5 and 3. The ratio of axial forces plays an important role in 

the variation of buckling mode. In addition, the required bracing stiffness to take the 

effective length as the brace spacing is calculated and it decreases as the axial force 

ratio decreases. A specific example about the truss beam has been displayed in the final 

part of this section in order to present the application of this study in structural design. 

As for the strength for bracing, the value of the nondimensional axial force p 

becomes larger as the value of the rotational angle R increases. The effect of the 

rotational angle R on the nondimensional axial force p becomes smaller as R increases. 

However, the value of p will not increase at all times, and it will approach constant as 

the value of p increases. When the value of F/N1 is same, the value of the 

nondimensional axial force p increases as the axial force ratio a decreases and the value 

of p with k =1 is greater than that the value of p with k =0.5, in the case that the axial 

force ratio is same. According to Fig. 2.19(a) and (c), when the nondimensional bracing 

stiffness k is same, the value of F/NE increases as the axial force ratio a increases, while 

the value of F/NE decreases as the axial force ratio a increases. Moreover, as the 

nondimensional bracing stiffness k increases, the effect of the axial force ratio on the 

value of F/NE becomes smaller when the axial force varies in a staircase pattern. 

 

In Chapter 3, the general buckling equation of the H-shaped member pinned at both 

ends and subjected to the axial load, the end moments and the uniformly distributed 

load with the lateral bracing and torsional bracing is calculated by using the 

Rayleigh-Ritz method. The moment – axial force interaction of the elastic buckling 

strength when the lateral bracing or the torsional bracing are attached at the midspan of 

the member is presented.  
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When the lateral bracing is attached at the midspan of the member, the deflection and 

the torsional angle at the bracing point are zero as the bracing stiffness increases in case 

of the end moment ratio =-1 (symmetric end moment, Fig. 3.2(a)). As for the case of 

=1 (antisymmetric end moment), bracing is effective when the compressive force is 

large. However, the m-n interaction is same when the bracing stiffness is above a certain 

value (Fig. 3.2(c)). 

There are two different buckling moments for one buckling axial force when the 

bracing is attached at the compressive flange (Fig. 3.3(a)). 

When the length of the member is same, the effect of the cross section on the m-n 

interaction is not so remarkable (Fig. 3.4(a)). As for the influence of the member length, 

the difference of bucking modes affects the m-n interaction. The weak axis buckling or 

torsional buckling occurs depending on the member length when the member is 

subjected to axial force and the bracing stiffness increases.  

About the effect of the torsional bracing, the deflection and the torsional angle at the 

bracing point are zero as the bracing stiffness increases in case of the end moment ratio 

=-1 (Fig. 3.5(a)). 

When the lateral bracing or the torsional bracing is attached at the midspan of the 

member, the buckling mode that the deflection and the torsional angle at the bracing 

point are zero is referred to as full-bracing. The relation between the nondimensional 

buckling axial force and the required bracing stiffness for full-bracing is presented by 

Fig. 3.6 and Fig. 3.7. The simple equations to obtain the required bracing stiffness and 

the scope of the application are presented (Eq. (3.17), (3.18) and (3.20)). 

 

  In Chapter 4, the nondimensional elastic buckling strength of H-shaped member 

subjected to end moments and uniformly distributed load concurrently when discrete 

lateral or torsional bracing is attached at the member has been calculated by 

Rayleigh-Ritz method. The relation between end moment ratio  and the 

nondimensional bending moment m has been presented by taking the number of brace, 

bracing stiffness, size of cross section, length of member and position of bracing as 

parameters. 

As for the effect of number of bracing, when the uniformly distributed load , the 

bracing stiffness kivd (i=1, 2) and the end moment ratio  is identical, the elastic 

buckling strength of the case of one lateral brace is not always larger or smaller than 

that of the case of two lateral braces because of the variety of buckling modes (Fig. 4.4). 

Because the position of bracing has no influence on the torsional bracing, the buckling 

strength m become larger and the value of  when the buckling strength m becomes the 
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maximum value has a little change as the bracing stiffness increases. This is different 

from the case of lateral bracing whose result of  has much change as the bracing 

stiffness increases (Fig. 4.7). 

As for the effect of size of cross section and length of member on the buckling 

strength, the relation of m- in the case of lateral bracing is much the same even if the 

size of cross section is different and the buckling strength m in the case of l=12 is larger 

than that in the case of l=6m when the cross section is identical (Fig. 4.8(b)). In the case 

of torsional bracing, both the size of cross section and the length of member have much 

influence on the relation of m- (Fig. 4.8(c)). 

As regards the effect of position of bracing, the part subjected to compressive stress is 

changed to the upper side from the lower side only as the end moment ratio  increases 

(Fig. 4.9(b)). And in the case of =2 (Fig. 4.9(c)), the buckling strength m is affected 

little by the position of bracing as the end moment ratio varies. 

  In addition, the method to obtain the required bracing stiffness has also been 

presented. When the bracing has the required bracing stiffness, the buckling strength of 

the beam subjected to end moments and uniformly distributed load is equal to the 

buckling strength of the beam subjected to end moments only (Fig. 4.10). And some 

figures of required bracing stiffness as examples have been presented (Fig. 4.11).  

 

In the future, the establishment of integrative evaluation method of bracing stiffness 

and bracing force for steel beams and steel beam-columns will be discussed as a 

continuation of my present research. Series of detail analysis on the H-shaped members 

with composite effect of lateral bracing and torsional bracing under general loading 

conditions will be carried out by considering several parameters, such as loading 

conditions, types of combination of bracing, bracing position, size of cross section, 

length of member and so on. The influence of these parameters will be given by the 

relation between lateral or flexural-torsional buckling strength and bracing stiffness. In 

addition, the relation between bracing force and deflection behavior should be discussed 

as well. Based on these analytical results, simple equations for evaluating bracing 

stiffness and bracing force will be developed for design. 
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