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Summary

In a noise-free RGB image, a linearity is formed from pixels in its local patches.

Color line is the linear cluster in the RGB color space that approximates the

shape of color distribution in the local region. As an efficient feature to represent

the inter-channel correlation of local regions, the color line is introduced in the

field of color image processing. The feature is used to model the correlation

among neighboring pixels as well as among the channels in many image processing

frameworks. The color-line property is very useful to decorrelate the channels

and has been applied to image denoising to reduce discoloration artifacts in RGB

images.

In remote-sensing imagery, the need to extract more detailed information has

expanded from multispectral images to hyperspectral images that enable pixel-

constituent-level analysis. Hyperspectral images have better spectral resolution

than multispectral images due to their large number of narrow and contiguous

spectral bands. The hyperspectral data can be decomposed (unmixing) into a col-

lection of spectral signatures (spectral library) and a set of corresponding fractions

(abundances) that represent the proportion of each spectral signature contained

in the pixels (endmember). Hyperspectral data have linearity in their spectral

and spatial domains. The correlation among the spectral channels is high due to

the narrow spectral resolution. The high correlation also holds among the pixel

members of a local region due to the spatial similarity. In a physical sense, the

pixels in such regions contain the same materials, either in the same or different

fractions. The high spatial correlation also implies linearly dependent abundance

vectors in the abundance matrix.

The aim of this study is to generalize the color line to the M -dimensional

spectral line feature (M > 3) and introduce methods for denoising and unmixing
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of hyperspectral images based on the spectral linearity. In the denoising task, we

propose a local spectral component decomposition method based on the spectral

line. We first calculate the spectral line of an M -channel image, then using the

line, we decompose the image into three components: a single M -channel image

and two gray-scale images. By virtue of the decomposition, the noise is concen-

trated on the two images, and thus the proposed algorithm needs to denoise only

the two grayscale images, regardless of the number of the channels. As a result,

image deterioration due to the imbalance of the spectral component correlation

can be avoided. The experiment shows that the proposed method improves im-

age quality with less deterioration while preserving vivid contrast. For unmixing,

we propose an algorithm that exploits the low-rank local abundance by applying

the nuclear norm to the abundance matrix for local regions of spatial and abun-

dance domains. In our optimization problem, the local abundance regularizer is

collaborated with the L2,1 norm and the total variation for sparsity and spatial

information, respectively. We conduct experiments for real and simulated hyper-

spectral data sets assuming with and without the presence of pure pixels. The

experiments shows that the proposed algorithm yields competitive results and

performs better than the conventional algorithms.

Keywords:

color line, spectral linearity, hyperspectral image, nuclear norm, denoising, un-

mixing, local spectral component decomposition
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Chapter 1

Introduction

In this chapter, we introduce two main terms of our overall study, i.e., color line

and hyperspectral image. Color line plays a significant role in this study, as it

becomes a key feature which is adopted in all research topics of this thesis. As

for hyperspectral image, it is the object of our research. Brief explanation about

remote sensing, hyperspectral unmixing and denoising are also provided to provide

a comprehensive introduction to this study.

1.1 Color Line

The recent research in natural color image statistics discovers that the color dis-

tribution of a local region is almost linear, typically forms a line in RGB color

space. The line is called color line, which represents the elongated cluster in the

RGB histogram. The concept of the color line is illustrated in Figure 1.1, where it

can be seen that a linearity is formed from each patch of a noise-free RGB image

as the color line. The use of color-line property is reported in many applications

in color image processing field, as follows [32,53,65]

1. Segmentation. It is straight forward to integrate the color lines model into

a segmentation application. By the color line, it is probable to assign every

pixel of an image to each of the color clusters since it can provide a set of

the dominant colors in the image. As a simple approach, assigning pixels

to their closest color lines by itself yields good results. However, in some

cases, the results still need to be improved by using any spatial information

or other important features like texture.

2. Compression. A compact representation of an image can be created by the

virtue of the color line. For each pixel, we need only two values to be stored;

an index to its color line and a parameter along the line (or intensity). This

representation can be easily compressed later on.

1



INTRODUCTION 1.1 Color Line

3. Color editing. Manipulating color can be very efficient, with a very intu-

itive way by the use of color line. By applying simple transformation to the

color line of the object, we can increase or decrease the color saturation of

the object, or even completely replace the colors.

4. Dehazing. The task is to remove haze from a single input image with a

dark channel prior. The dark channel prior is a kind of statistics of outdoor

haze-free images, in which most of the local patches contain some pixels

whose intensity is very low in at least one color channel. Using this prior

with the haze imaging model, we can directly estimate the thickness of the

haze and recover a high-quality haze-free image.

5. Saturated color correction.This application is correcting the color of

saturated image pixels. The dynamic range of a typical natural or artificial

scene is usually larger than the dynamic range that the cameras sensors can

capture. Consequently, in many pictures, some of the pixels have at least

one saturated color component, to which people are often not sensitive.

In the histogram domain, this phenomenon appears in the form of a knee

in the color clusters line. The saturated component can be corrected by

substituting one of the nonsaturated color components and retrieving the

saturated component. It is also possible to use one non saturated component

to correct the other two. However, to readjust the dynamic range, gamma

correction or other methods for high dynamic range compression is still

required.

6. Image smoothing/denoising. Using the color line for denoising avoids

discolorations which usually occurs in conventional channel-by-channel meth-

ods, due to the unbalance relation among the color components. To reduce

the discoloration artifact, the outliers that are located away from the color

lines are corrected.

Many studies have been conducted to broaden the possible applications of color-

line property. Most of them take the natural images as the object. However,

the study of color linearity for remote sensing imagery is still lacking. Since the

imagery consists of more than three channels and covers a wider wavelength, the

linearity can be observed among the adjacent spectral channels. Hence, we in-

troduce a term, i.e.,spectral line, for the line feature in remote sensing imagery.

We intend to adopt the color-line property to explore the possible applications in

2



INTRODUCTION 1.2 Remote Sensing

Figure 1.1: Color line for RGB image.

remote sensing field, which some of them are denoising and unmixing of hyper-

spectral images.

1.2 Remote Sensing

The term remote sensing was first introduced in the 1950s by Ms. Evelyn Pruitt

of the U.S. Office of Naval Research with the general meaning refers to the science

of observing, identifying and measuring an object or a scene without coming into

direct contact with it [40]. In other words, it aims to obtain information about

an observable scene that is not available to direct exploration. Earth observation

through remote sensing has main general goals as follows [17]:

1. Identifying materials on the land cover and analyzing the acquired spectral

signal by satellite/airborne sensors

2. Monitoring and modeling the processes on the Earth surface and their in-

teraction with the atmosphere

3. Obtaining quantitative measurements and estimations of geo-bio-physical

variables

3



INTRODUCTION 1.2 Remote Sensing

Due to fact that these objectives require interaction among many disciplines,

the remote sensing field has experienced a great evolution to a multi-disciplinary

field of science that includes physics, biology, chemistry, signal theory, computer

science, electronics, and communications. By remote sensing, it is possible to

collect data on dangerous or inaccessible areas. Remote sensing gives benefit

that replaces costly and slow data collection on the ground. In the process of

data collection, it ensures the areas or objects are not disturbed. Analysis of the

acquired multi-channel images enables to develop real-life applications with high

social impact, such as urban growing monitoring, crop field identification, disaster

prevention, target detection, or biophysical parameter estimation.

In remote sensing, specific instruments are deployed for particular applications.

For instance, one of the most widely used technology is that of thematic mappers,

such as Landsat. Landsat is mainly applied to update the land cover and land

use maps, to identify particular materials, minerals, water or specific crops in the

images. Landsat gains popularity due to the free availability of images and the

continue and stable performance. They acquire images in several wavelengths of

the electromagnetic spectrum, hence it is called multispectral mappers.

Generally speaking, remote sensing imaging instruments can be distinguished

based on the type of energy sources they need for the data acquisition, two main

types as follows [17]:

1. Passive optical remote sensing. It relies on illumination source from

solar radiation. The satellite has an imaging spectrometer on board that

retrieves signal from the emergent radiation from the Earth-atmosphere sys-

tem in the observation direction. The radiation acquired by the satellite

sensor is measured at different wavelengths. Then, the resulting spectral

signature (or spectrum) is used to identify a given material. The field of

spectroscopy is concerned with the measurement, analysis, and interpre-

tation of such spectral signatures. Some examples of passive sensors are

infrared, charge-coupled devices, radiometers, or multi and hyperspectral

sensors.

2. Active remote sensing. It is called active because it relies on the energy

that is emitted by its antenna. The emission towards the Earths surface and

the energy is scattered back to the satellite. This back-scattering energy

is the measured parameter. In addition, the time delay between emission

and back-scattering is measured to establish the location, height, speed,
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and direction of objects. Radar systems are examples of systems for active

remote sensing, such as Real Aperture RAR (RAR) or Synthetic Aperture

Radar (SAR).

Compared with the product of radar signals, the product generated from pas-

sive sensors can be better interpreted as an image in the sense of natural images.

In the last decades, the field of passive sensors has greatly evolved in terms of the

quality of the acquired images, both in spatial, spectral, and temporal resolutions.

This ever-growing evolution increases the difficulty of the signal/image processing

problems and the need for improved processing tools. This may be certainly very

motivating for the machine learning and signal processing communities [17].

1.3 Hyperspectral Images

As one of the passive optical remote sensing instruments, the hyperspectral sen-

sors are tools with many applications, such as geology, ecology, geomorphology,

limnology, pedology, atmospheric science, and forensic science. Goetz et al. in

1985 gave the classical definition for hyperspectral remote sensing (also called

imaging spectroscopy) as the acquisition of images in hundreds of contiguous reg-

istered spectral bands such that for each pixel, a radiant spectrum can be derived.

The processing of the resultant images, called hyperspectral images, enables the

identification of objects based on their spectral properties, which are mainly re-

lated to absorption features. The covered spectral bands are the spectral regions

of VIS (visible), NIR (near infrared), SWIR (shortwave infrared), MWIR (mid-

wave infrared), LWIR (longwave infrared), and recently also the UV (ultraviolet),

as shown in Table 1.1. The sensor enables the data acquisition in high number

of bands as well as high spectral resolution. This means that it provides a nar-

row bandwidth and a large sampling interval across the spectrum. Basically, this

technology includes all spatial domains (microscopic to macroscopic), all plat-

forms (ground, air, and space platforms) and all targets (solid, liquid, and gas).

However, in this thesis, we focus on the space-platform hyperspectral images.

The data volume resulting from hyperspectral sensors can be seen as a data

cube with two spatial dimensions (correspond to the coverage area) and one spec-

tral dimension (corresponds to the spectral bands). In other words, each pixel is

represented by its spectral fingerprint or spectral signature as the observed spec-

trum. The spectral signature is thus a vector comprising the values of reflected

5
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Table 1.1: Wavelength ranges applied in hyperspectral imaging.

Name of Range Abbreviation Wavelength (µm)

Ultraviolet UV 0.280.35

Visible VIS 0.350.7

Near infrared NIR 0.71

Shortwave infrared SWIR 12.5

Midwave infrared MWIR 35

Longwave infrared LWIR 812

Thermal infrared TIR 350

Infrared IR 11000

radiation at each wavelength that is covered by the designated spectral bands.

Now, modern hyperspectral instruments have capability to record the electromag-

netic spectrum in hundreds of spectral bands [40]. As one of them, the Airborne

Visible Infra-Red Imaging Spectrometer (AVIRIS) 1 with its 224 spectral bands

is able to sample the VIS and NIR spectrum of the reflected energy/light from

an area 2 to 12 kilometers wide and several kilometers long. Although AVIRIS

is a widely used platform, it constitutes only one source of hyperspectral data.

Table 1.2 summarizes other international Earth observation missions with hyper-

spectral sensors on board, which were already launched or to be launched in the

near future.

With the ability providing spatial and spectral information simultaneously,

hyperspectral remote sensing enables the identification of objects and other phe-

nomena, as the spectral information is presented on a spatial rather than point

(pixel) basis. In addition, allocating spectral information temporally in a spatial

domain provides a new dimension that neither the traditional spectroscopy nor

air photography can provide separately. Hyperspectral remote sensing thus pro-

vides superiority in geographic information system (GIS) with direct and indirect

chemical and physical information. Thus, spatial recognition of the phenomenon

in question is better performed by the hyperspectral remote sensing than by tra-

ditional GIS techniques [17].

However, the use of hyperspectral sensors is still relatively expensive. In addi-

tion, to operate the instrument and process the data, it still requires professional

manpower. This has opened the opportunities to hyperspectral imaging discipline

becoming very active. In addition to the growing number of scientific papers and

6
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Table 1.2: Overview of some remote sensing missions including hyperspectral sensors.

Hyperion Prisma EnMAP HyspIR Sentinel-5

Origin USA Italy Germany USA Europe

Spatial Resolution (m) 30 5-30 30 60 7000

Spectral Range (nm) 400-2500 400-2500 420-2450 380-2500 270-2385

Spectral Resolution (nm) 10 10 6.5-10 10 0.25-1

Swath width (km) 7.7 30 30 120 2715

Launch 2000 2010 2012 2018 2021

Lifetime(years) 10 6 6 6 7.5

conferences focusing on this technology, commercial sensors are being developed,

orbital sensors are in advanced planning stages, national and international funds

are being directed toward using this technology, and interest from the private

sector increases [17]. Hyperspectral imaging has been found to be very useful in

many terrestrial, atmospheric, and marine applications. The high spectral res-

olution of hyperspectral image combined with temporal coverage enables better

recognition of targets and an improved quantitative analysis of phenomena, espe-

cially for land use cover application. The technology is applied by decision makers,

farmers, environmental watchers in both the private and government sectors, city

planners, stock holders, and others. As the number and variety of processing

tasks in hyperspectral imaging is enormous, the majority of algorithms can be

organized according to the following specific tasks [40]:

1. Dimensionality reduction. In order to facilitate subsequent processing

tasks, this task consists of reducing the dimensionality of the input hyper-

spectral data in the initial phase.

2. Target and anomaly detection. The tasks consist of searching the pixels

of a hyperspectral data cube for specific and rare (either known or unknown)

spectral signatures.

3. Change detection. It means finding the significant changes of the user’s

object of interest between two or more hyperspectral scenes of the same

geographic region and different acquisition time.

4. Classification. This task aims to assign a label or class to each pixel of a

hyperspectral data cube.

7
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Figure 1.2: Illustration of unmixing of a hyperspectral data.

5. Spectral unmixing. This is a sub-pixel analysis that consists of estimating

the fraction of the pixel area covered by each material present in the scene.

1.4 Hyperspectral Unmixing

Beyond the capability of multispectral remote sensing in classifying whole pix-

els, hyperspectral remote sensing enables further analysis in sub-pixel level, i.e.,

the constituent materials that comprise a pixel. The sub-pixel analysis is related

to the fact that the sensors capture the pixels of interest as a combination of

numerous disparate components on the Earth’s surface. The mixtures are oc-

curred in a scale of a pixel due to the low spatial resolution of the sensors, thus

two or more materials occupy the same pixel. Another possible circumstance is

when the sensors capture some distinct materials that have merged into homo-

geneous mixtures on the Earth’s surface. Collecting data in hundreds of spectral

bands, hyperspectral sensors have demonstrated the capability to quantitatively

decompose or unmix these mixtures which is called spectral unmixing. Spectral

unmixing is the procedure by which the measured spectrum of a mixed pixel is

decomposed into a collection of constituent spectra (or endmembers), and a set of

corresponding fractions, called abundances. The collection of endmembers’ spec-

tral signatures is called spectral library. Figure 1.2 illustrates this decomposition.

The goal of spectral unmixing is to estimate the materials present in one

pixel, their pure signatures and the relative area that they occupy (i.e., their

8
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Figure 1.3: Illustration of pure and mixed pixels of a hyperspectral scene and the corresponding

spectral signatures of each material [4].

fractional abundance) in a given pixel. The abundances indicate the proportion

of each endmember present in the pixel. Generally, they correspond to familiar

macroscopic objects in the scene, such as water, soil, metal, vegetation, etc. In

practice, most of the pixels in a scene are mixed. A pixel containing more than

one material is called mixed pixel, while a pixel containing only one constituent

material is called pure pixel. Figure 1.3 illustrates pure and mixed pixels of a

hyperspectral scene and the corresponding spectral signatures of each material.

Since the earliest days of hyperspectral image and signal processing, spectral

unmixing has been an appealing research topic and exploitation purpose [40].

Regardless the spatial resolution, the spectral signatures collected in natural en-

vironments assuredly reflect a mixture of various material signatures found within

the spatial coverage of the ground field view of the sensor. However, the very fine

spectral resolution available from hyperspectral instruments enables to compen-

sate the relatively low spatial resolution (which varies from tens to thousands of

meters) and perform sub-pixel characterization by taking advantage of the fact

that the observed spectrum of a pixel can be decomposed.
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In this thesis, the spectral unmixing problem becomes one of our research

topics, which currently represents a very active area in remote sensing in general,

and in hyperspectral data analysis in particular. We exploit the spectral-line

property for the hyperspectral unmixing problem.

1.5 Multi-channel Image Denoising

Multi-channel images, such as multispectral and hyperspectral images, are often

noisy in many situations because sensors have narrower spectral sensitivity func-

tions and thus capture less light than normal RGB imaging devices. Whereas var-

ious applications, such as classification, target detection, spectral unmixing, and

change detection need detailed and accurate spectral information [10], the noise

due to, for example, thermal electronics and dark current, unavoidably contam-

inates the image acquisition process [66, 74, 79], which disrupts detailed spectral

information and furthermore degrades its performance in the listed applications.

Thus, denoising the images is a crucial phase in the preprocessing steps of these

applications.

It is effective for image denoising methods to exploit inter-channel correlation

as well as spatial correlation. Unlike channel-by-channel methods that tend to

produce an imbalance of colors, nowadays many smoothing and denoising methods

take inter-channel correlation into account to avoid color deterioration as shown

by state-of-the-art denoising methods [13,19,26,55]. Meanwhile, in hyperspectral

images, the narrow spectral resolution leads high correlation among the adjacent

channels. In this thesis, we introduce a novel denoising method that consider the

inter-channel correlation using spectral line property.

1.6 Thesis Organization

The structure of the thesis is summarized in Figure 1.4. As shown in the figure,

the remaining structure comprises three chapters. After introducing two main

terms of our overall study, i.e., color line and hyperspectral image, in Chapter 2,

we describe the core of the proposed idea, which is the spectral-line concept as

the background of our research. To relate with the designated applications, which

are denoising and unmixing, we review the state-of-the-art of related works in this

chapter. In Chapter 3, we describe our work of local spectral vector decomposition

as an application of the spectral linearity in the denoising task. Finally, Chapter

10
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4 describes our work that incorporates the spectral linearity to the hyperspectral

unmixing problem by introducing the local abundance regularizer for sparse un-

mixing. Finally, Chapter 5 resumes the general conclusions and future research

lines derived from the present study.

11
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Figure 1.4: The structure of our thesis
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Chapter 2

Research Background

2.1 Research Background

2.1.1 Observation of Spectral Linearity in Hyperspectral

Images

The idea to exploit the spectral line for multi-channel image denoising comes from

the finding that noisy RGB images tend to contain outliers located away from the

color line. The color-line property is very useful to decorrelate the channels and

has been applied to RGB image denoising to reduce discoloration artifacts [65]. As

for multi-channel images, in this case hyperspectral images, the correlation among

the channels is also expected high due to the narrow spectral resolution. Thus,

in line with the principle of color line in RGB images, we can observe the inter-

channel correlation of hyperspectral images by plotting the intensity distribution

of a local region (refers to a sub-scene comprising adjacent pixels and channels).

We made observations using some real hyperspectral data. One of them is in

the Indian Pines data, as shown in Figure 2.1. The figure visualizes the intensity

distribution of a local spatial region depicted in the red rectangle, and the effect of

noise as well as denoising to the distribution. The channels of 12-14, 132-134, and

155-157 represent locality in the spectral domain. The original data distribution

of each local region shows a linearity of three adjacent channels.

To find some more convincing evidence, we observe the inter-channel correla-

tion via the principal component analysis (PCA). PCA is known as a mathematical

procedure that seeks a linear combination of components, with principal compo-

nent as the indicator. The procedure transforms a number of possibly-correlated

components into a smaller number of uncorrelated components, which are the

principal components. The principal components can be indicated by eigenvalues

or singular values (detailed explanation in Chapter 3). In our observations, for
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Figure 2.1: Spectral line in hyperspectral images and the effect of denoising.

various number of channels, we confirmed that the ratio between the maximum

eigenvalues and the sum of all eigenvalues is high, which implies the channels are

linearly correlated. For example, the Pavia center data has a ratio of 0.86 for all

channels, and a ratio of 0.92, 0.93, and 0.86 for 50, 35, and 10 adjacent channels,

respectively.

From these observations, we conclude that the line property also holds in the

hyperspectral data, that is the spectral line.

2.1.2 Linearity in Abundance Domain

The local-spectral linearity of hyperspectral images brings a consequence to the

matrix of which they are decomposed. In an unmixing task, it is known that a hy-

perspectral image is decomposed into a spectral library and an abundance matrix

(see Figure 1.2). The spectral library is a collection of selected spectral signatures

that are highly correlated. The abundance matrix consists of abundance vectors

that corresponds to the spectral signatures. The high spatial correlation of the hy-

perspectral data implies linearly dependent abundance vectors in the abundance

matrix citeLRR. Consequently, the local-spectral linearity of the hyperspectral

image indicates high correlation among the abundance vectors that corresponds
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Figure 2.2: Examples of low rank matrix Hx̂b
from data (a) DS (rank = 1), (b) FR5 (rank =

2), and (c) when no endmember presences on the local region (rank = 0).

to the pixels in the local regions. In other words, the abundance matrix com-

posed of these vectors is low rank (rank corresponds to the number of linearly

independent columns of a matrix).

Beside two dimensions in the spatial domain, the abundance matrix has a

dimension in abundance domain when transformed to a 3D form. Using simulated

data, we observe the linearity of the data distribution in the abundance domain

by taking the singular values of the true abundance matrix for each local block

(block refers to the 3D, which the third dimension has a local coverage in the

spectral signature/endmember direction). We found that there is one value that

dominants to others (the ratio is close to one) in each local block. For example,

the matrix of DS data and FR5 data on Figure 2.2 have the ratio 1 and 0.9852,

respectively. On the other hand, the ratio value will be less dominant as the

region becomes the whole matrix (nonlocal), which become 0.5881 and 0.2262 for

DS data and FR5 data, respectively. It implies that the linearity in abundance

domain is satisfied for the abundance matrix with local point of view.

We also observe the local blocks in vectorized form (in Chapter 4, denoted with

Hx̂b) when the endmembers exist in the region. It is expected that the matrix

Hx̂b is low rank because the pixels in local regions tend to share the same active

set of endmembers. Figure 2.2 shows the low rankness is hold in Hx̂b . In addition,

the high correlation between spectral signatures in the spectral library promotes

the columns in Hx̂b to be low rank.
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2.2 Research Goal

The aim of this study is to generalize the color-line property of RGB images to

the M -dimensional spectral line feature (M > 3) for multi-channel images, and

exploit it for some multispectral/hyperspectral image research topics, which are

denoising and unmixing.

For denoising application, we first extend the color line to more general multi-

channels and call it the spectral line. We design a denoising method for multi-

channel images based on the local spectral linearity. In the case of the multi-

channel images, we consider the intensity distribution of M channels in every local

region, which corresponds to the color distribution in RGB color images. Then,

we evaluate the effectiveness of our propose method for multi-channel images.

As for hyperspectral unmixing, our research aims to develop an unmixing

algorithm based on the linearity in the abundance domain. We propose the local

abundance regularizer and implant it to the sparse unmixing problem. In the

implementation, we use the nuclear norm, a popular heuristic algorithm for the

rank minimization, for 3D local regions. We introduce the 3D local block that

slides through the three dimensions of the abundance cube and impose the nuclear

norm to promote the low-rank structure of the local abundance cube. Then,

we compare the performance with the state-of-the-art methods. The difference

with the 3-tensors nuclear norm [33] is that our proposed scheme takes the local

nuclear norm of the third dimension in addition to the first two dimensions. In

other words, the sliding block also moves in a particular step size along the third

dimension.

2.3 Related Works

2.3.1 Related Works in Hyperspectral Image Denoising

For image restoration, Blomgren et al. [13] proposed the total variation (TV)

for color and other vector-valued images. Chan et al. [19] improved the TV

method for nonlinear color models with regard to: the chromaticity-brightness

(CB) and hue-saturation-value (HSV). As a nonlocal filtering approach, Color

BM3D (CBM3D) [26] is one of the most powerful denoising methods for RGB im-

ages. To reduce color artifacts found in CBM3D, local color nuclear norm (LCNN)

has been introduced [55], which exploits the correlation among the channels using

the low rank property of a local region.

16



RESEARCH BACKGROUND 2.3 Related Works

Similarly, it is expected that, for the hyperspectral image, exploiting the cor-

relation in not only the spatial domain but also the spectral domain improves

denoising performance because the hyperspectral images have high correlation be-

tween adjacent channels since they are retrieved from channels with a high spectral

resolution. Channel-by-channel hyperspectral image denoising has a consequence

in a low SNR because it ignores the spectral correlation [29]. By exploiting the

spectral correlation, Atkinson et al. [7] restore hyperspectral images based on the

discrete Fourier transform (DFT) and 2-dimensional discrete wavelet transform

(2D-DWT) for decorrelation in the spectral and spatial domain, respectively. The

same motivation is also found in another work [79], which utilizes local/global

redundancy and correlation (RAC) in the spatial and spectral domain. How-

ever, this method is less competitive than other state-of-the-art methods when it

comes to strong noise. Dabov et al. propose a video denoising method known

as VBM3D [25], which is an extension of a single channel denoising method [28],

where noise is reduced by using patches found in neighboring frames. This method

performs well for multi-channel images, which will be demonstrated in this study.

As an efficient feature to represent the inter-channel correlation of local regions,

a color line is introduced in the field of color image processing [53]. The feature

is used to model the correlation among neighboring pixels as well as among the

channels in many image processing frameworks. This work [53] precisely distin-

guishes one color from another by its color line. From this idea, they implement

a color-line model for some applications, i.e. segmentation, compression, color

editing and saturated color correction. For demosaicing, they also use natural

image properties: least color variation and minimal corner value [54]. Fattal [32]

exploits the color-line pixel regularity of a single image to introduce a new de-

hazing method. He derives a local formation model that explains color lines in

hazy scenes and uses it for estimating scene transmission. Color-line-based noise

reduction has also been introduced [71]. They elaborate the color-line model with

conventional filters, such as the bilateral filter and the nonlocal means filter, to

improve their performance. Ono et al. exploit the color correlation by minimizing

a convex function with the LCNN [55]. This method does not have denoising ca-

pability in itself, and its main purpose is to remove color artifacts. This method

outperforms other RGB denoising methods, but its superiority in hyperspectral

denoising is still limited.
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2.3.2 Related Works in Hyperspectral Unmixing

Hyperspectral unmixing can be reconstructed from the linear mixture model

(LMM) and nonlinear mixture model [6,43,47,73]. With the LMM, it is assumed

that the spectra of each mixed pixel are linear combinations of the endmembers

contained in the pixel. Despite the fact that it holds only for macroscopic mixture

conditions [6,81], it is widely used due to its computational tractability and flex-

ibility in various applications. With the LMM, several unmixing techniques have

been introduced based on either geometry [11,52], statistics [8, 11], nonnegative

matrix factorization (NMF) [45,48,58,67], or sparse regression [11,31,34,40,46].

Although the geometry and statistical techniques are unsupervised and re-

quire only a little prior information about the data, they require an assumption

that at least one pure pixel (a pixel containing only one endmember) exists for

each endmember [68]. The NMF techniques do not require this assumption, how-

ever, they can obtain virtual endmembers with no physical meaning [22,68]. On

the other hand, in the sparse regression techniques, additional informations are

introduced as prior knowledge that are added to the objective functions in the

optimization problems and called regularizers, e.g., considering the abundance

sparsity [9,37,69], information of endmembers known to exist in the data [68], or

total local spatial differences [38].

An abundance sparsity regularizer algorithm, called sparse unmixing by vari-

able splitting and augmented Lagrangian (SUnSAL), was introduced by Iordache

et al. [37]. They applied the L1 norm (the sum of the absolute values of the ma-

trix columns) to the abundance matrix, substituting the L0 norm (the number of

nonzero elements of the matrix) to impose the sparsity. With the algorithm known

as collaborative SUnSAL (CLSUnSAL), it is assumed that the pixels of a hyper-

spectral scene share the same active set of endmembers [39]. This assumption does

not hold when an endmember is contained in several pixels instead of all pixels

in the scene. For example, when the hyperspectral scene captures a location that

contains locally homogeneous regions. Zhang et al. [77] proposed a local approach

of the CLSUnSAL considering the fact that endmembers tend to be distributed

uniformly in local spatial regions. Qu et al. [61] adopted joint sparsity combined

with the low-rank model under the bilinear mixture model (BMM). The low-rank

term corresponds to the low number of linearly independent columns of a matrix.

They applied a local sliding window to the abundance matrix as the neighboring

pixels tend to be homogeneous and constituted from the same materials.

Iordache et al. [38] proposed a spatial regularizer algorithm called sparse un-
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mixing with the total variation regularizer (SUnSAL-TV), which uses an unmixing

technique that is more powerful than the conventional unmixing ones. Neverthe-

less, this semi-supervised algorithm may produce over-smoothed results and blur

in the edges. The spatial information is also imposed in the sparse unmixing task

in a nonlocal procedure [81]. Tang et al. [68] introduced an algorithm called sparse

unmixing using a priori information (SUnSPI). The required prior knowledge is

that some spectral signatures (endmembers) in the hyperspectral scene are known

in advance. Despite the fact that the performance is superior compared to that

of conventional unmixing algorithms, it is difficult to guarantee whether the as-

sumption can always hold. Field investigation or prior hyperspectral-data analysis

may be needed to provide such information. The structure tensor nonlocal TV

(ST-NLTV) [23] models the high spatial and spectral correlation in multi-channel

images for several applications, including the hyperspectral unmixing. The idea

is extending the NLTV-based regularization to multi-channel images by taking

advantage of the structure tensor resulting from the gradient of a multi-channel

image.

In a region with high spatial similarity, e.g., local spatial region, the correla-

tion among pixels spectral signatures can be reflected as linear dependence among

their corresponding abundance vectors. The abundance matrix that is composed

of these vectors should be low rank. This low-rankness has been recently applied

for hyperspectral image denoising and recovery tasks [76, 78, 80], which results in

superior performances. Furthermore, the low-rankness of the data also indicates

high correlation among the abundance vectors corresponding to the pixels in such

regions [61]. Giampouras et al. [35] proposed ADSpLRU algorithm by exploiting

the low-rankness of abundance to the sparse unmixing problem to consider the

spatial correlation of the abundance. However, they considered the low-rankness

in the nonlocal fashion of the abundance dimension. In practice, to consider the

local low-rankness of an image, Ono et al. [56] proposed the local color nuclear

norm (LCNN). However, they locally applied the nuclear norm (the sum of the

matrix singular values) only to the spatial dimension of RGB images. Yang et

al. [72] also imposed the low-rank constraint for coupled sparse denoising and un-

mixing problems. However, the use of the nuclear norm is not local, and superior

performance is more dominant in the denosing task rather than the unmixing one.

To the best of our knowledge, there is no sparse unmixing algorithm that takes

into account the low-rankness of local spectral signatures (endmembers) in the

abundance dimension, whereas the high correlation between the spectral signa-
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tures can be guaranteed by the spectral angle (SA), which is a spectral similarity

assessment defined as the angle between two spectral vectors. In turn, one can

observe the linearity of the data distribution in local regions in terms of spatial

as well as abundance dimension. This priori may lead to a novel approach for the

sparse unmixing algorithm.
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Chapter 3

Denoising Based on Spectral
Linearity

Abstract – We propose a method for local spectral component decomposition

based on the line feature of local distribution. Our aim is to reduce noise on

multi-channel images by exploiting the linear correlation in the spectral domain

of a local region. We first calculate a linear feature over the spectral components

of an M -channel image, which we call the spectral line, and then using the line, we

decompose the image into three components: a single M -channel image and two

gray-scale images. By virtue of the decomposition, the noise is concentrated on

the two images, and thus our algorithm needs to denoise only the two gray-scale

images, regardless of the number of the channels. As a result, image deterioration

due to the imbalance of the spectral component correlation can be avoided. The

experiment shows that our method improves image quality with less deterioration

while preserving vivid contrast. Our method is especially effective for hyperspec-

tral images. The experimental results demonstrate that our proposed method can

compete with other state-of-the-art denoising methods.

Index Terms – Spectral line, local spectral component decomposition, de-

noising, hyperspectral image.

3.1 Introduction

To improve the performance of various applications of hyperspectral images, de-

noising step becomes an essential preprocess phase in hyperspectral image ex-

ploitation. Recently, different denoising methods for hyperspectral image have

been proposed. The traditional 2D or 1D denoising methods, which reduce noise

in the image band by band or pixel by pixel, are the simplest way. However, as

only spatial or spectral noise is removed, the corresponding denoising result by
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this way is not satisfying. If we only reduce noise in spatial or spectral domain,

artifacts or distortions will be introduced in other domains. At the same time,

this kind of methods will destroy the correlation in spatial or spectral domain.

Spatial and spectral information should be considered jointly to remove the noise

efficiently.

The aim of our research is to reduce noise on multi-channel images by exploit-

ing the linear correlation in the spectral domain of a local region. As color-line

property has shown the effectiveness to correlate the three channels of RGB im-

ages, we generalize the color line to the M -dimensional spectral line feature for

multi-channel images, and introduce a method for local spectral component de-

composition based on the spectral line.

3.1.1 Basic Theory

Denoising

All sensor devices, both analog and digital, have traits that make them susceptible

to noise. The process of removing noise from a signal is called denoising. Noise

in any data set must be low. There exists no absolute scale for noise but rather

all noise is measured relative to the measurement. A common measure is the

signal-to-noise ratio (SNR), the ratio of signal power to the noise power, often

expressed in decibels (dB). A high SNR indicates high precision data, while a

low SNR indicates noise contaminated data. In signal processing, a process that

removes some unwanted components from a signal is called filtering, in which the

algorithm is called filter.

BM3D

Block-matching and 3D filtering (BM3D) is a powerful denoising algorithm based

on sparse 3D transform-domain collaborative filtering. The blocks are achieved

by grouping similar 2D fragments of the image into 3D data arrays which are

called groups. To deal with these 3D groups, a procedure of collaborative filtering

is developed. In the first step, the input noisy image is processed by extracting

reference blocks from it. For each such block, the algorithm finds blocks that are

similar to the reference one (block matching) and stacks them together to form

a 3D array (group). Then, it is followed by performing collaborative filtering to

each group and return the obtained 2D estimates of all grouped blocks to their

original locations. After processing all the reference blocks, the obtained block
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estimates can overlap and thus there are multiple estimates for each pixel. Finally,

these estimates are aggregated to form an estimate of the whole image [27].

Eigenvalue

Eigenvalues play an important role in situations where the matrix is a transforma-

tion from one vector space onto itself. An eigenvalue and eigenvector of a square

matrix A are a scalar λ and a nonzero vector x so that

Ax = λx. (3.1)

The eigenvalue-eigenvector equation for a square matrix can be written

(A− λI)x = 0, x 6= 0. (3.2)

This implies that A− λI is singular and hence that det(A− λI) = 0.

PCA

Principal component analysis (PCA) is a mathematical procedur that approxi-

mates a general matrix by a sum of a few simple matrices. Simple means rank

one; all of the rows are multiples of each other, and so are all of the columns. Let

X be any real m-by-n matrix. Singular value decomposition (SVD) decomposes

X as

X = UΣV>, (3.3)

Here, Σ is a rectangular diagonal matrix of nonnegative singular values of X; U

is a matrix whose the columns are orthogonal unit vectors called the left singular

vectors of X; and V is a matrix whose columns are orthogonal unit vectors and

called the right singular vectors of X.

Equation (3.3) can be written as

X = Q1 + Q2 + . . .Qp, (3.4)

where p = min(m,n). The component matrices Qk are rank one outer products:

Qk = σkukv
>
k , (3.5)

where each column of Qk is a multiple of uk (the k-th column of U), each row is a

multiple of v>k (the transpose of the k-th column of V). The component matrices
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are orthogonal to each other QjQ
>
k = 0, j 6= k. The norm of each component

matrix is the corresponding singular value σk (‖Qk‖ = σk). Consequently, the

contribution each Qk makes to reproduce X is determined by the size of the

singular value σk.

If the sum is truncated after r < p terms,

Xr = Q1 + Q2 + . . .Qr, (3.6)

the result is a rank r approximation to the original matrix X. In fact, Xr is the

closest rank r approximation to X. Since the singular values are in decreasing

order, the accuracy of the approximation increases as the rank increases.

The description and notation for PCA vary widely. A common description

for the principal components is in terms of eigenvalues and eigenvectors of the

cross-product matrix X>X. As

X>XV = VΣ2, (3.7)

the columns of V are the eigenvectors X>X. The columns of U, scaled by the

singular values, can then be obtained from

UΣ = XV. (3.8)

PCA is applied on the covariance matrix. The eigenvectors and eigenvalues

of the covariance matrix correspond to the principal components and variances

explained by the principal components, respectively. PCA of the covariance ma-

trix provides an orthonormal eigen-basis for the space of the observed data, in

which the maximum eigenvalues correspond to the principal components that are

correlated with most of the covariability among a number of observed data.

3.1.2 Chapter Structure

The rest of this chapter is organized as follows. In Section 3.2, we first give an

overview of our proposed algorithm. Then, we describe the whole algorithm based

on the spectral line property. In Section 3.3, we present the experimental results

and compare them with those of other methods for both RGB color images and

multi-channel images including multispectral and hyperspectral images. Finally,

we conclude our research in Section 3.4.
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3.2 Algorithm

The spectral line is found by applying PCA to the local window centered at

a pixel. In our case, a noisy input is given, which may result in inaccurate line

estimation. One possible solution to address this problem is to apply pre-denoising

before PCA, but the quality of the resultant image heavily depends on the pre-

denoising method. For example, weak denoising does not improve the accuracy

of the line estimation, but hard denoising may change the balance of the spectral

information which also results in inaccurate estimation. In our method, we address

this problem by an iterative fashion. First, we find an initial estimate for the

spectral line from the noisy input, and then apply our decomposition algorithm.

We apply a conventional denoising method to the two components yielded by the

decomposition described in Section 3.2.2. Then, we estimate the spectral line

again using the denoised image, and repeat this procedure. As for the denoising

method, after testing some conventional methods, we adopt BM3D, which gives

the best performance with our method. The effect of the denoising is adjusted to

be relatively weak at each iteration since the method is applied iteratively. The

whole procedure consists of four steps as illustrated in Figure 3.1.

1. We calculate the local spectral distribution in a window centered at each

pixel and find the principal component for each pixel by PCA. We define the

spectral line vector as the principal component and a spectral vector field as

an image that has the spectral line vector at each pixel. Then, we align the

direction of each vector by changing the sign so that the neighboring vector

directions become smooth, which improves the resultant image (described

in Sec. 3.2.1).

2. Using the spectral line vector, we decompose each pixel Yi (∈ RM) of a

M -channel image into the three components: a mean spectral component

µi (∈ RM), spectral line component Di (∈ R), and residual component

Ni (∈ R) (Sec. 3.2.2). The aim of the decomposition is to transfer noise

only to the two components (spectral line and residual components). We

assume that the noise is independent and zero-mean, and thus the mean

spectral component tends to have little noise. Regardless of the number of

channels, we only need to denoise the two components, which is especially

effective for multi-channel images with M > 3.

3. We smoothing the spectral line and residual components (Sec. 3.2.3).
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4. We reconstruct an image from the above components, and then go back to

step 1 (Sec. 3.2.4).

3.2.1 Spectral Line Vector Field

Spectral Line Vector Estimation by PCA

The spectral line vector is formulated as the eigenvector that corresponds to the

maximum eigenvalue by using PCA. The detail of the procedure is listed as follows:

1. Calculate the mean spectral component of each pixel i for each channel,

µi =
1

w

∑
j∈N (i)

Yj (i = 1, 2, . . . , k), (3.9)

where k is the number of pixels in an image, w is the number of pixels in a

specified filter window N (i) and Yj = [Y 1
j , Y

2
j , . . . , Y

M
j ]> is the intensity of

neighboring pixels j ∈ N (i). M is the number of channels (e.g. M = 3 for

an RGB image). This calculation produces the mean µi = [µ1
i , µ

2
i , . . . , µ

M
i ]>,

which we call the mean spectral component.

2. Calculate the covariance matrix Ci ∈ RM×M of neighboring pixels around

each pixel i,

Ci =
( 1

w

∑
j∈N (i)

YjY
>
j

)
− µiµ

>
i . (3.10)

3. To obtain the spectral line vector, find the maximum eigenvalue di of the

covariance matrix Ci, and subsequently derive its corresponding eigenvector

as the spectral line vector vi.

Alignment of Spectral Line

The resulting eigenvector vi may have sign si with an ambiguity (si = +1 or −
1). The direction of the sign should vary smoothly in our framework, otherwise

the resultant image will have jaggy artifacts, which we will demonstrate with an

experiment in Sec.3.3.1.

To make the direction of the sign smoothly vary, we adopt the Jacobi relaxation

method to determine the sign. For the vector direction alignment, the sign si
should be set to fit the dominant direction of neighboring vectors by using the
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Figure 3.1: Flowchart of the proposed algorithm with four main steps conducted iteratively.
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inner product as the criterion. To extend the pixel-wise flip to a larger region, a

multi-resolution approach is used.

In the initialization, to determine the sign of each vector vi that minimizes

the following energy function among neighboring pixel pairs {i, j} :
∑
{i,j} ‖sivi−

sjvj‖2, we adopt the Jacobi relaxation method [14]:

s(t+1)
p = sign

( ∑
q∈N (p), q 6=p

(s(t)p vp)
>(s(t)q vq)

)
, (3.11)

which means that the sign sp of a pixel p is aligned with the dominant sign of

3 × 3 neighboring vectors q ∈ N (p), considering the inner product. In practice,

we calculate it with the use of the box filter [59] for acceleration. After finding

the sign, we update the spectral line vector as

ṽi = sivi

The result of the initial flip is then processed by multi-grid’s V-cycle [14] as

a multi-resolution approach. The multi-resolution pyramid for vector and sign

images in Figure 3.2 is generated using Gaussian pyramid decomposition [16].

Additionally, in the decimation process, to give priority to pixels around edges

that have large eigenvalues, we multiply the eigenvalue di as a weight for the pixel

disivi and then apply the decimation filter and re-normalize the half-sized vector

field. As for the multi-resolution eigenvalue images that consists of di, they are

generated by using the same approach as the one used for the Gaussian pyramid.

Figure 3.3 visualizes the effect of the method, in which the pixel values rep-

resent the cosine of the angle between vi and a fixed vector a, that is < vi, a >

/‖vi‖‖a‖ with the inner product < ·, · >. The pixel values are normalized to show

it appropriately for visualization. One can see from the figure that the sign flip

works effectively for the vector field.

3.2.2 Spectral Component Decomposition

Using the mean spectral component µi and the spectral line vector ṽi, we de-

compose the original pixel Yi to the three terms. We begin with calculating the

difference vector of the center pixel and the mean spectrum of the local window,

∆Yi = Yi − µi. Using the spectral line vector ṽi, the spectral line component

Di is calculated as the inner product of the normalized spectral line vector ṽi and

∆Yi,
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Figure 3.2: Flowchart of the spectral line vector alignment.

Di = ṽ>i ∆Yi, (3.12)

which is the component of ∆Yi w.r.t. the direction of ṽi, since ṽi is normalized

to ‖ṽi‖ = 1. Then, we calculate the difference between the two vectors:

ri = ∆Yi −Diṽi. (3.13)

Finally, a residual component is derived from L2 norm of the vector ri,

Ni = ‖ri‖. (3.14)

Note that the dimensions of the mean spectral component µi, the spectral line

vector ṽi and residual vector ri are the same as the number of channels, that is M ,

and the spectral line component Di and the residual component Ni are scalars.
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Figure 3.3: The effect of sign flip: sign maps (left) before and (right) after sign flip.

The main purpose of this decomposition is to concentrate noise, which is orig-

inally scattered in all the channels of an input image, into the two components,

Di and Ni. The noise in the components is reduced in the next step.

3.2.3 Filtering

The spectral line component Di obtained in the previous step contains noise.

Consequently, denoising the spectral line components is required in the spatial

domain. We refine the spectral line component by denoising it with BM3D [28].

Since we iteratively apply BM3D, the denoising effect is adjusted not to be too

strong. This procedure results in the filtered spectral line component Di.

The residual component Ni contains a lot of weak noise. To filter them out,

we adopt a two-phase denoising procedure. First, we apply the Geman McClure

robust function [12] to reduce the noise with small intensities by the formula

w(Ni) =
N2
i

k +N2
i

, (3.15)

where k is a small constant. Afterward, it is added as the weight as

N̂i = w(Ni)Ni. (3.16)

Then, the filtering step is followed by BM3D, which results in the residual com-

ponent N i.

As for the mean spectral component µi, unlike the other components, there

is no need to apply filtering because it has been already generated by averaging

Equation (3.9).
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Figure 3.4: Spectral decomposition: In local spectral component decomposition, each pixel is

decomposed into a spectral line vector, a spectral line component, and a residual component.

3.2.4 Recomposition

The final step is recomposition of the resulting image from its constituent com-

ponents. The expected image can reconstructed as follows (see Figure 3.4):

Yi = µi +Diṽi +
N i

Ni

ri. (3.17)

3.3 Experiment

In the experiment, all the methods are implemented in MATLAB, except for

calculating the mean spectral component, where the MEX file is used for running

the box filter in C.
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3.3.1 Effect of Sign Flip

First, to discuss the importance of sign flip before filtering, we perform an exper-

iment that emphasizes how it works on an image. The Jacobi relaxation used for

the vector sign alignment significantly improves the performance by flipping the

sign to the same direction as the local mean color sign. Figure 3.5 shows the effect

of the vector sign flip in our method. The top and bottom row show the results

when the sign flip is not performed and performed, respectively. After PCA, the

generated spectral line vectors are not smooth (top left). If we continue to the

next steps without this procedure, the spectral line components and the filtered

result are affected and fail to preserve the details. To avoid this problem, we use

the Jacobi relaxation method for the spectral line vectors. As a result, the method

can perform better as shown in the bottom images. The comparison of the final

resultant images is depicted in Figure 3.6. The difference can easily be noticed in

some regions of the image.

3.3.2 RGB color image

Parameter Setting

The parameters of the conventional methods are adjusted so as to give the best

evaluation values. On the other hand, for the conventional methods used in com-

bination with our method, we set their parameters to give a similar degree of

denoising. Then, we will show that our method preserves more vivid contrast

than the others with the same degree of denoising.

To achieve the expected results, the number of main iterations is set to 4. To

calculate the color orientation, we set half of the window size to 3. We found after

some trial-and-error that these values yield sufficient results for most of the tested

images.

Experimental Results

Before evaluating the whole of our method, we examine the contribution of our

decomposition step. Only for Figure 3.7, we use the anisotropic diffusion to de-

noise the spectral line component instead of BM3D to fairly evaluate the validity

of the decomposition in the denoising process, and compare it with the stand-

alone anisotropic diffusion. Thus, the two rows of Figure 3.7 show the comparison

with the anisotropic diffusion. Figure 3.7 (a) and (b) depict original images and

32



DENOISING BASED ON SPECTRAL LINEARITY 3.3 Experiment

Spectral line vector Spectral line component After smoothing

Figure 3.5: The results obtained without sign flip (top) and with sign flip (bottom) for the

spectral line vector (left), the spectral line component (middle), and the smoothing result of

spectral line component (right).

(a) Original (b) With sign flip (c) Without sign flip

Closeup of differences

Figure 3.6: Effect of sign flip in the resultant image. From the left, (a) original image, (b) our

method, and (c) our method without sign flip.
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(a-1) Original (b-1) Noisy (c-1) Diffusion (d-1) Diffusion (e-1) Ours

(PSNR dB) in RGB (30.01) in YCbCr (33.33) (34.64 dB)

(a-2) Original (b-2) Noisy (c-2) Diffusion (d-2) Diffusion (e-2) Ours

(PSNR dB) in RGB (27.96) in YCbCr (29.35) (30.48)

Figure 3.7: Comparison of smoothing results by the anisotropic diffusion [70] and by the

anisotropic diffusion in our algorithm

(a-1) Original (PSNR) (b-1) Noisy (c-1) CBM3D (34.07) (d-1) Ours (32.38)

(a-2) Original (PSNR) (b-2) Noisy (c-2) CBM3D (39.92) (d-2) Ours (40.41)

Figure 3.8: Comparison of denoising results by the Color BM3D [26] and by BM3D in our

algorithm

noisy images, respectively, in which we add the Gaussian noise of a standard de-

viation σ = 0.06 for normalized intensity range [0, 1]. Figure 3.7 (c) and (d) are

the results of the anisotropic diffusion alone, where the method is applied in the

RGB and YCbCr color spaces, respectively, and (e) is obtained by the anisotropic

diffusion after our decomposition. One can see that our method is able to sig-

nificantly reduce the discoloration artifact, compared to the anisotropic diffusion
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used alone. The artifacts can be noticed distinctly in the background part of the

images. Furthermore, it confirms the validity of our method in both the appear-

ance and numerical evaluations, which are better than those of the conventional

method.

In the next example shown in Figure3.8, we compare our performance with

CBM3D [26]. Whereas with the results of CBM3D, the differences at a glance

are little, and our numerical evaluations are sometimes inferior. The difference in

evaluation values comes from the remaining noise around the edges in the results

of our method. Human perception, however, is insensitive to the noise.

In addition, the spectral line property partially does not hold for images with

much more detailed texture as shown in the patterned tablecloth of the first row

of Figure 3.8. While CBM3D works well for the images with the patterned tex-

ture, the original CBM3D tends to produce discolorations especially in smoothly

varying gradation as shown in the second row of Figure 3.8, where our method

significantly reduces the discoloration and improves the perceptual appearance.

Thus, CBM3D does not work well for images with varying gradation, while our

method is superior in this case.

3.3.3 Multi-channel Image

Data Description

In our method, only the two components (two channels) are denoised after the

decomposition regardless of the number of channels in an input image, and thus

the method is more effective for the multi-channel images (multispectral and hy-

perspectral images) than the RGB images. Four real multispectral data are used

in this experiment, i.e. the cropped area of Kyushu Island in Japan, Yellow River

area in China, Papua Island in Indonesia and Washington in USA. They are col-

lected by Operational Land Imager (OLI), and instrument onboard the Landsat

8 satellite. The multispectral band consists of band 1 − 7, dedicated for coastal

aerosol, red, green, blue, NIR, SWIR 1 and SWIR 2 channel respectively, with

wavelength range 0.43−2.29µm. Regarding this, the parameter M as the number

of processed bands is set to 7. We contaminate the data by Gaussian noise with

standard deviation of 0.06.resulting SNR of 24.44.

For hyperspectral images, five real data sets are used in the experiment, i.e.

Cuprite, Indian Pines, Salinas, Pavia University, and a subscene of Pavia Center

data set. The first three and the last two are collected by airborne hyperspectral
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Table 3.1: Data set description used in the experiment.

Data Set Size Sensor Spatial Resolution

Cuprite 512× 614× 224 AVIRIS 20 m

Indian Pines 145× 145× 220 AVIRIS 20 m

Pavia-U 610× 340× 103 ROSIS 1.3 m

Pavia-C 200× 200× 102 ROSIS 1.3 m

Salinas 512× 217× 224 AVIRIS 3.7 m

sensors AVIRIS and ROSIS, respectively. AVIRIS has a spectral resolution of 10

nm in the spectral range 400-2400 nm. ROSIS has a spectral resolution of 4 nm

in the spectral range of 430-860 nm. The sizes and spatial resolutions for the

data sets are given in Table 3.3. Because of the low SNR and water absorption

factor [20], the channels of 1-3, 105-115, and 150-170 in the Cuprite data set

are removed in the experiment. The Indian Pines data set is also corrected by

removing the channels 104-108, 150-163, and 220 because they contain high noise

level and no useful information [79]. These kinds of channels are also discarded

in the Salinas data, consisting of channels 108-112, 154-167, and 224. Some areas

of the images in Pavia University and Pavia Center that have no information are

discarded before being used. After normalizing the data to [0, 1] range, we added

Gaussian noise with σ = 0.1 to all the data.

Parameter Setting

In addition to involving parameters of the RGB and multispectral image experi-

ment, the hyperspectral experiment needs additional parameters to be set regard-

ing the difference in the number of channels. When the proposed algorithm is

applied to hyperspectral images, we provide it with the flexibility to set M as the

number of channels to be processed. Choosing the value of M is also a way to find

the optimum result based on the correlation among the channels. In other words,

it exploits the characteristic of hyperspectral images, that is the high correlation

among neighboring channels which are processed at one time. When M is in-

creased, however, it affects the complexity and accuracy of finding the estimated

spectral line. In addition, the strength of the disrupting noise definitely affects

the complexity as well.

Regarding this characteristic, M becomes an additional parameter setting in
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Table 3.2: MPSNR comparison

Method Cuprite Indian Pavia-C Pavia-U Salinas

NLM 31.09 33.99 26.25 27.28 37.54

PRI-NL-PCA 31.69 35.61 31.59 32.35 36.88

VBM3D 33.44 36.95 33.10 33.69 38.94

VBM4D 32.72 36.35 31.68 32.42 38.53

Ours 36.03 37.84 33.17 32.76 41.35

LCNN 34.77 36.62 33.84 33.90 39.24

Ours 36.33 37.84 33.89 34.34 41.44

(For the comparison with LCNN, the images are cropped so that the size is a multiple of the

window size, and our method is simulated under the same condition. Note that according to

our experiments, the PSNR of LCNN becomes a little lower without this treatment.)

the beginning of our algorithm. We have tested some values and examined the

influence of the parameter M . After some trial-and-error, we adopt M = 35

that gives good performance. Outside these values, the algorithm results in lower

PSNRs. As for the number of main iteration and half of the window size are

adjusted to 3 and 6, respectively.

Evaluation Parameter

To evaluate the results, both qualitative and quantitative assessments are con-

ducted in the experiment. The peak signal-to-noise ratio (PSNR) is calculated for

every processed channel, and the mean with respect to the channels is calculated,

which is denoted as MPSNR.

Experimental Results of Multispectral Images

To validate the effectiveness of our method, the results are compared to other

powerful denoising methods, i.e. video block matching 3-D filtering (VBM3D) [25]

and band-by-band nonlocal means (NLM) [15]. In the experiment, the parameters

of our method and the competitor methods are set so as to give the best evaluation

values. The experiment results are given in Table 3.3. Our method improves the

image quality with PSNR reaching 10 dB increase than the noisy image. From

the table, we can conclude that for all data, our method successfully achieves
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higher PSNR than the nonlocal means method and slightly competes the result of

VBM3D. However, the significant superiority of ours compared with VBM3D can

be distinguished from visual appearance depicted in Figure 3.9 and 3.10. These

images illustrate, (a) original image, (b) noisy image with additional Gaussian

noise, (c) result of nonlocal means method, (d) result of VBM3D, and (e) our

iterative method with 3 iterations. One can see from these images that VBM3D

results in too smooth images compared to the original, whereas our resulting

images are closer to the original.

Table 3.3: PNSR result (correspondents to first and second row of each data respectively).

Data Noisy NLM VBM3D Ours

Kyushu 24.4414 32.8880 34.2872 34.3601

Papua 24.4414 31.7794 33.8546 34.1661

China 24.4414 32.5792 34.3150 34.4842

Washington 24.4414 29.5791 31.5495 32.0093

Experimental Results of Hyperspectral Images

The effectiveness of the proposed approach is validated by comparing the results

to those of other powerful denoising methods: the nonlocal mean filter (NLM) [15],

PRI-NL-PCA [50], the video block matching 3-D filtering (VBM3D) [25] and its

extension VBM4D [49]. PRI-NL-PCA is a state-of-the-art PCA-based denoising

that exploits sparseness and self-similarity image property. Furthermore, we per-

form additional comparison with a hybrid approach of VBM3D and LCNN [55],

which can improve the performance of the stand-alone VBM3D by exploiting

channel correlations. Quantitatively, our proposed method gives higher MPSNR

results than those of the other compared methods. As shown in Table 3.2, our

method is greatly superior to the VBM4D method and is satisfactorily higher when

compared to VBM3D. Except for the Pavia University data, VBM3D achieves a

slightly higher MPSNR. As is shown in Figure 3.18 later, however, the contrast

is partially more vivid in our result, and our result for the Pavia University is

comparable to VBM3D even though the PSNR is lower. Compared to LCNN, our

results are also superior for all data items.
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(a) Original (PSNR) (b) Noisy (24.44) (c) NLM (32.57)

(d) VBM3D (34.31) (e) Ours (34.48)

Figure 3.9: Comparison among images from the experiment of China data band 5, with resolu-

tion of 30 m

(a) Original (PSNR) (b) Noisy (24.44) (c) NLM (31.77)

(d) VBM3D (33.85) (e) Ours (34.16)

Figure 3.10: Comparison among images from the experiment of Papua data band 6, with reso-

lution of 30 m.
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(a) Original (b) Noisy (c) VBM3D (d) VBM4D (e) Ours

(PSNR dB) (33.89) (32.80) (37.27)

Figure 3.11: Cuprite data, 122nd channel

(a) Original (b) Noisy (c) VBM3D (d) VBM4D (e) Ours

(PSNR dB) (31.02) (30.04) (34.12)

Figure 3.12: Indian data, 46th channel

(a) Original (b) Noisy (c) VBM3D (d) VBM4D (e) Ours

(PSNR dB) (32.75) (31.51) (32.57)

Figure 3.13: Pavia University data, 98th channel
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(a) Original (b) Noisy (c) VBM3D (d) VBM4D (e) Ours

(PSNR dB) (32.53) (31.09) (33.19)

Figure 3.14: Pavia Center, 75th channel

(a) Original (b) Noisy (c) VBM3D (d) VBM4D (e) Ours

(PSNR dB) (34.53) (33.34) (37.97)

Figure 3.15: Salinas data, 47th channel

(a) Original (b) Noisy (c) LCNN (d) Ours

(PSNR dB) (35.63) (37.50)

Figure 3.16: Cropped Cuprite data, 122nd channel for hybrid LCNN comparison
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(a) Original (b) Noisy (c) LCNN (d) Ours

(PSNR dB) (31.86) (34.14)

Figure 3.17: Cropped Indian data, 46th channel for hybrid LCNN comparison

(a) Original (b) Noisy (c) LCNN (d) Ours

(PSNR dB) (34.14) (35.03)

Figure 3.18: Cropped Pavia University data, 35th channel for hybrid LCNN comparison

(a) Original (b) Noisy (c) LCNN (d) Ours

(PSNR dB) (33.42) (33.67)

Figure 3.19: Cropped Pavia Center data, 75th channel for hybrid LCNN comparison

(a) Original (b) Noisy (c) LCNN (d) Ours

(PSNR dB) (35.20) (37.59)

Figure 3.20: Cropped Salinas data, 47th channel for hybrid LCNN comparison
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Figures 3.11 to 3.20 show the results for visual qualitative evaluation, where

each of the images shows a single channel. For all data, except for Indian Pines, the

additional magnified regions of interest are shown, where the differences among

resultant images are easily found. On the Cuprite and Pavia Center, the red

rectangle shows that our denoising results are not over-smoothed unlike the others’

results, but there is a significantly closer similarity to the original image than the

other methods. In particular, for VBM3D, which is a more competitive method,

the resulting images are over-smoothed, which leaves a noticeable visual difference.

Meanwhile, the Salinas and Pavia University images show more significant visual

difference. As depicted by the red rectangle, the original image has stripes that can

be recognized easier on our resultant images than on those of the other methods.

For the Indian Pines, the overall image has a distinct difference in appearance

between ours and the compared images. Both of VBM3D and VBM4D produce

images with too smooth areas that results in a salient difference compared to the

original image. In addition, they fail to preserve the straight line features in the

images. Meanwhile, our method still performs better than the others. It is clear

that for perceptual appearance, our resulting image is the most similar to the

original one.

Despite the LCNN improvement, Figure 3.16 to 3.20 show that this hybrid

method is lower in visual quality than ours. After these experiments, we confirm

that the local spectral component decomposition works superiorly in denoising

multi-channel images rather than RGB images.

3.4 Conclusion

A new denoising method based on the spectral line has been proposed for the

remote sensing field. Hyperspectral image denoising using a spectral line vector

field uses the correlation among spectral information in the local region. The vec-

tors are obtained by local spectral component decomposition followed by iterative

filtering steps. Filtering the spectral line component and residual component gives

significant effects in reducing the noise and smoothing the image. Moreover, the

use of local spectral components contributes to achieving better results compared

with the result of the stand-alone conventional method. The experiment demon-

strated that the proposed method successfully achieved competitive performance

compared to other powerful denoising methods. However, the increase in noise

power and the number of channels processed affects the complexity of achieving
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more accurate spectral line vector estimation. Future work may involve solving

this computational complexity.

44



Chapter 4

Local Abundance Regularizer for
Sparse Unmixing

Abstract – Sparse unmixing is widely used for hyperspectral imagery to esti-

mate the optimal fraction (abundance) of materials contained in mixed pixels

(endmembers) of a hyperspectral scene, by considering the abundance sparsity.

This abundance has a unique property, i.e., high spatial correlation in local re-

gions. This is due to the fact that the endmembers existing in the region are

highly correlated. This implies the low-rankness of the abundance in terms of

the endmember. From this prior knowledge, it is expected that considering the

low-rank local abundance to the sparse unmixing problem improves estimation

performance. In this study, we propose an algorithm that exploits the low-rank

local abundance by applying the nuclear norm to the abundance matrix for local

regions of spatial and abundance domains. In our optimization problem, the local

abundance regularizer is collaborated with the L2,1 norm and the total variation

for sparsity and spatial information, respectively. We conducted experiments for

real and simulated hyperspectral data sets assuming with and without the pres-

ence of pure pixels. The experiments showed that our algorithm yields competitive

results and performs better than the conventional algorithms.

Index Terms – Sparse unmixing, hyperspectral, local abundance, nuclear

norm.

4.1 Introduction

4.1.1 Hyperspectral Unmixing

Hyperspectral images come from the need to extract more detailed information

than what multispectral images can provide, which enable pixel-constituent-level

analysis of remote-sensing imagery. Hyperspectral images have better spectral
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resolution than multispectral images due to their large number of narrow and

contiguous spectral bands [63]. However, the detailed information provided by

sensors faces a trade-off in which the sensors capture distinct materials on the

Earth’s surface mixed in one pixel. This is affected by one of the following factors

[43,67,75]. The first factor is due to the low spatial resolution of the sensors; two or

more separate materials occupy the same pixel. The other factor occurs when the

sensors capture some distinct substances that have merged into a homogeneous

mixture on the Earth’s surface. This condition leads to a compelling solution, i.e.,

spectral unmixing.

The procedure of spectral unmixing works by decomposing the measured hy-

perspectral data into a collection of spectral signatures (spectral library) and a

set of corresponding fractions (abundances) that represent the proportion of each

spectral signature contained in the pixels [36, 43, 44, 64]. The spectral signatures

that exist in the mixed pixels are called endmembers. In general, endmembers

correspond to familiar macroscopic objects in a scene, such as water, metal, and

vegetation, as well as constituents of intimate mixtures in microscopic scale.

Unmixing becomes a challenging, ill-posed inverse problem because of model

inaccuracies, observation noise, environmental conditions, endmember variability,

and data set size [10]. In the early research [43], the end-to-end unmixing problem

is a sequence of three consecutive procedures.

1. Dimension reduction: Reduce the dimension of the data in the scene.

This step is optional and is only invoked by some algorithms to reduce the

computational load of subsequent steps.

2. Endmember determination: Estimate the set of distinct spectra (end-

members) that constitute the mixed pixels in the scene.

3. Inversion: Estimate the fractional abundances of each mixed pixel from its

spectrum and the endmember spectra.

Many hyperspectral unmixing models have been investigated to find robust,

stable, tractable, and accurate unmixing algorithms. As one of the results, many

approaches enable the endmember determination and inversion steps implemented

simultaneously. In general, there are three approaches that had been discussed

in [11], i.e., geometrical, statistical, and sparse regression approaches. Geometrical

approaches exploit the fact that linearly mixed vectors are in a simplex set or

in a positive cone. Statistical approaches focus on using parameter estimation
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techniques to determine endmember and abundance parameters. Sparse regression

approaches, which formulate unmixing as a linear sparse regression problem, rely

on the existence of spectral libraries that usually acquired in laboratory. The basic

idea is exploiting a fact that the number of endmembers participating in a mixed

pixel is usually very small compared with the (ever-growing) dimensionality and

availability of spectral libraries. In the development, researchers added contextual

informations on the top of the sparse unmixing problem to guide the endmember

extraction and the abundance estimation steps.

4.1.2 Linear versus nonlinear spectral unmixing

Linear spectral unmixing is the most standard technique for spectral unmixing,

besides the nonlinear one. It is based on linear mixture model (LMM) which is in-

fers a set of endmembers (generally from the hyperspectral image scene), and their

abundance fractions. The LMM assumes that the spectra collected by the sensor

can be expressed in the form of a linear combination of endmembers, weighted

by their corresponding abundances. Because each observed spectral signal is the

result of an actual mixing process, it is expected that the driving abundances sat-

isfy two constraints, i.e., they should be non-negative, and the sum of abundances

for a given pixel should be unity. Although the linear unmixing has practical

advantages, such as ease of implementation and flexibility in different applica-

tions, nonlinear unmixing describes mixed spectra in physical or statistical sense,

by assuming that part of the source radiation is multiply scattered before being

collected at the sensor. The distinction between linear and nonlinear unmixing

has been widely studied in recent years.

Figure 4.1 illustrates the difference between linear and nonlinear model. The

LMM holds when the mixing scale is macroscopic and the incident light interacts

with just one material, as is the case in checkerboard type scenes. In this case,

the mixing occurs within the instrument itself, due to the fact that the resolution

of the instrument is not fine enough. Although the light from the materials is

almost completely separated, it is mixed within the measuring instrument [11].

On the other side, nonlinear mixing usually occurs due to physical interactions

between the light scattered by multiple materials in the scene. These interactions

can be at a classical level or at a microscopic intimate level. Mixing at the clas-

sical level occurs when light is scattered from one or more objects, is reflected off

additional objects, and eventually is captured by the sensor. Microscopic mixing

occurs when two materials are homogeneously mixed. In this case, the interac-
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Figure 4.1: Illustration of linear and nonlinear mixture models in remotely sensed hyperspectral

imaging [4].

tions consist of photons emitted from molecules of one material are absorbed by

molecules of another material, which may in turn emit more photons [11].

In this study, we focus on linear spectral unmixing due to its generality and

simplicity of implementation, not without acknowledging that nonlinear unmixing

may provide better results in terms of spectral characterization in many applica-

tions. In addition, LMM is an acceptable approximation of the light scattering

mechanisms in many real scenarios. Spanning back at least 30 years, LMM be-

comes the basis of most of unmixing models and algorithms.

4.1.3 Sparse regression-based unmixing

The spectral unmixing problem has recently been approached in a semi-supervised

fashion, by assuming that the observed image signatures can be expressed in

the form of linear combinations of a number of pure spectral signatures known

in advance, i.e., spectra collected on the ground by a field spectro-radiometer

(library). This approach can avoid the endmember determination step. Unmixing

then amounts to finding the optimal subset of signatures in a (potentially very

large) spectral library that can best model each mixed pixel in the scene.

Techniques which assume the presence of pure pixels (pixels contained only one

material) in the data have to deal with the fact that the most common situation

is that the hyperspectral image has no pure pixels at all. This situation is due

to spatial resolution issues and the fact that the mixture problem happens at

every scale, even at the intimate mixture level. While endmember determination

techniques that do not assume the presence of pure pixels circumvent this problem,
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the endmember signatures obtained are virtual and often lack physical meaning.

Conversely, unmixing with spectral libraries allows us to avoid these issues

since the library signatures correspond to pure endmember spectra measured on

the field, and thus retaining the physical meaning. Further, unmixing with spec-

tral libraries also allows us to avoid the estimation of the number of endmembers

in the scene, which is also a very challenging step. As a result, sparse unmixing

amounts to finding the optimal subset of signatures in a spectral library that can

best model each mixed pixel in the scene.

In practice, spectral unmixing based on linear model is a combinatorial prob-

lem which calls for efficient linear sparse regression techniques based on sparsity-

inducing regularizers, since the number of endmembers participating in a mixed

pixel is usually very small compared with the ever-growing dimensionality and

availability of spectral libraries. By this approach, it is expected that it is not

necessary to estimate a priori for the number of endmembers in the scene.

4.1.4 Proposed Idea

In this study, we develop a sparse regression-based unmixing algorithm, which is

called joint local abundance sparse unmixing (J-LASU), in which we propose the

local abundance regularizer and implanted it to the sparse unmixing problem us-

ing the nuclear norm for 3D local regions and evaluated the effect. We use the 3D

local block sliding through the three dimensions of the abundance maps and im-

posed the nuclear norm to promote the low-rank structure of the local abundance

cube. The difference with the 3-tensors nuclear norm [33] is that our proposed

scheme takes the local nuclear norm of the third dimension in addition to the

first two dimensions. In other words, the sliding block also moves in a particular

step size along the third dimension. We preserve the use of the total variation

(TV) regularizer for spatial consideration. The proposed algorithm was tested on

simulated data as well as real hyperspectral data and compared with other sparse

unmixing algorithms, i.e., CLSUnSAL, SUnSAL-TV, and ADSpLRU. The major

contribution of this study is imposing our local abundance regularizer to a hybrid

of state-of-the-art unmixing techniques that take into account collaborative spar-

sity and spatial difference. We also apply the proposed J-LASU to several scenes

with and without pure pixels.
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4.1.5 Chapter Structure

The structure of remaining chapters are as follows. Section 4.2 describes some

mathematical preliminaries necessary for this topic. In Section 4.3, we discuss the

problem formulation of hyperspectral unmixing as an introduction to the problem

formulation of our proposed algorithm. In Section 4.4, we describe the proposed

J-LASU algorithm starting with convincing evidence of the proposed concept. In

Section 4.5, we describe the experiment and analysis. In Section 4.6, we discuss

the results and findings. Finally, we conclude the research in Section 4.7.

Variables and notation: Column vectors are represented as boldface lowercase

letters, e.g., y, whereas matrices are represented as boldface uppercase letters,

e.g., Y. The following variables are frequently used in this chapter:

• Y is the hyperspectral data,

• A is the spectral library,

• X is the abundance matrix,

• X̂ is the 3D abundance data,

• m is the number of spectral signatures,

• l is the number of spectral bands,

• n is the number of pixels in X̂,

• nc is the number of columns in X̂,

• nr is the number of rows in X̂,

• B is the number of all local blocks in X̂,

• N is the number of pixels in each local abundance matrix,

• X̂b is the b-th local block,

• Hx̂b is the b-th local abundance matrix.
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4.2 Basic Theory

4.2.1 Convex Optimization

An optimization problem is defined in the form

min f0(x)

s.t. fi(x) ≤ bi, i = 1, . . . ,m.
(4.1)

Here the vector x = (x1, . . . ,xn) is the optimization variable of the problem,

the function f0 : Rn 7→ R is the objective function, the functions fi : Rn 7→
R, i = 1, ...,m, are the constraint functions in an inequality form, and the

constants b1, . . . , bm are the limits, or bounds, for the constraints. A vector x∗ is

called optimal solution of the problem, if it has the smallest objective value among

all vectors that satisfy the constraints: for any z with f1(z) ≤ b1, . . . , fm(z) ≤ bm,

we have f0(z) ≥ f0(x
∗).

Generally, optimization problems are considered into families or classes that

characterized by particular forms of the objective and constraint functions. As

an important example, the optimization problem in Equation (4.1) is called a

linear program if the objective and constraint functions f0, . . . , fm are linear. If

the optimization problem is not linear, it is called a nonlinear program.

A convex optimization problem is one class of optimization problems in which

the objective and constraint functions are convex, which means they satisfy the

inequality

fi(λx + βy) ≤ λfi(x) + βfi(y) (4.2)

for all x,y ∈ Rn and all λ, β ∈ R with λ+ β = 1, λ ≥ 0, β ≥ 0.

4.2.2 ADMM

The Alternating Direction Method of Multipliers (ADMM) is an algorithm for

solving the following convex optimization problem

arg min
x,y

f(x) + g(y) s.t. y = Hx. (4.3)

where x ∈ Rn,y ∈ RnT ,H ∈ Rn×nT , f and g are convex functions. The augmented

Lagrangian for this problem is

L(x,y, z) = f(x) + g(y) + (µ/2)‖Hx− y + z‖22. (4.4)
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where z is a scaled dual variable associated with the constraint, and µ > 0 is a

penalty parameter

In each iteration of ADMM, the procedure performs alternating minimization

of the augmented Lagrangian over x and y. At iteration k, the ADMM algoritm

is carried out with the following steps

x(k+1) = arg min
x

f(x) + (µ/2)‖Hx− y(k) + z(k)‖22, (4.5)

y(k+1) = proxg/µ(Hx(k+1) + z(k)), (4.6)

z(k+1) = z(k) + (Hx(k+1) − y(k+1)), (4.7)

where prox denotes the proximal operator [24,51],

4.2.3 Proximal Operator

The proximal operator is the analytic solution to the approximation problem, and

defined as follows

proxγh(x̄) = arg min
v∈Rn

h(v) +
1

2γ
‖v − x̄‖22, (4.8)

where the uniqueness of the minimizer is guaranteed by the strict convexity of

h( · ) + 1
2γ
‖( · )− x̄‖22.

4.2.4 Sparse Linear Regression

Suppose we have a pixel y ∈ Rl, i.e., a vector response for each of l spectral bands,

and a collection of spectral signatures of materials A = (A1, . . . ,Am) ∈ Rl×m

which is full rank. We want to use a linear model y ≈ Ax, where x ∈ Rm. If

l > m, this represents the classical linear regression problem defined as follows

min
x

‖y −Ax‖2. (4.9)

The solution to this problem is well-defined and easy to find if l > m. However,

in some applications l� m, and thus many of the extracted features A1, . . . ,Am

could be irrelevant. Therefore, it is expected to find a model x with many zero

coefficients, as shown in Figure 4.2. For instance, it might reasonable to suppose
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Figure 4.2: Illustration of linear regression mode y ≈ Ax, with l� m and a sparse x.

that the pixel y can be expressed as a linear combination of the materials’ spec-

tral signatures in A, but we expect that most materials will be unimportant to

this combination, which means that they do not exist in the pixel. Thus, most

components of x will be zero. In other words, x is sparse.

A very simple and intuitive way for incorporating sparsity into the linear prob-

lem simply involves the number of nonzero elements in x as a prior, since the vector

is sparse if there are few nonzeros among the possibe elements in x. Thus, the L0

norm is introduced to promote sparsity and defined as

‖x‖0 = #i : xi 6= 0. (4.10)

Thus if ‖x‖0 � m, x is sparse, and the sparse linear problem is defined as

min
x

‖x‖0 s.t. y = Ax. (4.11)

4.2.5 Nuclear Norm

When a matrix is formed by linear-dependence vectors which are highly correlated,

the matrix is either low rank, or it can be well-approximated by a low-rank matrix.

The low-rank matrix estimation techniques have recently emerged as powerful

estimation tools, which mainly use nuclear norm for promoting low-rankness of a

matrix. The nuclear norm (also known as the trace norm) is defined as the sum

of all singular values of a matrix,
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‖ · ‖∗ : Rnv×nh 7→ R+ : X 7→
r∑
i=1

σi(X), (4.12)

where 0 ≤ r ≤ min(nv, nh) is the rank of a given matrix, and σi denotes the i-th

singular value of the matrix .

As for the proximity operator of the nuclear norm is as follows

proxγ‖ · ‖∗(X) = UXΣγ
XVT

X, (4.13)

where UXΣγ
XVT

X is the singular value decomposition of X; UX ∈ Rnv×nv and

VX ∈ Rnh×nh are unitary matrices, and Σγ
X is the diagonal matrix containing the

singular values shrunk by γ > 0 as its main diagonal entries, i.e., diag(max{σ1X−
γ, 0}, . . . ,max{σrX− γ, 0}), 0, . . . , 0).

4.2.6 Total Variation

Other convex priors are smoothness priors, and the most popular one is the so-

called Total Variation (TV) prior. TV is defined as total magnitude of differences

of neighboring entries of a signal vector, which has frequently been used in image

restoration. Its multi-channel versions, higher-order generalizations, and non-local

extensions have also been studied. One of the multi-channel versions is in the use

for hyperspectral unmixing tasks.

The TV works using a linear gradient operator of the given matrix X ∈ Rn×n.

if u ∈ X, the gradient ∇u is a vector given by

(∇u)i,j = ((∇u)vi,j, (∇u)hi,j), (4.14)

with

(∇u)vi,j =

{
ui+1,j − ui,j if i < n,

0 if i = n,
(4.15)

(∇u)hi,j =

{
ui,j+1 − ui,j if j < n,

0 if j = n,
(4.16)

for i, j = 1, . . . , n.

Then, the TV of u is defined by

TV (u) =
∑

{1≤i,j≤n}

|(∇u)i,j|, (4.17)
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This definition is isotropic and not differentiable, as

|(∇u)i,j| =
√(

(∇u)vi,j
)2

+
(
(∇u)hi,j

)2
. (4.18)

Another variation that is commonly used due to the easiness in minimization

is the anisotropic version, defined as follows

TVaniso(u) =
∑

{1≤i,j≤n}

‖(∇u)i,j‖1 =
∑

{1≤i,j≤n}

(
(∇u)vi,j + (∇u)hi,j

)
. (4.19)

The anisotropic TV is commonly used in unmixing problems due to the prop-

erty of L1 norm. As a regularization, L1 norm produces many coefficients with

zero values or very small values (sparse). This sparse property allows it to be

effectively used along with sparse algorithms, that makes the calculation more

computationally efficient.

4.3 Problem Formulation

4.3.1 Sparse Unmixing

Let Y ∈ Rl×n be the observed hyperspectral data, where l is the number of bands,

and n is the number of pixels. The LMM for a hyperspectral image is based on

the assumption that each pixel y ∈ Rl in any given spectral band is a linear

combination of m spectral signatures in the spectral library A ∈ Rl×m, that is,

y = Ax + e (4.20)

where x ∈ Rm is the abundance vector, and e ∈ Rl is the vector of noise and

model error.

With sparse unmixing, it is assumed that the abundance vector x is sparse

because the number of endmembers contained in a pixel is much lower than the

number of spectral signatures in the library, which implies the vector x contains

many intensities of zero. Figure 4.3 illustrates the LMM and sparse unmixing.

Considering the ground truth, x has a constraint that needs to be imposed to the

sparse unmixing model, i.e., the value of x can never be negative which is called

the abundance nonnegativity constraint (ANC). The sparse unmixing problem

based on the LMM for each mixed pixel can be formulated as

min
x

‖x‖0 s.t. ‖y −Ax‖2 ≤ δ, x ≥ 0 (4.21)
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Figure 4.3: Illustration of hyperspectral image and sparse unmixing for pixel (top) and image

(bottom).

where ‖x‖0 denotes the number of nonzero elements in x ∈ Rm, and δ is the error

tolerance value determined from the noise and model error. The nonconvexity of

the L0 term induces an NP-hard problem (meaning that the problem is combina-

torial and very complex to solve in a straightforward way); however, it has been

proven that a nonconvex optimization problem can be relaxed to a convex one

by replacing L0 with L1 [18,81]. Greedy algorithms, such as the orthogonal basis

pursuit (OMP) [57], and basis pursuit (BP) [21] are two alternative approaches

to compute the sparsest solution. The basis pursuit replaces the L0 norm in (P0)

with the L1 norm. Thus, the problem can be written as

min
x

‖x‖1 s.t. ‖y −Ax‖2 ≤ δ, x ≥ 0 (4.22)

Applying this formula to the whole image, we estimate the abundance matrix

X ∈ Rm×n for all the pixels in the hyperspectral data Y using the respective

Lagrangian function as

min
X

1
2
‖AX−Y‖2F + λ‖X‖1 s.t. X ≥ 0 (4.23)

where ‖ · ‖F denotes the Frobenius norm of a matrix, and λ is the sparsity

regularizer. This problem can be solved through optimization by using alternating

direction method of multipliers (ADMM).
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4.3.2 Spatial Regularization

Despite taking into account sparsity, SUnSAL ignores spatial correlation. In

SUnSAL-TV, the relationship between each pixel vector and its adjacent pixel

vectors is taken into account. The regularizer is defined in [38] as

TV(X) =
∑
{i,j∈κ}

‖xi − xj‖1 (4.24)

which is the anisotropic TV with κ denoting the set of horizontal and vertical

neighbors in X.

Adding the TV regularizer to the problem in Equation (4.23) gives the opti-

mization problem

min
X

1

2
‖AX−Y‖2F + λ‖X‖1 + λTV TV(X) s.t. X ≥ 0. (4.25)

4.4 Proposed Algorithm

4.4.1 Local Abundance Correlation

Hyperspectral data Y ∈ Rl×n have linearity in their spectral [62] and spatial [61]

domains. Qu et al. [61] provided prior knowledge that the high spatial correlation

of the hyperspectral data, implies linearly dependent abundance vectors in the

abundance matrix X ∈ Rm×n. The high correlation also holds among the pixel

members of a local region due to the spatial similarity. In a physical sense, the

pixels in such regions contain the same materials, either in the same or different

fractions. Hence, the abundance matrix of the region can be estimated by the

low-rank property [35,61].

However, the success of sparse regression techniques is affected by the low spar-

sity as well as low correlation between spectral signatures in the library [38]. The

former is represented by the number of endmembers existing in the scene, namely,

the degree of sparsity [37]. The latter can be defined by an indicator representing

the difficulty to accurately solve a linear system equation i.e., mutual coherence.

The mutual coherence is defined as the largest cosine among endmembers in the

library. In the hyperspectral case, the degree of sparsity is often low, but the

mutual coherence is close to one. In fact, higher mutual coherence decreases the

quality of the solution [39].
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Figure 4.4: Illustration of endmember (m) direction in abundance dimension. 3D local block

moves through pixels (n) as well as m direction of abundance maps.

To overcome the high mutual coherence as well as consider the low-rank prop-

erty of the abundance, we exploit the high correlation of library’s spectral sig-

natures by using our LA regularizer. In our experiment with simulated data, we

confirmed the idea by observing the linearity of the data distribution in abundance

domain by taking the local maximum singular value of the true abundance ma-

trix for each local block (a block refers to the three dimensions (3D), in which the

third dimension has a local coverage in the endmember direction). We found that

there is one value that dominates others (the ratio is close to one) in each local

block. On the other hand, the value will be less dominant as the region becomes

the whole matrix (nonlocal). This implies that the linearity in abundance domain

is satisfied for the abundance matrix with the local point of view. Thus, we in-

troduce our LA regularizer using the nuclear norm for the local blocks. Instead

of the image, our algorithm uses the nuclear norm to the abundance matrix that

constitutes the image. Another difference is that our local block slides through all

dimensions, i.e., the two spatial dimensions and the endmember direction in the

abundance dimension. Figure 4.4 illustrates the endmember direction. The block

moves within the abundance maps of the 3D abundance cube.

In addition, we guarantee high correlation by selecting endmembers from the

United States Geological Survey (USGS) library to form the spectral library A

based on the SA. The USGS library is a collection of the measured spectral signa-

tures of hundreds of materials and used as references for material identification in

hyperspectral images. We can find the most similar signatures to each endmem-
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ber of the simulated data by calculating the SA, besides the mutual coherence.

This parameter represents the absolute value of spectral correlation [60]. The

value ranges between 0–90 degrees. The lower the SA value, the more similar the

compared signature vectors are. In the simulated-data experiment, we adjust the

SA as one of our parameter settings.

4.4.2 Collaborative Sparsity Regularization

A hyperspectral image always contains a small number of endmembers. This

means that, if the fractional abundances of the spectral library signatures are

collected in a matrix with the number of columns equal to the number of pixels,

there should be only a few lines with nonzero entries. In other words, the nonzero

abundance lines should appear in a few distinct lines, which implies sparsity along

the pixels of a hyperspectral image in terms of the sub-pixel information that they

convey. Figure 4.5 illustrates this sparsity.

The theoretical background of this regularizer is supported by the results

shown in [30], in which the authors exploit exactly the L2,1 norm optimization

problem for recovering jointly sparse multichannel signals from incomplete mea-

surements. A valuable theoretical result of [30] is the proof of the superiority that

multichannel sparse recovery has over the single channel methods, as the proba-

bility of recovery failure decays exponentially in the number of channels. In other

words, sparse methods have more chances to succeed when the number of acqui-

sition channels increases, which is extremely important for the sparse unmixing

applications, as the number of spectral bands is often in the order of hundreds or

even thousands.

In practice, the abundance matrix X has only a few endmembers (rows) with

nonzero entries. Simultaneously, all the column entries of X share the same active

set of endmembers. In other words, X is sparse among the rows while dense among

the columns. To implement this prior, L2,1 norm is used instead of L1. It takes

the sum of the L2 norm of the abundance entries to promote the collaborative

sparsity of the abundance matrix.

‖X‖2,1 =
m∑
i=1

‖xi‖2 (4.26)

where xi represents the i-th row of X.
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Figure 4.5: Graphical illustration of the performance of the collaborative regularizer. Active

members of the considered spectral library A are represented in green color, and non-active

members of the considered spectral library A are represented in white color.

4.4.3 Local Abundance Regularizer

The abundance matrix X is transformed to a cube to describe our local block

formulation. First, let X̂ ∈ Rnr×nc×m be the abundance data in 3D form, where

m is the number of abundance matrices of the endmembers, nc and nr are the

numbers of columns and rows, respectively, that satisfy n = nc × nr, where n is

the number of pixels in each abundance matrix. Then, for each abundance matrix

X̂i ∈ Rnr×nc (i = 1, . . . ,m), stacking the column on top of one another gives

x̂i ∈ Rn, the vectorized form of the matrix.

In local regions, let X̂b ∈ Rnb×nb×mb denote the b-th local block, where b =

1, . . . , B. The B is the number of all local blocks in X̂. This local region formation

is not as easily as described by using a sliding window on the abundance matrix

X. A sliding window on X will give different formation compared to our proposed

3D local block, as illustrated in Figure 4.6. In the example, the number of pixels

is 12 (3 rows and 4 columns) and the number of endmembers is M . The size of

the local block is [2 2 2]. From the figure, we can see that the entries of the sliding

window in X and the proposed local block in cube version are different.

Then, for each abundance of each local block X̂j,b ∈ Rnb×nb (j = 1, . . . ,mb), we

vectorize it into x̂j,b ∈ RN , whereN is the number of pixels in each local abundance

matrix that satisfies N = nb×nb , and j is the index of local abundance matrices.

Figure 4.7 illustrates the procedure. With this in mind, we introduce the local
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Figure 4.6: The difference between sliding window on an abundance matrix and the proposed

local block

abundance matrix w. r. t the b-th block

Hx̂b = (x̂1,b, . . . , x̂mb,b) ∈ RN×mb . (4.27)

Finally, the function of our proposed LA regularization is defined as follows

‖X‖LA∗ =
B∑
b=1

‖Hx̂b‖∗ (4.28)

where ‖ · ‖∗ denotes the nuclear norm, X 7→
rank(X)∑
i=1

σi(X), with σi denotes the

i-th singular value.

A fixed number of layers of the local block, mb, is used even when the number

of endmembers is larger than mb, e.g., five. In this case, the first five endmembers

are considered. When the number of endmembers is larger than five, our algo-

rithm still considers all of the endmembers by shifting the local block in the third

dimension (endmember direction) for each local spatial region. So, all endmem-

bers of the spectral library will be considered. When using a large library, it is

probable that none of them is present in the local block. In this case, the rank of

local abundance matrix Hx̂b is zero, and the low-rankness is hold.

If a local block has a linearity, then the corresponding local abundance vectors

become almost linearly dependent, and vice versa. This means that the singular
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Figure 4.7: Process of vectorizing and arranging local abundance matrix of hyperspectral image.

values other than the first one of any local abundance matrix are expected to be

small, that correspond to the non-active set of endmembers in the local region.

Hence, by suppressing nuclear norm to the local abundance matrices, we can

promote the linearity in the abundance domain.

It is possible that some of the local block abundance matrices are also of full

rank. In this sense, it is not effective to penalize their nuclear norm. We avoid

this condition by finding the optimum block size. We observed the portion of

full-rank block for the simulated data sets. For the DS data set, the portion of

full-rank block is 0. For the FR1-5 data sets, the portions are 0.0067, 0.0072,

0.0079, 0.0013, 0.0012, respectively. We can say that the full-rank case is very

rare in most data.

4.4.4 J-LASU

We formulate the new problem by adding the LA term with Equation (4.26) and

the additional TV term. Thus, the problem of the proposed J-LASU algorithm

in a convex form becomes

min g(X) = 1
2
‖AX−Y‖2F + λ‖X‖2,1 + γ‖X‖TV + ρ‖X‖LA∗ s.t. X ≥ 0

(4.29)

where λ, γ, and ρ are the regularization parameter for the collaborative sparsity,

TV, and LA term, respectively. The L1,2 norm is applied to the abundance matrix

X which is low rank. The nuclear norm is applied to the local abundance matrix
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Hx̂b , which is different with X. For the TV term, we use the anisotropic TV,

which is used in SUnSAL-TV [38], defined as

‖X‖TV = ‖DX‖1 (4.30)

where D = [Dh; Dv], Dh : Rm×n → Rm×n and Dv : Rm×n → Rm×n, are horizontal

and vertical differential operators, respectively. The DhX computes the differences

between the components of X and the corresponding right-side adjacent pixels

with cyclic boundary assumption, and the same way for DvX, which corresponds

to the differences with the up-side adjacent pixels [38].

We estimate the abundance matrix X by solving problem in Equation (4.29)

by using ADMM. The cost function in Equation (4.29) written in ADMM form

becomes

f1(X) + f2(V) s.t. V = GX (4.31)

where

f1(X) =
1

2
‖AX−Y‖2F (4.32)

f2(V) = λ‖V1‖2,1 + γ‖V2‖1 + ρ‖V3‖LA + ιR+(V4) (4.33)

V =


V1

V2

V3

V4

 , and G =


I

D

I

I

 . (4.34)

Here, the ιR+ term projects the solution onto the nonnegative orthant (ιR+(x) =

0 if x ≥ 0 and ιR+(x) = +∞ otherwise), and I is an identity matrix with a

proportional size. The constraint in Equation (4.31) satisfies the relations

V1 = X; V2 = DX; V3 = X; V4 = X. (4.35)

Using a positive constant µ and the Lagrange multipliers B/µ corresponding

to the constraint V = GX, the cost function is minimized using ADMM. Then,

the steps for the proposed algorithm are as follows

X(k+1) = arg min
X

f1(X) +
µ

2
‖GX−V(k) −B(k)‖2F (4.36)

V(k+1) = arg min
V

f2(V) +
µ

2
‖GX(k) −V −B(k)‖22 (4.37)
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B(k+1) = B(k) − (GX(k+1) −V(k+1)). (4.38)

To find the solution for X of the augmented Lagrangian formula, we calculate

the solution of Equation (4.36) by taking the partial derivative as follows:

X(k+1) = arg min
X

1
2
‖AX−Y‖2F + µ

2
‖GX−V(k) −B(k)‖2F

=
(
ATA + µGTG

)−1 (
ATY + µGT (V(k) + B(k))

) (4.39)

The detailed steps for computing the values of variables V1,V2,V3, and V4

for each iteration are written in general form of the proximal operator.

V
(k+1)
1 = proxλ

µ
‖ · ‖2,1(R1)

= arg min
V1

λ‖V1‖2,1 + µ
2
‖V1 −R1‖22

(4.40)

V
(k+1)
2 = prox γ

µ
‖ · ‖1(R2)

= arg min
V2

γ‖V2‖1 + µ
2
‖V2 −R2‖22

(4.41)

V
(k+1)
3 = prox ρ

µ
‖ · ‖LA∗

(R3)

= arg min
V3

ρ‖V3‖LA∗ + µ
2
‖V3 −R3‖22

(4.42)

V
(k+1)
4 = prox 1

µ
(ιR+)(R4)

= arg min
V4

ιR+(V4) + µ
2
‖V4 −R4‖22

(4.43)

where R1 = X(k) − B
(k)
1 , R2 = DX(k) − B

(k)
2 , R3 = X(k) − B

(k)
3 , and R4 =

X(k) −B
(k)
4 , and B = [B1; B2; B3; B4].

For V
(k+1)
1 , since the L2,1 norm is not differentiable, the solution is obtained

by the shrinkage for the group lasso as follows:

v
(k+1)
1(i) =

{
r1(i) − λ

µ

r1(i)
‖r1(i)‖2

if ‖r1(i)‖2 > λ
µ

0 otherwise
(4.44)

where v
(k+1)
1(i) and r1(i) denote the i-row of V

(k+1)
1 and R1, respectively. This oper-

ation is denoted as group− lasso( · , τ), where τ is the threshold.
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The TV term in Equation (4.41) is solved by soft-thresholding on each element

of V
(k+1)
2 .

v
(k+1)
2(i,j) =


r2(i,j) − γ

µ
if r2(i,j) >

γ
µ

r2(i,j) + γ
µ

if r2(i,j) < − γ
µ

0 if − γ
µ
≤ r2(i,j) ≤ γ

µ

(4.45)

where v
(k+1)
2(i,j) and r2(i,j) denote the (i, j)-element of V

(k+1)
2 and R2, respectively.

This operation is denoted as soft( · , τ), where τ is the threshold.

The solution of V
(k+1)
3 in Equation (4.42) is acquired by constructing the LA

matrices, applying singular value shrinkage to each matrix, and reconstructing the

output abundance matrix, which is denoted as

V
(k+1)
3 = shr(X(k) −B

(k)
3 , ρ

µ
) (4.46)

where shr( · , τ) denotes the singular value shrinkage (y 7→ diag(max{SV D(y) −
τ, 0})) of the LA matrices Hx̂b , where the singular value decomposition SV D( · )
produces a vector containing the singular values in decreasing order and τ is the

threshold.

Let v
(k+1)
4(i,j) denotes the (i, j)-element of V

(k+1)
4 , finally, the solution of V

(k+1)
4 is

obtained by

v
(k+1)
4(i,j) = max(r4(i,j), 0) (4.47)

where r4(i,j) denotes the (i, j)-element of R4.

The whole procedure of ADMM is summarized in Algorithm 1.

4.5 Experiment

We test the proposed algorithm on several simulated data sets for three signal-

to-noise ratio (SNR) levels, i.e., 10, 20, and 30 dB, and two real data sets. We

evaluate the results by conducting a fair comparison with the CLSUnSAL [39] and

SunSAL-TV [38]. State-of-the-art low-rank algorithm is also compared, which is

sparse and low-rank unmixing by using ADMM (ADSpLRU) [35].

4.5.1 Simulated Data Sets

To simulate the condition of hyperspectral data with and without the presence of

pure pixels, we use two types of data distribution for data generation. Both use
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Algorithm 1: ADMM in pseudocode for solving problem in Equation (4.29)

1 Initialization: set k = 0,V0 = 0,B0 = 0, choose µ > 0, λ, γ, ρ;

2 while the stopping criterion is not satisfied do

3 X(k+1) ←
(
ATA + µGTG

)−1 (
ATY + µGT (V(k) + B(k))

)
;

4 V
(k+1)
1 ← group− lasso(X(k) −B

(k)
1 , λ/µ) ;

5 V
(k+1)
2 ← soft(DX(k) −B

(k)
2 , γ/µ) ;

6 V
(k+1)
3 ← shr(X(k) −B

(k)
3 , ρ/µ) ;

7 V
(k+1)
4 ← max(X(k) −B

(k)
4 , 0) ;

8 B
(k+1)
1 ← B

(k)
1 −X(k+1) + V

(k+1)
1 ;

9 B
(k+1)
2 ← B

(k)
2 −DX(k+1) + V

(k+1)
2 ;

10 B
(k+1)
3 ← B

(k)
3 −X(k+1) + V

(k+1)
3 ;

11 B
(k+1)
4 ← B

(k)
4 −X(k+1) + V

(k+1)
4 ;

12 Update iteration: k ← k + 1 ;

13 end

the same library generated from 240 types of minerals selected randomly from the

splib06 USGS library [5], which consists of 224 spectral bands ranging between

0.4–2.5 µm. The mutual coherence among the spectral signatures is very close

to one, but we set the SA to be larger than 4.4 to make the sparse regression

problem easier.

The first data set, DS, is a representation of the data with pure pixels and

adopted from that of Iordache et al. [38] consisting of 224 bands for 75 × 75 pixels.

The data generation follows the LMM with the abundance sum-to-one constraint

imposed on each pixel. Five spectral signatures are randomly selected from the

library as the endmembers and distributed spatially in the form of distinct square

regions. In some pixels, the endmembers stay pure and in others they are mixed

with two until there are five endmembers. In Figure 4.8, the red squares in each

abundance map represent 100% intensity which means the pure pixel regions of

each endmember. The background consists of mixed pixels with randomly fixed

fractional abundance values of 0.1149, 0.0741, 0.2003, 0.2055, and 0.4051 for the

five endmembers.

To demonstrate the proposed algorithm under the condition without the pres-

ence of pure pixels, the distribution with a distinct spatial pattern and mixture

was selected. We use the fractal database (FR) [60] consisting of five data sets,
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(a) (b) (c) (d) (e)
Figure 4.8: True abundance matrix of simulated data set 1 (DS ). (a) Endmember 1. (b)

Endmember 2. (c) Endmember 3. (d) Endmember 4. (e) Endmember 5.

(a) (b) (c) (d) (e)
Figure 4.9: Fractal data sets represented in pseudocolor. (a) FR1. (b) FR2. (c) FR3. (d) FR4.

(e) FR5.

namely FR1, FR2, FR3, FR4, and FR5. Each is composed of 100 × 100 pixels

with 224 spectral bands for each pixel and contains no completely pure pixels that

are close to the ground-truth characteristic in which completely pure pixels are

rarely found. The distribution is generated such that pixels near the edges of re-

gions are more highly mixed than those in the center of the regions. These center

pixels have a purity index between 0.95–0.99, directly proportional to the broad-

ness of the regions. In this experiment, we set the number of endmembers to 9.

Figure 4.9 shows FR1, FR2, FR3, FR4, and FR5 represented in pseudocolor.

4.5.2 Real Data Sets

For the real-data experiment, we use two real data from different sensors. The

first hyperspectral scene is the widely used data set of Cuprite mining district,

Nevada in 1997 [1]. We use a subscene with the size of 150 × 130 pixels whose area

is shown in Figure 4.10a. The data are composed of 224 spectral bands with 3.7 m

spatial resolution from the AVIRIS sensor. Prior to analysis, several bands were

removed due to the low SNR; thus, remaining 188 bands. In this experiment, we

use the USGS library of 498 spectral signatures as the standard spectral library
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(a) (b)
Figure 4.10: (a) Cuprite data generated in pseudocolor. Black rectangle shows area of our

experiment. (b) USGS mineral distribution map of Cuprite mining district in Nevada [2].

for the data, with the corresponding bands removed. Figure 4.10b shows the

USGS mineral distribution map of the Cuprite area [2]. From the figure, the

area of interest contains at least three types of minerals: alunite, chalcedony, and

kaolinite. The mineral map was produced using Tricorder 3.3 software in 1995,

while the AVIRIS Cuprite data were collected in 1997. Hence, in our experiment,

the mineral map was used only for visual qualitative evaluation, compared with

the abundance maps of different sparse unmixing algorithms.

The second hyperspectral scene is Urban data captured by the HYDICE sensor

over an area located at Copperas Cove near Fort Hood, TX, U.S., in October 1995.

It consists of 307 × 307 pixels with 2 m of the pixel resolution. The wavelengths

range from 0.4 to 2.5 µm divided into 210 spectral bands. After some bands

with low SNRs due to dense water vapor and atmospheric effects are discarded,

it remains 162 bands. We use a subscene with the size of 100 × 100 pixels. Figure

4.11a shows the subscene used in the experiment. The ground truth of the Urban

data set is not available, however, we use the reference abundance maps obtained

from [3]. The maps are achieved via the method provided in [41,42,84] and consist
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(a) (b)
Figure 4.11: (a) A subscene of Urban data used in our experiment, generated in pseudocolor.

(b) Spectral signatures of the endmembers [82–84], x -axis and y-axis represent the band number

and reflectance unit (0–1), respectively.

of four endmembers, i.e., asphalt, grass, tree, and roof. Figure 4.11b shows the

spectral signatures of the four endmembers.

4.5.3 Parameters Setting and Evaluation Metrics

In the simulated-data experiment, to build spectral library A, the spectral sig-

natures in the USGS spectral library were selected and sorted such that the SAs

between the spectral signatures were not less than 4.4 degrees in increasing order.

The parameter settings of J-LASU are for the collaborative sparsity (λ), TV (γ),

and LA nuclear norm (ρ) regularizer. For the compared algorithms, λSP is the

sparsity term for CLSUnSAL, SUnSAL-TV, and ADSpLRU [35]. For SUnSAL-

TV, the TV term is controlled by λTV . The low-rank regularizer parameter is

denoted as λLR for ADSpLRU. These parameters are adjusted for every data set

under different SNR levels. However, we use the same parameter settings for the

five fractal data sets since the characteristics of the scenes tend to be similar.

Table 4.1 summarizes these settings. The values of λLR were the optimal ones

after the experiment for some recommended values. For the LA regularization,

the block size is another parameter to be set to control the coverage of adjacent

pixels in the spatial and the endmember directions. After several trials in this

experiment, the optimum size was found to be [5 5 5] with no overlap.

We evaluate the performance of the algorithms using root mean square error

(RMSE) [60, 85] and signal-to-reconstruction error (SRE) [37]. The RMSE mea-

sures the error between the original and reconstructed abundance matrices. The

lower the RMSE, the more accurate the estimation is. The RMSE formula for the
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Table 4.1: Parameter Settings

Data SNR
CLSUnSAL SUnSAL−TV ADSpLRU J− LASU

λSP λSP λTV λSP λLR λ γ ρ

DS

10 dB 1e+1 1e-1 1e-1 1e+1 5e+0 5e-1 5e-1 5e-1

20 dB 1e+0 5e-4 5e-2 1e+1 1e+0 25e-2 5e-2 3e-1

30 dB 1e+0 5e-4 1e-2 1e+0 1e-1 5e-2 1e-2 8e-2

FR

10 dB 1e+1 5e-2 1e-1 1e+1 5e+0 5e-1 1e-1 25e-2

20 dB 1e+0 5e-3 5e-2 1e+1 3e+0 25e-2 1e-2 1e-1

30 dB 1e+0 5e-3 25e-3 1e+1 1e-2 5e-2 5e-3 5e-2

Cuprite - 5e-3 5e-4 1e-2 1e+1 1e+0 1e-2 5e-4 1e-3

Urban - 1e-4 1e-4 1e-4 1e-2 1e-2 1e-4 1e-4 1e-4

i-th endmember is defined as

RMSEi =

√√√√ 1

n

n∑
h=1

(Xi,h − X̄i,h)2, (4.48)

where n, X and X̄ represent the number of pixels, true abundance matrices, and

estimated abundance matrices, respectively. Then, we compute the mean value

of all endmembers’ RMSEs.

The SRE represents the ratio between the reconstructed abundance matrix

and error, and is defined as

SRE = 10 log10

(
‖X‖2F/‖X− X̄‖F2

)
. (4.49)

For the simulated data, the original abundance matrix was generated for each

data set. We compare the visual appearance among the maps of the estimated

abundance matrix in addition to RMSE and SRE comparison. As for the first real

data set, Cuprite, the comparison was among the estimated abundance maps of the

sparse unmixing algorithms and the mineral map of each expected endmembers.

For the second real data set, Urban, RMSE and SRE of each method are calculated

with the ground truth abundance maps as the reference value.

4.5.4 Simulated-Data Experiment

Tables 4.2 and 4.3 show the RMSE and SRE values, respectively, of estimated

abundances from the compared algorithms. The proposed J-LASU algorithm

70



LOCAL ABUNDANCE REGULARIZER FOR SPARSE UNMIXING 4.5 Experiment

Table 4.2: RMSE Comparison Result

Data SNR CLSUnSAL SUnSAL−TV ADSpLRU J− LASU

DS

10 0.0084 0.0078 0.0097 0.0035

20 0.0102 0.0046 0.0053 0.0013

30 0.0039 0.0023 0.0038 0.0008

FR1

10 0.0130 0.0119 0.0140 0.0103

20 0.0129 0.0087 0.0107 0.0075

30 0.0062 0.0068 0.0073 0.0050

FR2

10 0.0140 0.0119 0.0149 0.0104

20 0.0138 0.0083 0.0115 0.0076

30 0.0062 0.0061 0.0066 0.0052

FR3

10 0.0136 0.0118 0.0130 0.0099

20 0.0128 0.0077 0.0107 0.0069

30 0.0056 0.0058 0.0057 0.0044

FR4

10 0.0123 0.0120 0.0135 0.0103

20 0.0126 0.0089 0.0090 0.0074

30 0.0057 0.0075 0.0058 0.0049

FR5

10 0.0118 0.0112 0.0139 0.0092

20 0.0119 0.0080 0.0106 0.0065

30 0.0049 0.0062 0.0061 0.0043

achieved better RMSE for all the simulated data. For the same level of SNR, J-

LASU performed better than CLSUnSAL and SUnSAL-TV as well as ADSpLRU.

The improvement also can be clearly seen in the DS data set from Figure 4.12. J-

LASU preserved the square regions better than the others. Compared with the TV

results, difference can be recognized in the small square regions in which J-LASU

reconstructed the squares better. For the FR data sets, visually, the ADSpLRU

abundance maps showed the most similar intensity with the corresponding true

abundance maps. However, J-LASU is superior in preserving the gradation of in-

tensity from edge to center of an abundance region, which is the drawback of the

ADSpLRU. Compared with SUnSAL-TV, J-LASU was more accurate in deter-

mining whether an abundance is an outlier or just a low-intensity edge abundance.

In addition, SUnSAL-TV produced stronger smoothing effects than J-LASU. In

this case, J-LASU results are more similar with the true abundance map, which

can easily be compared in the FR2 data set.
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Figure 4.12: Estimated abundance maps for simulated data sets DS for SNR 30 dB using

CLSUnSAL, SUnSAL-TV, ADSpLRU, and J-LASU (a–d, respectively) compared to the true

abundance (e).
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Figure 4.13: Estimated abundance maps for simulated data sets FR1 for SNR 30 dB using

CLSUnSAL, SUnSAL-TV, ADSpLRU, and J-LASU (a–d, respectively) compared to the true

abundance (e).
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Figure 4.14: Estimated abundance maps for simulated data sets FR2 for SNR 30 dB using

CLSUnSAL, SUnSAL-TV, ADSpLRU, and J-LASU (a–d, respectively) compared to the true

abundance (e).
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Figure 4.15: Estimated abundance maps for simulated data sets FR3 for SNR 30 dB using

CLSUnSAL, SUnSAL-TV, ADSpLRU, and J-LASU (a–d, respectively) compared to the true

abundance (e).
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Figure 4.16: Estimated abundance maps for simulated data sets FR4 for SNR 30 dB using

CLSUnSAL, SUnSAL-TV, ADSpLRU, and J-LASU (a–d, respectively) compared to the true

abundance (e).
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Figure 4.17: Estimated abundance maps for simulated data sets FR5 for SNR 30 dB using

CLSUnSAL, SUnSAL-TV, ADSpLRU, and J-LASU (a–d, respectively) compared to the true

abundance (e).
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Table 4.3: SRE Comparison Result

Data SNR CLSUnSAL SUnSAL−TV ADSpLRU J− LASU

DS

10 2.5467 5.1021 0.3110 7.2571

20 2.1617 6.3470 4.5515 15.2631

30 6.3299 10.5770 6.1799 20.0581

FR1

10 0.6435 2.018 0.851 2.3625

20 1.3116 3.5071 2.1257 4.2158

30 4.2204 4.8625 4.0937 6.0185

FR2

10 0.3457 2.2395 0.2493 2.4491

20 1.1915 3.8690 1.0974 4.3822

30 4.4628 5.604 4.5908 6.3273

FR3

10 1.6928 4.0113 2.1009 4.3074

20 3.1706 5.8611 2.3815 6.5586

30 6.8354 6.9782 7.0605 8.7567

FR4

10 0.3417 1.3213 0.2092 1.6307

20 1.0942 2.5735 0.3275 3.5269

30 4.1734 3.263 3.5545 5.4870

FR5

10 1.005 2.4054 0.2591 3.0209

20 1.5711 4.1026 1.228 5.4771

30 6.3324 5.6279 6.0702 7.7098

4.5.5 Real-Data Experiment

The visual comparisons among the five sparse unmixing algorithms and the min-

eral maps for the Cuprite data can be observed in Figure 4.18. The images in the

first column show the comparison for alunite abundance maps. Among the results

of the compared algorithms, The proposed J-LASU produced the map that was

the most similar to the mineral map, with less outliers found in the lower-left side

of the map. The same superiority was also found among the chalcedony and kaoli-

nite abundance maps in the second and third columns, respectively. Compared

to SUnSAL-TV, J-LASU had less outliers or lower intensity of outliers, most of

which were found on the left-side region of the maps.

It should be noted that the estimated abundance maps of any sparse unmix-

ing algorithm are not exactly the same as the mineral maps generated from the

Tricorder software in terms of intensity. The software produced the pixel-level

classification maps, while the sparse unmixing algorithms executed subpixel-level

classification. However, the comparison of outliers in this thesis refers to the

abundances that no longer exist in the mineral map. Overall, J-LASU estimated
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Table 4.4: RMSE and SRE Comparison Result for Urban data

Algorithms CLSUnSAL SUnSAL−TV ADSpLRU J− LASU

RMSE 0.2135 0.2003 0.2077 0.1948

SRE 4.6831 5.4738 5.0805 5.8719

abundance maps had smooth gradation of intensity from the edge of a detected

region to the center, and removed tiny regions that were found in the other algo-

rithms’ map, which seems to be the outliers in J-LASU algorithm.

For the Urban data, Figure 4.19 shows the ground truth and abundance maps

of the four endmembers estimated by the compared algorithms. J-LASU algo-

rithm resulted in the most similar maps to the ground truth, especially for the

asphalt abundance map which is easier to be compared with those of the other

algorithms. The quantitative comparisons also show that J-LASU yielded the

best performance, with the highest SRE and lowest RMSE, as shown in Table

4.4. Compare to the simulated data, the Urban data experienced relatively high

RMSEs for all compared algorithms. This is due to the fact that the ground

truth abudance maps used for the Urban data are not achieved from a ground

measurement, but from a method in which error possibly exists in term of method

accuration.

4.6 Discussion

4.6.1 Sensitivity Test

We evaluate the performance of the proposed J-LASU algorithm when λ, γ, and

ρ were not set to the optimal values. In the experiment, when a parameter was

adjusted from 0 to 10, the other parameters were set to their optimal values.

When the parameter increases from 0 to the optimal value, the RMSEs decrease

and the SREs increase gradually. When it reaches a higher value, the results

worsen. Hence, we can conclude that each parameter influences the performance

of J-LASU.

To clearly evaluate the contribution of the LA regularizer, we conduct an

experiment of our optimization problem with ρ = 0, which means no contribution

of the LA regularizer. Figure 4.20 represent the RMSE of this condition at the

three levels of SNR compared to those of J-LASU, where ρ > 0. For each simulated

data set, other parameters were set to the optimum values. For all data, it was
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observed that when ρ = 0, the RMSE was higher than the condition when the LA

regularizer was used. In other words, adding our LA regularizer with an optimal

regularization parameter will contribute improvement in RMSE.

We found that improvement in visual quality corresponds to the additional low-

rank regularization. Figure 4.21 shows visual improvement due to the abundance

regularizer. The abundance maps in the figure belong to endmember 5 of the DS

data set and endmember 7 of the FR 2 data set. For the FR abundance maps,

one can see that after applying our LA regularizer with an optimal ρ, the active

abundances have higher intensities. The active abundances in the left-edge of the

map and around the speckles clearly appear, although in lower intensities than in

the true abundance map. For the DS data set, when ρ is set to the optimal value,

the small squares are preserved better than when ρ = 0.
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Figure 4.18: Estimated abundance maps of Cuprite data subscene for endmember alunite, chal-

cedony, and kaolinite (column 1–3) using CLSUnSAL, SUnSAL-TV, ADSpLRU and J-LASU

(row b–e). First row (a) shows classification maps of endmembers from USGS Tetracorder.
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Figure 4.19: Estimated abundance maps of Urban data subscene for endmember asphalt, grass,

tree, and roof (column 1–4) using CLSUnSAL, SUnSAL-TV, ADSpLRU and J-LASU (row

b–e). First row (a) shows the ground truth abundance maps.
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Figure 4.20: Effect of the LA regularizer represented by improvement in RMSE when ρ > 0.
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Figure 4.21: Effect of LA regularizer represented by improvement in RMSE when ρ > 0 for (a)

DS data set and (b) FR 2 data set. (a-1) and (b-1) Before, (a-2) and (b-2) after, (a-3) and

(b-3) true abundance.
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Figure 4.22: RMSE and SRE in relation to block size.

4.6.2 Effect of Block Size

The coverage of the local region affects the optimization results. In this region,

the highly correlated abundance of the endmembers is taken into account by the

local abundance nuclear norm. We conduct experiments to find the optimum size

of the sliding block. We also observe the effect of the block size. Figure 4.22

shows the RMSE and SRE when the block size was adjusted in the DS data set.

From the curves, we could determine that the radius of spatial similarity in the

abundance map affects the optimum size of the sliding block. The distribution

of spatial similarity in the DS data set, as shown in Figure 4.12, has a distinct

pattern in which every 5 × 5 pixel has the same abundance value, giving the

optimum block size in turn. However, the correlation does not hold for the data

in which the spatial similarity is not represented in a square region, e.g., the FR

and Cuprite data sets. In this circumstance, some trials were conducted prior

to the experiment. After the trials, we found that the optimum size is 5 pixels.

Hence, we select [5 5 5] as the optimum block size for all data.
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Table 4.5: Comparison of running times for DS -data experiment

Algorithms CLSUnSAL SUnSAL−TV ADSpLRU J− LASU

Time/iteration (s) 0.92 0.54 0.24 2.77

4.6.3 Computational Complexity

The running-time comparison among the algorithms is summarized in Table 4.5.

The experiment was conducted for the DS simulated data, which has 75 × 75

pixels, 224 bands, and 240 spectral signatures in the library. The algorithms ran

on a desktop computer with 3.50-GHz Intel Core i5 processor and 8 GB of RAM.

From the table, J-LASU was the slowest due to its high computational complexity.

For the complexity analysis, recall that n, m, N , and mb are the number

of pixels, spectral signatures in the library, pixels in each LA band, and local

endmembers, respectively. For each iteration of J-LASU, the computation of X

and the SVD step in the computation of V3 incur the most cost. The complexity

of X computation is due to the use of conjugate gradient solver, which costs O(m)

per iteration. The conjugate gradient is a popular iterative technique for solving

the system of linear equation Ax = b, where the matrix A must be symmetric

possitive definite (SPD), large and sparse. The SVD step costs O(m2
bN); however,

this step is repeated as many times as the number of blocks (B) due to the sliding

of the local block. Since B is calculated by mn/mbN , the total cost of V3 is

O(mbmn), which is more complex than the computation of X. Hence, the overall

complexity costs O(mbmn).

4.7 Conclusions

We propose the local abundance regularizer algorithm for the sparse unmixing

problem to improve the accuracy of abundance estimation. By imposing the

term to state-of-the-art unmixing algorithms, our algorithm incorporates both

spatial and abundance correlation by using the low-rankness of the abundance.

We implement the nuclear norm to the local abundance matrix, which defines the

local region not only in the spatial, but also in the abundance dimension. The

algorithm was run at certain SNR levels for several simulated data sets, which

represent the conditions with and without pure pixels, and for two real data

sets. The experimental results indicate that our proposed algorithm performs

better than SUnSAL-TV and yields better results than the other state-of-the-art
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algorithms. Relevant future research will be concerned with exploitation of the

low-rankness of abundance for overlapping local regions.
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Chapter 5

General Conclusions

In this work, we studied color-line property for possible multi-channel image pro-

cessing tasks. As a useful feature to represent linearity of the image channels,

color line has been exploited in several tasks in image processing field. For multi-

channel images that consist of more than three channels, e.g., multispectral and

hyperspectral images, we have shown that the color line can be adopted in which

the linearity is formed from the intensities of adjacent spectral bands, thus we

introduced the term spectral line.

In this thesis, we have presented the spectral line application for two hyper-

spectral image tasks, which are denoising and sparse unmixing. For denoising,

we introduced a method based on our proposed local spectral component decom-

position, in which the spectral line is extracted by this decomposition scheme,

and followed by iterative filtering steps to recover the line. The work successfully

demonstrated that the use of spectral line contributes to achieve better results

compared with the result of the stand-alone conventional method. Another ben-

efit of our method is that by the virtue of our decomposition scheme, it enables

the denoising process only conducted for two extracted components, which are

grayscale images, regardless of the number of the input channels.

As for our work in hyperspectral unmixing, the spectral-line property was ex-

ploited in term of the low-rankness of local abundance matrix, by applying the

nuclear norm to the matrix. We introduced the local block that encompasses both

spatial and abundance domains, that differs from the widely-used local window for

2D abundance matrix. We conducted experiments for real and simulated hyper-

spectral data sets assuming two conditions, i.e., with and without the presence of

pure pixels. Our method is proved to be more accurate and exhibits the potential

to improve the state-of-the-art unmixing methods.

The proven-applicability of color-line concept for multi-channel images pro-

vides a compelling direction for future work, e.g., applications in the field of bio-

medical imaging. For instance, experiments can be conducted for multi-channel
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magnetic resonance imaging (MRI) with an approach of compressive sensing, to

explore the applied concept. In addition to the unmixing algorithm, the im-

plementation of unmixing algorithm in parallel computing environments can be

considered for future developments in order to accelerate the algorithm even more.

For example, recently, many research efforts have been dedicated to the implemen-

tation of hyperspectral unmixing algorithms for fast performance in specialized

hardware devices, such as graphics processing units (GPUs) or field programmable

gate arrays (FPGAs), which can be installed onboard hyperspectral imaging in-

struments. As for the sparse unmixing problem, it can be improved by exploring

the loss function using another function, such as L1 norm for a sparse error func-

tion. The observation can also be broadened to other types of noise, such as

impulse noise, dead lines, stripes, and so on.
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[70] Tschumperlé, D., and Deriche, R. Vector-valued image regularization with

PDEs: a common framework for different applications. IEEE Trans. Pattern

Anal. Machine Intelli. (PAMI) 27, 4 (Apr. 2005), 506–517.

[71] Tu, W. C., Tsai, C. L., and Chien, S. Y. Collaborative noise reduction using

color-line model. In Proc. IEEE Int. Conf. Acoustics Speech Signal Process.

(ICASSP) (May 2014), 2465–2469.

[72] Yang, J., Zhao, Y. Q., Chan, J. C. W., and Kong, S. G. Coupled sparse

denoising and unmixing with low-rank constraint for hyperspectral image.

IEEE. Trans. Geosci. Remote Sens. 54, 3 (March 2016), 1818–1833.

[73] Yokoya, N., Chanussot, J., and Iwasaki, A. Nonlinear unmixing of hyperspec-

tral data using semi-nonnegative matrix factorization. IEEE Trans. Geosci.

Remote Sens. 52, 2 (Feb 2014), 1430–1437.

[74] Yuen, P. W., and Richardson, M. An introduction to hyperspectral imag-

ing and its application for security, surveillance and target acquisition. The

Imaging Sci. J. 58, 5 (2010), 241–253.

[75] Zhang, B., Zhuang, L., Gao, L., Luo, W., Ran, Q., and Du, Q. Pso-em:

a hyperspectral unmixing algorithm based on normal compositional model.

IEEE Trans. Geosci. Remote Sens. 52, 12 (Dec 2014), 7782–7792.

92



REFERENCES

[76] Zhang, H., He, W., Zhang, L., Shen, H., and Yuan, Q. Hyperspectral image

restoration using low-rank matrix recovery. IEEE. Trans. Geosci. Remote

Sens. 52, 8 (Aug 2014), 4729–4743.

[77] Zhang, S., Li, J., Liu, K., Deng, C., Liu, L., and Plaza, A. Hyperspectral

unmixing based on local collaborative sparse regression. IEEE. Trans. Geosci.

Remote Sens. Letters 13, 5 (May 2016), 631–635.

[78] Zhao, Y., and Yang, J. Hyperspectral image denoising via sparsity and low

rank. In Proc. 2013 IEEE IGARSS (July 2013), 1091–1094.

[79] Zhao, Y. Q., and Yang, J. Hyperspectral image denoising via sparse repre-

sentation and low-rank constraint. IEEE Trans. Geosci. Remote Sens. 53, 1

(Jan. 2015), 296–308.

[80] Zhao, Y. Q., and Yang, J. Hyperspectral image denoising via sparse repre-

sentation and low-rank constraint. IEEE. Trans. Geosci. Remote Sens. 53, 1

(Jan 2015), 296–308.

[81] Zhong, Y., Feng, R., and Zhang, L. Non-local sparse unmixing for hyperspec-

tral remote sensing imagery. IEEE J.Sel.Topics Appl.Earth Observ. Remote

Sens. 7, 6 (June 2014), 1889–1909.

[82] Zhu, F., Wang, Y., Fan, B., Meng, G., and Pan, C. Effective spec-

tral unmixing via robust representation and learning-based sparsity. CoRR

abs/1409.0685 (2014).

[83] Zhu, F., Wang, Y., Fan, B., Meng, G., Xiang, S., and Pan, C. Spectral

unmixing via data-guided sparsity. CoRR abs/1403.3155 (2014).

[84] Zhu, F., Wang, Y., Xiang, S., Fan, B., and Pan, C. Structured sparse method

for hyperspectral unmixing. ISPRS Journal of Photogrammetry and Remote

Sensing 88 (2014), 101–118.

[85] Zortea, M., and Plaza, A. Spatial preprocessing for endmember extraction.

IEEE Trans. Geosci. Remote Sens. 47, 8 (Aug 2009), 2679–2693.

93


	Acknowledgements
	Introduction
	Color Line
	Remote Sensing
	Hyperspectral Images
	Hyperspectral Unmixing
	Multi-channel Image Denoising
	Thesis Organization

	Research Background
	Research Background
	Observation of Spectral Linearity in Hyperspectral Images
	Linearity in Abundance Domain

	Research Goal
	Related Works
	Related Works in Hyperspectral Image Denoising
	Related Works in Hyperspectral Unmixing


	Denoising Based on Spectral Linearity
	Introduction
	Basic Theory
	Chapter Structure

	Algorithm
	Spectral Line Vector Field
	Spectral Component Decomposition
	Filtering
	Recomposition

	Experiment
	Effect of Sign Flip
	RGB color image
	Multi-channel Image

	Conclusion

	Local Abundance Regularizer for Sparse Unmixing
	Introduction
	Hyperspectral Unmixing
	Linear versus nonlinear spectral unmixing
	Sparse regression-based unmixing
	Proposed Idea
	Chapter Structure

	Basic Theory
	Convex Optimization
	ADMM
	Proximal Operator 
	Sparse Linear Regression
	Nuclear Norm
	Total Variation

	Problem Formulation
	Sparse Unmixing
	Spatial Regularization

	Proposed Algorithm
	Local Abundance Correlation
	Collaborative Sparsity Regularization
	Local Abundance Regularizer
	J-LASU

	Experiment
	Simulated Data Sets
	Real Data Sets
	Parameters Setting and Evaluation Metrics
	Simulated-Data Experiment
	Real-Data Experiment

	Discussion
	Sensitivity Test
	Effect of Block Size
	Computational Complexity

	Conclusions

	General Conclusions
	References

