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Preface

The growth of the Internet has led to provide a wide variety of network services

such as multimedia services, e-commerce, online banking and trading, social net-

work services, and online games. Our desire in network services has changed

significantly as the Internet grows. In particular, there is a great demand for

real-time and delay-sensitive services to improve the quality of life. The quality

of such services depends especially on transmission delays. It has been improved

with the development of broadband network technologies, though the improve-

ment will have limitations due to physical distance between communication ends.

Therefore, further improvement should be achieved by improving the transmission

efficiency of communication protocols to transmit data between the communica-

tion ends.

TCP is still commonly used as reliable data-transmission protocol although net-

work environment for such services has significantly changed as described above.

It generally estimates an available bandwidth of networks on the basis of packet

losses due to congestion. Lost packets are recovered by retransmissions and the

transmission rate is kept low while the lost packets are recovered. Since it needs at

least “one round-trip time” to recover lost packets, a long recovery time causes the

degradation of service quality. By this “reactive” control to recover lost packets,

TCP has an essential problem to provide real-time and delay-sensitive services.

To prevent this problem, the number of retransmissions must be kept as low as
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possible.

One efficient way to prevent packet losses by “proactive” control is to apply

a technology called “forward error correction” (FEC). FEC enables a sender to

transmit packets with redundant information to recover lost packets by the infor-

mation at a receiver. The recovery success rate depends on the amount of redun-

dant information; however, redundant information places an additional load on

the network. It is typically used for UDP communication, which has a constant

transmission rate, while it is difficult to adapt to TCP communication, where

transmission rate changes often, because it is harder to select an appropriate re-

dundancy level according to network conditions. For this reason, although there

have been few studies on generally applying FEC to TCP operations, there have

been several studies on TCP restrictively using it.

This study aims to improve TCP performance for real-time and delay-sensitive

services. To achieve this, I propose schemes to apply FEC to the entire TCP

operation. The effectiveness of the proposed schemes is demonstrated through

simulation evaluations.

Chapter 2 introduces related works and basic knowledge which are necessary

for understanding this dissertation. For example, TCP’s congestion control and

error correction technology are explained.

In Chapter 3, I first consider a scheme to simply apply FEC technology to the

entire TCP operation. The proposed scheme dynamically controls redundancy

level according to transmission rates. I investigate the fundamental characteristics

of the proposed scheme focusing on the redundancy, especially including in a

high-latency environment. Simulation evaluations have shown that the proposed

scheme enables higher throughput than the conventional schemes, especially in

high-latency environments.

In Chapter 4, I examine the characteristics of the proposed scheme in detail.
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A simple application of FEC to TCP operation might not work effectively. If the

redundancy is too low, lost packets might not be recovered effectively. Moreover,

unnecessary retransmissions are possibly caused due to the reception of duplicate

ACKs even if recovery is successful. Therefore, I extend the proposed scheme

to consider the ways to limit minimum redundancy and suppress the return of

duplicate ACKs. I investigate the characteristics of the proposed scheme focus-

ing on the introduced functions in an environment where random packet losses

occur. Simulation evaluations have shown that the proposed scheme improves

throughput significantly by suppressing the return of duplicate ACKs and con-

trolling minimum redundancy, especially in high-latency environments, although

FEC technology cannot work effectively when simply applied to TCP operation.

In Chapter 5, I consider adapting the proposed scheme to real environments.

FEC cannot recover lost packets if both of original and redundant packets are

“burstily” lost in a network. In addition, when FEC recovers lost packets, conges-

tion does not be controlled through original TCP operations. Therefore, I further

extend the proposed scheme to consider the ways to interleave redundant packets

from original packets and control transmission rates when recovery is successful. I

investigate the characteristics of the proposed scheme focusing on these functions

in a real environment where burst packet losses occur. Evaluations of various

characteristics by simulation have shown that the proposed scheme offers higher

TCP throughput performance than the conventional scheme by recovering lost

packets effectively.

Finally, this research is concluded in Chapter 6. I hope that this dissertation

will be helpful for further study in this field.
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1 Introduction

The growth of the Internet has led to provide a wide variety of network services

such as multimedia services, e-commerce, online banking and trading, social net-

work services, and online games. The Internet has been developed to support

character-based transmission that is mainly used by legacy services such as e-

mail and world wide web (WWW) browsing based on end-to-end basis. With

the development of network technologies including high-speed broadband net-

works like 5G cellular networks, IEEE 802.11ac wireless LAN, and terabit optical

fiber transmission, it has enabled providing higher quality multimedia services

(e.g., streaming video and real-time applications) as well as will expect support-

ing delay-sensitive services (e.g., autonomous driving and mixed reality) in near

future. The Internet is now essential to a rich and comfortable life in various

fields of human society.

1.1 Real-time and Delay-sensitive Services

Our desire in network services has changed significantly as the Internet grows. In

particular, there is a great demand for real-time and delay-sensitive services to

improve the quality of life [1]. The quality of such services depends on not only

transmission rates but also transmission delays. It has been improved with the

development of broadband network technologies, though the improvement will
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cwnd

Time

One round-trip time

Packet loss

Figure 1.1: Example of transmission rate change

have limitations in terms of transmission delays due to physical distance between

communication ends. Therefore, further improvement should be achieved by

improving the transmission efficiency of communication protocols to transmit

data between the communication ends. Although network environment for such

services has significantly changed as described above, TCP [2] is still commonly

used as reliable data-transmission protocol.It has been also improved according

to the development of network environment, though it still has essential problems

to provide such services.

1.2 Issues of Transport Protocol

TCP controls congestion by adjusting transmission rates according to network

conditions [3]. It generally estimates an available bandwidth of networks on the

basis of packet losses due to congestion. Lost packets are recovered by retransmis-
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sions and the transmission rate is kept low while the lost packets are recovered.

It needs at least “one round-trip time” to recover lost packets. Since the recovery

time grows longer, especially in high-latency environments, TCP performance is

degraded. For real-time and delay-sensitive services, the long recovery time causes

the degradation of service quality. An example of transmission rate change, i.e.,

congestion window size (cwnd), is shown in Figure 1.1. By this “reactive” control

to recover lost packets, TCP has an essential problem to provide real-time and

delay-sensitive services. To prevent this problem, the number of retransmissions

must be kept as low as possible.

One efficient way to prevent packet losses by “proactive” control is to apply a

technology called “forward error correction” (FEC) [4]. FEC enables a sender to

transmit packets with redundant information so that lost packets can be recovered

at a receiver. The success rate of recovery depends on the amount of redundant

information; however, redundant information places an additional load on the

network. To use FEC effectively, the amount of redundant information must

be appropriately determined according to network conditions. Therefore, it is

typically used for UDP [5] communication, which has a constant transmission

rate, while it is difficult to adapt to TCP communication, in which transmission

rate changes often. For that reason, although there have been few studies on

generally applying FEC to TCP operations, there have been several studies on

restrictively applying it to TCP operations.

1.3 Overview of This Dissertation

This study aims to improve TCP performance for real-time and delay-sensitive

services. To achieve this, I propose schemes to apply FEC to the entire TCP

operation. The effectiveness of the proposed schemes is demonstrated through

3



simulation evaluations.

In Chapter 2, I introduce related works and basic knowledge which are neces-

sary for understanding this dissertation. For example, TCP’s congestion control

and error correction technology are explained.

In Chapter 3, I first consider a scheme to simply apply FEC technology to the

entire TCP operation. The proposed scheme dynamically controls redundancy

level according to transmission rates. I investigate the fundamental characteristics

of the proposed scheme focusing on the redundancy, especially including in a high-

latency environment.

In chapter 4, I examine the characteristics of the proposed scheme in detail. A

simple application of FEC to TCP operation might not work effectively. If the

redundancy is too low, lost packets might not be recovered effectively. Moreover,

unnecessary retransmissions are possibly caused due to the reception of duplicate

ACKs even if recovery is successful. Therefore, I extend the proposed scheme

to consider the ways to limit minimum redundancy and suppress the return of

duplicate ACKs. I investigate the characteristics of the proposed scheme focusing

on the introduced functions in an environment where random packet losses occur.

In Chapter 5, I consider adapting the proposed scheme to real environments.

FEC cannot recover lost packets if both of original and redundant packets are

“burstily” lost in a network. In addition, when FEC recovers lost packets, conges-

tion does not be controlled through original TCP operations. Therefore, I further

extend the proposed scheme to consider the ways to interleave redundant packets

from original packets and control transmission rates when recovery is successful.

I investigate the characteristics of the proposed scheme focusing on these func-

tions in a real environment where burst packet losses occur, before concluding in

Chapter 6.

The results discussed in Chapter 4 are mainly taken from [6,7] and Chapter 5

4



from [8].
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2 Related Works

In this chapter, I introduce related works and basic knowledge which are necessary

for understanding this dissertation. TCP’s congestion control and error correction

technology are particularly explained.

2.1 TCP/IP

The Internet is a computer network that are interconnected multi-billion of com-

puting devices throughout world wide. These computing device are primarily

conventional desktop PCs and servers that store and transmit information such

as Web page and e-mail message. In Internet technical term, these computing

devices are called hosts or end systems and block of data are called packet that

are transmitted among end systems. Recently, unconventional end systems such

as laptop, smartphones, tablets, Web cameras and sensing devices are increas-

ingly being connected to the Internet. End systems are connected Internet by

communication links. There are many types of communication links, which are

consisted of different types of physical media, including coaxial cable, copper

wire, optical fiber, and wireless link. When end systems are connected Internet

by different communication links, data transmits at different rates. Transmis-

sion rate of communication links are called “link bandwidth” that measures in

bits/second.
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Application layer

( HTTP, SMTP,…)

Transport layer

( TCP, UDP,…)

Internet layer

( IP, ICMP,…)

Data link layer

Physical layer

Figure 2.1: TCP/IP model

End system of Internet run many protocols that control the sending and receiv-

ing of data or information. Particularly, Transmission Control Protocol (TCP)

and Internet Protocol (IP) are most important protocols in the Internet. TCP

has a function of transmitting and receiving data between applications. IP mod-

ifies the format of the packets and creates path to send/receive among routers

and end systems.

The Internet’s principal protocols are collectively called as TCP/IP. These are

hierarchically layered as shown in Figure 2.1. Packets are divided to manage in

each layers while transmitting. Transport layer managed packet as segment and

Internet layer manages packet as datagram.

40 years have passed since TCP/IP protocol was born. Along remarkable
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progress of network technology, TCP has been variously improved. Although

network users desire to speed-up the network, TCP has remarkable problems for

delay-sensitive service as mentioned above.

2.1.1 Connection Oriented

TCP is a connection-oriented protocol. It needs to establish a TCP connection

called a process before transmitting data between applications. When multiple

processes run between end systems, each process is distinguished by unique port

number on a corresponding end system. Each process can establish independent

TCP connections by using port number. Each TCP connection is identified by

four information; the source IP address and TCP port number, the destination

IP address and port number.

2.2 TCP

TCP is flexibly designed, it can be applied to various environments using a

method of communicating while estimating the character of the communica-

tion path and the congestion situation of the network. TCP uses congestion

control, retransmission control, window control and flow control to cope with

network congestion, packet loss, duplication packet, and packet reordering. Es-

pecially, congestion control is most important one of network technology, it in-

creases/decreases the transmission rate according to estimate the congestion state

of the network while transmitting packets. Also, TCP provides reliability by re-

transmission control that retransmits lost packet. Through these controls, TCP

realizes efficient and highly reliable communication.
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Destination port number

Sequence number

Source port number

Acknowledgement number

Receive window size

RSV

Urgent pointerChecksum

Options (variable)

Application data (variable length)

Header

Length

E

C

N

U A P R S F

16bit 16bit

Figure 2.2: Structure of TCP header

2.2.1 TCP Header

To understand the operation of TCP, I explain structure of TCP header. Each

TCP segment consists of two parts; One is a header part having 20 bytes fixed

length and the other is a payload part having variable length including data. The

header has information to control TCP connection. Figure 2.2 shows structure

of TCP header. Here, the meaning of each field is as follows.

• Source port number (16 bits)

– The application on the sender is identified by the only port number.

Multiple TCP connections can be multiplexed by the same protocol

process using port number.

• Destination port number (16 bits)
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– The application on the destination is identified by the only port num-

ber.

• Sequence number (32 bits)

– This field means the first byte number of each TCP segment. Se-

quence numbers are used to reconstruct data with TCP segments and

to reorder arrived TCP segments. TCP applies consecutive numbers

to each byte. For example, if the sequence number of the current seg-

ment is 1000 and the length of the data segment is 1234 bytes, then

the sequence number of the next segment is 2234. The sender uses this

field to inform the sending status to destination.

• Acknowledgement number (32 bits)

– The destination uses this field to inform the reception status to sender.

• Header length (4 bits)

– This 32-bit field indicates the header length. In the usual case, the

header length is fixed by 20 bytes. However, when the option field is

set, the header length is variable length.

• RSV (4 bits)

– This field is reserved and used for experimental purposes.

• ECN (2 bits)

– A 2 bit field are allocated for use with explicit congestion notification.

• Flags (6 bits)

– U, A, P, R, S, F is a control flag bit. This field indicates to the

various information of the protocol in the TCP segment. The sender
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or destination specifies the information to be carried with the control

flag bit. Multiple control flag bits can be simultaneously used on the

sending and receiving side. The meaning of each flag bit is as follows;

– A (ACK)

∗ Acknowledgment number field is valid.

– F (FIN)

∗ No more data from sender.

– P (PSH)

∗ Push Function. It is necessary for the destination to pass this

segment as quickly as possible to the application layer.

– R (RST)

∗ Reset the connection.

– S (SYN)

∗ New connection is established. To initialize the connection, the

sequence numbers are synchronized.

– U (URG)

∗ Urgent pointer field is valid.

• Receive window size (16 bits)

– This field is used to notify the size of receive window from destination

to sender. The sender controls data flow using this information.

• Checksum (16 bits)

– This filed indicates the checksum of the TCP segment. Checksum is

calculated and set by the sender, and verified at the destination. When
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TCP segments are calculated the checksum using header including the

destination IP address etc.

• Urgent pointer (16bits)

– This filed indicates offset that is the last sequence number of urgent

data (urgent data indicate that should be preferentially transmitted

data). It is only valid when flag bit U (URG) is set.

• Options (variable)

– This field is variable length and consists of two parts. One is contains

various information for improving the performance and expansion of

function. The other is a part called padding, and when TCP header

length is excessively long, remaining part is set 0 to align in units of

32 bits.

2.2.2 TCP Process

TCP uses 3-way handshake, sequence number and acknowledgment, retransmis-

sion and window control, error control to provide reliable service. The 3-way

handshake function is used to establish a TCP connection as shown in Figure

2.3. TCP establishes a virtual circuit between a sender and a destination before

it sends or receives data. Virtual circuit is established through three phases;

Phase 1

The sender transmits a TCP segment that indicates the connection request to the

destination. The sender sets the SYN bit of the control flag of the TCP header to

ON and transmits it. The segment for which the SYN bit is set is usually called

a SYN segment or SYN.
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Figure 2.3: 3-way hand shake in TCP

Phase 2

When the destination accepts the connection request from the sender, it sends

back the connection request to the sender together with the acknowledgment

indicating acceptance. In this case, the control flags of both ACK and SYN are

turned ON. The segment for which the ACK bit is set is usually called a ACK

segment or ACK.
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Phase 3

The sender accepts the connection request from the destination and return ACK

to the destination. Then, TCP connection is established.

2.2.3 Data Transfer in TCP

When a virtual circuit is established, the sender start to transfers data to the

destination. If there are multiple routes between the sender and destination, the

arrival order of the transmitted TCP segments may be disturbed. Therefore,

sender adds a sequence number indicating order of TCP segments and send it.

The destination reorder TCP segments using this sequence number.

Acknowledgement

The destination returns an acknowledgment with an ACK number to sender for

properly received segments. The ACK number is calculated from the received

sequence number. Usually, it is set the number of the segment to be received

next. For example, when a segment with sequence number 100 is received, the

ACK number is 101.

Retransmission

The sender keeps that segment in the buffer until it receive acknowledge. Figure

2.4 shows the operation when a loss packet is retransmitted. The retransmission is

performed when ACK is not received even certain period of time after the sender

transmits the packet. The sender measures the elapsed time between sending a

data with a particular sequence number and receiving an acknowledgment that

is the sequence number of corresponding segment. This measured elapsed time
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is called Round Trip Time (RTT). Because 1 RTT is required for one exchange,

the loss detection time depends on RTT.

However, although destination returns an acknowledgment to sender, ACK may

not arrive at the sender within the waiting time depending on the congestion state

of network. The sender retransmits the corresponding segment when ACK can not

be received during the waiting period. Therefore, the destination re-receives the

segment once received. When destination receives TCP segments with duplicate

sequence number, it discards duplicating TCP segment.

In general, trigger of retransmission are as follow;

• Transmitted TCP segment was lost in transmission path.

• Acknowledgment of transmitted TCP segment was lost on transmission

path.

• Acknowledgment was not returned within the waiting time due to conges-

tion state of network.

• Checksum error occurred in received data.

Timeout

As mention above, the retransmission is performed when ACK is not received even

certain period of time after the sender transmits the packet. Namely, a timer is

set when a TCP segment is transmitted, and a retransmission is performed when

the timer times out. The retransmission timeout time is considered to be slightly

longer than the RTT between the communicating hosts.

In TCP, when the following conditions are occurred, sender judges that a TCP

segment is lost and are occurred timeout;

• When three or more segments with same acknowledge number are received.
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• After sending TCP segments, if ACK segment does not return to sender

within waiting time.

Window Control

While TCP’s simple retransmission is running, only one segment is sent at a time.

New TCP segment cannot be transmitted unless acknowledgment of retransmit-

ted segment is received. This operation leads to degrade efficiency transmission.

Therefore, in TCP, the sender provides a mechanism to continue transmitting

segments before receiving acknowledgment. Such method is called window con-

trol, and it is possible to transmit segments for window size at a time. Here,

window size indicates amount of acceptable segments that are transmitted from

the sender from the destination.

The sender can collectively send the segments within window size to the des-

tination by using window control after establishing TCP connection. Receive

buffer is free as much as the processing amount of the received segment. When

the sender received ACK is sent to the sender for received segment, the sender

is notified the available window size. If the receive buffer becomes full, the des-

tination notify the window size 0 with ACK to the sender and transmission is

stopped to the destination. Since the window size varies depending on the re-

maining amount of the receive buffer, the number of segments transmitted at once

changes. For this reason, such a window control method is particularly called a

sliding window control method as shown in Figure 2.5. Here the segments just

have numbers, but each integer represents a whole number of byte of segment.

In this example,

i) window size is 4000 bytes, segments 0 through 3999 have been sent but not

acknowledged.
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ii) segments 0 through 1000 have been sent and acknowledged, 2000 through 5999

have been sent but not acknowledged, and segments 6000 through 7999 are

waiting to be sent.

iii) segments 2000 through 3999 have been sent and acknowledged, 4000 through

7999 have been sent but not acknowledged.

2.2.4 Congestion Control

Generrically, TCP performs congestion control with sliding window method and

has the following features.

• Transmission rate of TCP segments can be adapted to available bandwidth

• Network congestion can be avoided

• Reliable communication can be provided by retransmission of lost segments
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To control the transmission rate of TCP segments, the number of segments

that can be sent is limited by a parameter called congestion window (cwnd). If

the number of TCP segments for which ACK sent from the sender but ACK

indicating that it was correctly accepted from the destination has not reached

cwnd, the sender stops sending and goes into transmission wait state. To reply

received status of the TCP segment with ACK to sender, sequence numbers are

assigned to each TCP segments.

The main objectives of ACK control are as follows.

• To control the transfer rate, new segments are transferred when the other

segment leaves the network.

• Establish a reliable TCP connection by providing a means to inform the

sender that it should retransmit the segment that has not arrived at the

destination.

ACK control can detect lost TCP segments and non arrival TCP segments using

ACK from the destination. The sender determines the sequence number of the

TCP segment that is transmitted next by ACK from the destination.

When three duplicate ACKs are received at the sender, the sender retransmits

lost TCP segments. Such as the retransmission is called “fast retransmit” Even

if fast retransmit succeeds, congestion window size is downwardly reduced in the

recovery process. This amount of the reduction is different on TCP congestion

algorithm. In the case of Tahoe, congestion window size is set 1. On the other

hand, Reno and NewReno makes it half of the current congestion window size.

The basic concept of the congestion window dynamic control method is as

follows and as shown in Figure 2.6. If congestion window size is small, window

size is exponentially increased (Slow Start). When congestion window size exceeds

a certain large value, if the congestion does not occur, congestion window size is
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linearly increased (Congestion Avoidance). When congestion occurs, congestion

window size is remarkably reduced (Recovery).

By using this dynamic control method, when congestion occurs, this method

can respond promptly and effective use bandwidth.

In congestion control, threshold value of congestion window (ssthresh) is de-

fined. This threshold is usually called the slow start threshold. The size of

receivable window that the destination notifies with ACK is defined as Advertise

Window (awnd), and the size of sendable window (w) of is determined as follows;

w = min(cwnd, awnd) (2.1)

In other words, the window size informed from the destination does not directly

use, the sender compare advertise window size with congestion window and adopt

the smaller one.

Advertise window is the upper limit of the congestion window. Congestion

window can suppress the transfer exceeding the upper limit of the network band-

width. The process of TCP that gradually increases congestion window from

initial value and reaches advertise window or the slow start threshold is called

slow start.

If the sender does not have prior information about the bottleneck link, it is

necessary to estimate the value of congestion window size.

Slow Start

The sender sets the initial value of cwnd to 1. It increments cwnd each time when

it receives one ACK segment.

cwnd = cwnd + 1 (2.2)
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Then, cwnd doubles for every RTT and increases exponentially until TCP seg-

ments are lost. TCP segment is lost, the sender shifts to the recovery process and

calculates slow start threshold. When cwnd exceeds the threshold value (cwnd

> ssthresh), the sender ends the slow start process and shifts to congestion

avoidance process.

Congestion Avoidance

When the sender normally receives ACKs, it increases the transmission rate and

cwnd at a rate of 1 TCP segment per RTT. To use link bandwidth as efficiently as

possible where congestion is likely to occur, congestion window size is gradually

increased by using this operation. If TCP segment is lost, the sender shift to the

recovery process.

Recovery

The method of controlling the congestion window when timeout or TCP segment

loss occurs that varies depending on the version of TCP. TCP Tahoe restarts

slow start after updating the threshold to half of congestion window size when

TCP segment loss occurred, and the congestion window size to 1. In TCP Reno or

TCP NewReno, the threshold and the congestion window size are updated to half

when TCP segment loss occurred, and then slow start is restarted. In Section

2.2.6, I describe TCP Reno [9] which uses an option called SACK (Selective

Acknowledgment) [10] among TCP.

Reactive vs Proactive

Congestion control algorithm are categorized into two ways; reactive and proac-

tive.
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In general, TCP uses reactive control that adjusts transmission rate after it de-

tects lost packet due to sudden traffic fluctuation. Specifically, the sender control

cwnd according to the network condition. TCP Reno employs reactive conges-

tion control. In TCP Reno, cwnd is adjusted based on ACK from destination.

TCP Reno decrease cwnd, which may be unnecessary for wireless environments.

Basic TCP have been proposed as the standard Reno that uses reactive control.

However, reactive control increases transfer delay by transmission of lost pack-

ets. Therefore, in reactive control, it is impossible to optimize the use of link

bandwidth of the network, and the communication state of the network can not

stable. To improve the affective of transfer delay, congestion control based on

transfer delay is developed, but it is difficult to prevent increase of transfer delay

according to sudden traffic fluctuation.

On the other hand, in proactive control, sender reallocate cwnd by using feed-

back from destination to prevent congestion. Proactive control requires prior

correspondence, but it is possible to prevent increasing of transfer delay by re-

sponding in advance due to retransmission. It is necessary technology to realize

a better delay-sensitive service. For this reason, I research proactive control that

recover lost packets without retransmission.

2.2.5 Explicit Congestion Notification

TCP has a function that detects packet loss and retransmits lost packets. How-

ever, retransmission of lost packet leads to degradation of TCP throughput.

When TCP detects a lost packet, it judges that congestion has occurred, and

degrades transmission rate. Thus, in high-delay environment, there is a problem

that the congestion state of network is not accurately reflected to congestion

control.
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Therefore, Explicit Congestion Notification (ECN) [11] has been proposed in

which a router or a destination adjusts the window size by notifying congestion

status of network to the sender. Specifically, ECN flag bit of TCP header is set.

When the destination receives a packet with ECN flag, it knows that congestion is

occurring on the route. The sender degrade transmission rates by received ECN.

At transport layer, the sender and destination must be able to cope with each

other’s ECN. The destination needs to have a function that receives a packet

marked congestion state from the router and notifies congestion state to the

sender. On the other hand, the sender needs to have a function to downwardly

adjust transmission rate by using the notification from the destination on the

congestion state.
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The Addition of Explicit Congestion Notification to TCP

TCP supports ECN using 2 bit at RSV field in the following.

• ECE: ECN-Echo flag

• CWR: Congestion Window Reduced flag

ECE is used to notify the information that ECN flag is set ON in TCP segment

by router CWR is flag in the TCP header that the data sender can inform the

data receiver that the congestion window has been reduced The procedure of

ECN control is a s follows and are showed Figure 2.7;

• In the TCP connection setup phase, the sender sends SYN segment with

ECE=1, CWN=1 to the receiver

• The receiver sends back SYN-ACK segment with ECE=1, CWR=0 to the

sender

• If congestion is detected or congestion is occurring, the corresponding router

set ECN=11 on IP header

• The receiver receives ECN packet (11) , sends back ACK segment with ECE

flag in TCP header

• The sender receives ACK segment with ECE flag, it shift to congestion

avoidance process

• The sender decrease congestion window size, it set CWR flag in TCP header

of next segment and send one

• The receiver receives new segment with CWR flag, it clear next ACK with

ECE flag
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2.2.6 Selective Acknowledgment Options

Cumulative acknowledgment notifies number of TCP segments that arrives with-

out coming out from the start of communication, and if there is a missing in

the stream, it is not notified whether or not subsequent data has arrived. When

multiple packets are lost on a cwnd, TCP throughput is likely to decrease. There-

fore, it is necessary to extend the function of acknowledgment and to discriminate

normally received packets and lost packets even when multiple packets are lost

during cwnd. This method is called a selective acknowledgment option (SACK

option), which is defined in RFC 2018 and can be used by further adding an op-

tional field to the TCP header. Specifically, when a packet losses, only a packet

that has been lost can be retransmitted while transmitting next TCP segment.

TCP that are applied this method is called TCP with SACK option. It wasteful

traffic generation on the network can be prevented, and high utilization efficiency

and throughput can be achieved.

2.2.7 TCP with SACK Option

Since the maximum size of TCP option is 40 times, the number of blocks that

can be acknowledged is limited to a maximum of four. In the wideband and

high-delay environment, it is conceivable to use together with the time stamp

option and the window scale option, but in this case the maximum number of

blocks that can be acknowledged is limited to three. When accepting a selection

acknowledgment, it sends a selection acknowledgment permission option (SACK

OK) to communicating party in the SYN segment at TCP connection establish-

ment. A host that receives this option can send a selection acknowledgment to

the segment sent by the other party. When the selection acknowledgment is used,

the range of the reached sequence number is embedded in the selection acknowl-
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edgment field and acknowledged. In the case of sparse missing, it is possible to

acknowledge up to four blocks.

2.2.8 TCP’s Problems

TCP using the congestion control algorithm has been widely used to the present.

However, in recent years, high throughput can not be obtained in wideband and

high-delay environment. In high delayed environment, it takes time to reach

the window size that can obtain a sufficient transmission rate compared to other

environments. In conventional TCP, the utilization efficiency is poor and perfor-

mance can not be fully utilized, so TCP with SACK option reduces cwnd on half

by retransmission control at fast recovery when packet loss is detected.

Furthermore, while recovery, transmission rate are kept as shown in Figure 1.1.

Therefore, the efficiency of communication might be lowered in a particularly

high-delay environment such as an international communication. In order to

prevent such this problem, it is necessary to send information to recover a lost

packet in advance to the destination. Therefore, in this research, I focus on

Forward Error Correction (FEC) which can respond to recovery in advance. In

the next section I will describe the details of FEC.

2.3 Error Correction

Error correction is a well-known technique for correcting the error over com-

munication by redundancy information as shown in Figure 2.8. Generally, error

correction codes are converted into codewords whose k-bit information has a code

length of n bits. This is called (n, k) code. The (n, k) code can be divided into

two types; a block code and a convolutional code. Those encoded into a sequence

of a certain length are called block codes. Sequentially encoded and theoretically
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encoded into a sequence of infinite length is called a convolutional code [12].

The error correction code detects an error on the destination and corrects an

error at the same time. It do not need feedback, and are used for transmission of

voice, images, and the like, real time transmission is possible with less delay time.

However the high error correction capability has the trade off relation between

redundancy and efficiency.

Convolutional Code

While the block code is a code to be encoded in units of blocks, the convolutional

code is a code for obtaining coded bits at the present time using several past

bits. In block code, data stream are divided into blocks, and error correction

is performed in units of the delimited frames. However, since error processing

is performed after discriminating consecutive received analog signals as 1 and 0,

there is a limit to error correction in a mathematically.
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Block Code

A block code is obtained by dividing the encoded data into blocks with fixed

length. That is, one error code block is formed for one block. Four typical

examples of block codes are Hamming code, BCH code, Reed-Solomon code and

parity check code. The four are described below.

• Hamming Code

– Hamming code can perform one error correction, and error detection

of 2 or less is possible using a generator polynomial with bits as coeffi-

cients. Although the design of code is simple, in the application to the

radio transmission line etc. with low reliability, the error correction

capability is not sufficient for the error rate of the line.

• BCH Code

– BCH code can correct multiple error corrections. Like hamming code,

BCH code performs encoding using a generator polynomial with bits

as coefficients.

• Reed-Solomon Code

– The Reed-Solomon code [13] is extended BCH code. It is complicated

in design and it takes time to calculate.

• Parity Check Code

– The parity check code calculate whether the sum bit stream is an odd

number or an even number, and thereby detects an error. Such an

operation method is called exclusive OR. It is simple to implement

because it takes short computation time.
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Block code is calculated using a fixed block length. In TCP, it is difficult to deter-

mine a fixed block length because amount transfer data are constantly fluctuated

according to network condition. For this reason, in this study, the proposed

scheme determine a block length based on cwnd.

2.3.1 Forward Error Correction

The forward error correction technique adds redundant information to the original

data according to follow rule and sends one. The destination checks whether the

received data complies with the rule and corrects the error according to the result.

Forward error correction technique can be realized it by using error correction

code. The sender sends a redundant information from original data and trans-

mits the redundant information. The destination can recover lost data from the

redundant information.

Generally, the sender encodes a redundant information by using exclusive OR

(XOR) with the all original information and transmits the redundant information

after the original data. It thus needs only a few memory resources for creating

redundant information, and it can calculate an encoded bit-stream using simple

bitwise operations. It has lower overhead than other coding schemes, like Reed-

Solomon codes [13].

The destination uses XOR to recover a lost data within a group when it receives

a redundant information. This scheme cannot recover lost data when two or more

data losses occur within a group. In that case, the sender retransmits the lost

data through the original TCP operation. When data losses do not occur within

a group, a received redundant information is simply discarded.
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FEC’s Problem

Generally, in the FEC technology, the recovery success rate depends on the

amount of redundant information. Therefore, in order to secure high reliability,

more redundant information and sufficient link bandwidth is required is required.

As described above, when the redundancy is increased more than necessary, the

utilization efficiency of the network band decreases. In other words, there arises

a problem of trade-off between bandwidth and redundancy information that the

restoration rate of the lost packet depends on the redundant information. In

order to solve this problem, it is necessary to set the optimum redundancy ac-

cording to network condition. Also, in the case where FEC technology is applied

to a plurality of packets collectively, it is preferable that packets are continuously

generated, so it is generally used for CBR communication using UDP. However,

unlike UDP, TCP has complicated control that the transmission speed always

fluctuates, so it is difficult to set the optimum redundancy of FEC. Therefore, in

recent years, various methods related to the redundancy dynamic determination

method to suppress the consumption of the network bandwidth to the minimum

by applying the FEC technology as a part of TCP have been proposed. In the

next section, I explain such related work.

2.4 Advanced Works

The recovery success rate depends on the redundancy level. To control redun-

dancy, the proposed FEC algorithms are categorized into two groups: Keeping

constant redundancy level independent of network conditions [14–17] and dynam-

ically adjusting redundancy level according to network conditions [18–26].

A method for applying FEC to UDP communication, which has a constant

transmission rate, was proposed [14]. AL-FEC [15] utilizes FEC for UDP to im-
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prove throughput in high-loss-rate wireless environments. These schemes improve

throughput performance of UDP communication, but the present study focuses

on a scheme that applies FEC to TCP communication, in which transmission

rate dynamically changes.

Sakakibara et al. focus on the problem of consecutive reductions in the trans-

mission rate caused by congestion control when multiple packets are lost con-

secutively [18]. To resolve this problem, they propose a method to apply FEC

to TCP only when TCP detects packet losses. This method attaches redundant

packets during a recovery phase; i.e., when the transmission rate is low. It thus

suppresses the transmission rate reduction as well as the amount of redundant

information.

Sharma et al. focus on the problem that it takes a long time to recover lost

packets even when short-term burst losses occur in a high latency broadband

environment [19]. This is because TCP cannot discriminate between short-term or

long-term congestion when burst packet losses occur. To solve this problem, they

propose a form of TCP congestion control using Explicit Congestion Notification

(ECN) to identify short-term congestion. This method uses adaptive FEC with

redundancy proportional to the number of lost packets only when it detects packet

losses by ECN. It enables high throughput by quickly responding to burst losses

in high latency broadband networks.

Baldantoni et al. propose a method using FEC which dynamically determines

the redundancy to improve TCP performance in a wireless network [20]. This

method calculates an appropriate level of redundancy based on the current loss

rate and round-trip time. There are two types of packet loss in wireless networks:

that caused by congestion and that caused by interference such as fading. TCP

cannot distinguish between these types of packet loss, so it unnecessarily reduces

the transmission rate even if packet losses are caused by interference. The pro-
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posed method avoids unnecessary reduction of the transmission rate by using

FEC to recover packet losses caused by interference.

Seferoglu et al. propose a method to achieve fairness between TCP and me-

dia flows, specifically multimedia delivery flows for mobile devices in the next

generation of wireless technology [21]. When TCP and media flows coexist in

a network, media flows can easily cause packet losses and drastically reduce the

transmission rate due to TCP congestion control. This method prevents me-

dia flow packet losses through adaptive FEC to maintain fairness between TCP

and media flows. It dynamically determines FEC redundancy by predicting loss

events based on the transmission delay time. Overall, these methods restrictively

apply FEC technology to TCP only when packet losses occur or when a particular

transmission rate should be maintained. In this study, I focus on the application

of FEC technology to the entire operation of TCP to use FEC more effectively,

especially in high latency environments. Our method uses FEC technology to

suppresses frequent transmission rate reduction by avoiding retransmissions.

Tsugawa et al. propose TCP with FEC for streaming delivery services, a

method that does not greatly change the transmission rate [22]. It controls FEC

redundancy based on packet loss detection and maintains the transmission rate

to preserve the quality of service. This method suppresses temporal reduction of

the transmission rate with a change in redundancy to maintain the transmission

rate needed for streaming delivery services.

FEC-ARQ [23] combines FEC with ARQ mechanisms to keep the quality of

streaming services in a low-latency environment. This method is based on a

packet streaming code well suited to sequential decoding and improves the total

delay caused by retransmission.

LT-TCP [24] uses ECN and FEC to mitigate the effects of random packet losses

over lossy wireless networks.
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Moreover, TCP-IR [25] applies FEC to the TCP operation. It focuses on the

problem that TCP needs at least 1 RTT when it recovers lost packets. It injects

redundant packets within TCP streams, so it reduces latency of web transactions.

This work enhances TCP throughput performance in low latency environments.

It was extended to improve TCP throughput in high-latency environments [26].

TCP-IR encodes up to 16 packets. These works apply FEC to TCP operations

only in a restricted manner.

The control within TCP is complicated and most suggestions focus on the ap-

plication layer FEC. Alomost objective is to increase TCP throughput on the

wireless network and to isolate the loss detection and recovery mechanism. Re-

lated work performs loss detection and recovery of TCP to reduce RTT, however

any approach does not respects network condition (cwnd) and does not adapt-

able work FEC technology. In order to improve TCP’s performance, dynamic

adaptive FEC that respects network condition (cwnd) is strongly required.

2.5 Conclusion

Delay-sensitive services such as streaming and online games have increased. To

satisfy the network users that use delay-sensitive services, transfer delay should

be short. For that purpose, it is required to predict sudden traffic fluctuation

and to provide stable communication. However, in general, TCP uses reactive

control that adjusts transmission rate after it detects lost packet due to sudden

traffic fluctuation. In reactive control, it is impossible to optimize the use of link

bandwidth of the network, and the communication state of the network can not

stable. Therefore, proactive control has been researched that detect congestion

by RTT and adjust transmission rate. It is worked to improve congestion control

and are not considered transfer delay. Delay-sensitive services that increase in
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the future complacently will no be provided because this problem still will not

improve. Progress of network technology is limited and realization of high quality

and stable delay sensitive services are difficult in present.

Therefore, in this research, to realize high quality and stable communication in

delay-sensitive services, I propose a scheme to suppress increasing of transfer delay

and reduction of transmission rate by retransmission. Namely, proactive control

that uses forward error correction technology is important when lost packet is

retransmitted. Delay-sensitive services have been needed dedicated line, but it

satisfactorily can be performed without preparing dedicate line by the proposed

scheme.

In this study, I focus on the application of FEC technology to the entire opera-

tion of TCP. This scheme only extend FEC mechanism at transport layer and do

not need rebuild of protocol. It gradually spreads in network without dedicated

line. For this reason, it can contribute significant cost-cutting of equipment of

dedicated line. It has fairness problems that competing of another TCP version

because it gradually spreads. In this research, it has been examined congestion

control that is considered regard of fairness of another TCP version, this detail

will be described in Chapter 5.
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3 Simply Applying FEC to TCP

Operation

In this chapter, I first consider a scheme to simply apply FEC technology to the

entire TCP operation. The proposed scheme dynamically controls redundancy

level according to transmission rates. I investigate the fundamental characteristics

of the proposed scheme focusing on the redundancy, especially including in a high-

latency environment.

3.1 Introduction

In this chapter, I explain the evaluation of characteristics of basic proactive con-

trol that is applied to the entire TCP operation.

Data exchange in a high-latency environment is one of delay-sensitive services.

For communication over the Internet, TCP is basically used for reliable data

transmission protocol. TCP adjusts its transmission rate through congestion

control according to a network condition. However, packet losses significantly

degrade TCP performance in a high latency environment, such as international

communication. This is because the recovery of lost packets takes at least the

round trip time. To prevent this, the number of retransmissions must be reduced

and congestion control applied independently of the packet losses.
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In this context, several methods which apply a forward error correction (FEC)

technology to prevent packet losses have been proposed. The recovery success

rate depends on the amount of redundant information, but redundant information

places an additional load on the network. Therefore, the amount of redundant

information must be appropriately determined according to network conditions.

Furthermore, FEC is typically used for UDP communication, which has a con-

stant transmission rate. It is difficult to adapt to TCP communication where

transmission rates change a lot because it is harder to select an appropriate re-

dundancy level in such an environment. For this reason, although there have been

few studies on the application of FEC technology to TCP to suppress retrans-

mission and improve performance, there have been studies on TCP restrictively

using FEC technology.

In this chapter, to enable more effective use of FEC technology, I propose a

scheme to apply FEC technology to the entire operation of TCP. TCP with simple

FEC adapts FEC redundancy to the TCP transmission rate through effective use

of network resources. Furthermore, I show the effectiveness of the scheme through

simulation evaluations where I focus on high latency networks.

3.2 Overview of TCP with Simple FEC

In this section, I explain TCP with simple FEC which applies FEC technology

to the entire operation of TCP while taking into account the trade-off between

FEC redundancy and network efficiency. TCP with simple FEC determines the

appropriate level of redundancy according to the transmission rate to improve

throughput by suppressing retransmission. It aims to prevent the recovery time

caused by retransmissions. Since TCP with simple FEC does not conflict with

the schemes that improves the effectiveness of retransmission such as TCP with
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Figure 3.1: Applying FEC to TCP operation

SACK, it will work effectively with them.

First, I provide an overview of TCP wiht simpe FEC. This method provides

end-to-end communication with FEC technology as shown in Figure 3.1. FEC

redundancy is added and lost packets recovered in the operation of TCP. That is,

a sender transmits redundant information in addition to original packets, while

a receiver recovers lost packets through the redundant information.

In the simple FEC, the sender encodes a redundant packet by using exclusive

OR (XOR) with the payload field of all packets in a congestion window (cwnd)

and transmits the redundant packet after the original packets as shown in Figure

3.2. The sender creates a redundant packet from original packets and transmits

the redundant packet. The destination can recover lost packets from the redun-

dant packet. Note that recovery of lost packet is focused on; in other words,

redundant packet is not added to an original packet, and redundant packets en-
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coded from original packets are interjected within TCP streams. Namely, the

simple FEC constantly creates redundant packets according to network condi-

tions.

More specifically, the sender creates a redundant packet XORed with all packets

in a congestion window size (cwnd) and transmits the redundant packet following

the original packets as shown in Figure 3.3. It thus needs only a few memory re-

sources for creating redundant packets, and it can calculate an encoded bit-stream

using simple bitwise operations. It has lower overhead than other coding schemes,

like Reed-Solomon codes [13]. In the case of the simple FEC, group is defined as

a block of one redundant packet with corresponding original packets, and group

size is defined as the number of original packets. Namely, TCP with simple FEC

constantly creates redundant packets according to network conditions.

The receiver thus can use the redundant packet to recover a lost packet within
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the cwnd. This method cannot recover lost packets when two or more packet

losses occur within the cwnd. In that case, the sender retransmits the lost packets

through the original TCP operation. The retransmitted packets are handled in

the same manner as the original packets within the cwnd. Therefore, they can

be recovered by the received redundant packet. When packet losses do not occur

within a cwnd, a received redundant packet is simply discarded.

3.3 Redundancy Control

To recover lost packets with an FEC redundant packet, a receiver has to de-

termine which original packets the received redundant packet corresponds to.

Therefore, TCP with simple FEC groups a redundant packet and corresponding
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original packets as shown in Figure 3.4. The sender creates an redundant packet

XORed with all packets in a cwnd and transmits the redundant packet following

the original packets. I define redundancy as the ratio of a redundant packet to

the corresponding original packets; i.e., 1/cwnd. For example, the redundancy

is 1/2 when cwnd is 2. The redundancy decreases as cwnd increases; thus, the

redundancy is controlled according to network conditions. This means that re-

dundancy is high when packet losses have a significant impact – i.e., at a low

transmission rate – and is otherwise low. However, there is a time lag of up to 1

round trip time between the redundancy level and cwnd because redundancy is

updated just after the sender transmits an redundant packet.

3.4 Simulation Evaluation

In this section, I compare the effectiveness of TCP with simple FEC to conven-

tional TCP Reno with the Selective Acknowledgment Option (SACK) and SACK

with FEC of static redundancy in a high-latency environment. I used the network
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simulator ns-2 ver.2.35 [27] after implementing TCP with simple FEC for the per-

formance evaluations. In the following subsection, I describe the simulation mode

and evaluation criteria.

3.4.1 Simulation Model

Figure 3.5 shows the network topology used in this simulation. In this model,

each sender communicates with the corresponding receivers through routers. The

simulation parameters are summarized in Table 3.1. The senders start TCP bulk

transfer randomly at intervals of 0.1 seconds until 1 second after the simulation

starts. I evaluate the average values over 10 simulation runs with different random

seeds from 20 seconds to 220 seconds after the simulation starts to focus on the

stable state performance.
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Table 3.1: Simulation parameters

Simulation time 200 [s]

Number of trials 10 [times]

Buffer size 50–1000 [packet]

Number of flows 20–50

Packet size 1500 [byte]

Static redundancy 1, 10, 40

3.4.2 Evaluation Criteria

To evaluate the effectiveness of TCP with simple FEC, I use the average through-

put, retransmission rate, effective recovery rate, and redundancy rate as evalu-

ation criteria. Average throughput is defined as the average throughput of all

flows. The other criteria are used to analyze the performance in detail. The

retransmission rate is defined as the number of retransmitted packets as a per-

centage of the number of all sent packets. The effective recovery rate is defined

as the number of recovered packets as a percentage of the number of redundant

packets. The redundancy rate is defined as the number of redundant packets as

a percentage of the number of both redundant and original packets. I evaluate

these criteria while varying the number of flows, the delay time, or the buffer size.

43



 1

 2

 3

 4

 5

 200  400  600  800  1000

A
ve

ra
ge

 th
ro

ug
hp

ut
 [

M
b/

s]

Buffer size [packet]

fec-cwnd
 fec-1/1
fec-1/10
fec-1/40

    sack
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3.5 Simulation Results

In this section, I show simulation results from a comparison of TCP with simple

FEC, conventional TCP (TCP-SACK) and TCP-SACK with static FEC. First,

I show the throughput with each method when the buffer size, delay time, and

number of flows are varied. Next, I investigate the retransmission rate, the effec-

tive recovery rate, and the redundancy rate to analyze the results in detail.
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3.5.1 Effect of Buffer Size, Delay Time and Number of

Flows

First, Figure 3.6 shows the average throughput of three methods when the buffer

size varies from 50 to 1000 packets with a delay time of 200 ms and 20 flows. In

this figure, “sack” represents the conventional SACK and “fec” represents SACK

with FEC. Of the “fec” methods, “cwnd” is TCP with simple FEC where the

redundancy is adapted according to cwnd, while the others use static redun-

dancy. From this figure, I can see that TCP with simple FEC enables excellent

throughput regardless of buffer size. In addition, the fec methods provides higher

throughput than the sack method. These results are analyzed in the next sub-
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section.

Next, Figure 3.7 shows the average throughput of three methods when the

delay time varies from 10 to 300 ms with a buffer size of 500 packets and 20

flows. The results show that TCP with simple FEC provides high throughput

even as the delay time increases although throughput deteriorates with the other

methods.

Last, Figure 3.8 shows the average throughput when the number of flows ranges

from 20 to 50 with a buffer size of 500 packets and a delay time of 200 ms. TCP

with simple FEC achieves higher throughput than the other methods regardless

of the number of flows.

The above results demonstrate that TCP with simple FEC can improve through-
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Figure 3.9: Retransmission rate

put regardless of the network parameters. In the following subsection, I analyze

the results in detail.

3.5.2 Analysis of the Characteristics

In the previous subsection, I examined the throughput performance of TCP with

simple FEC in various environments. In this subsection, to analyze the results in

detail, I investigate the retransmission rate, the effective recovery rate, and the

redundancy rate.

First, Figure 3.9 shows the retransmission rate when the buffer size is varied

from 50 to 1000 packets with a delay time of 200 ms and 20 flows. From this
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figure, I can see that TCP with simple FEC suppresses the retransmission rate to

approximately the same degree as the fec-1/1 method by adapting redundancy

according to network conditions regardless of the buffer size. On the other hand,

the fec-1/40 and fec-1/10 methods have a high retransmission rate because the

redundancy of these methods is too low.

Next, Figure 3.10 shows the effective recovery rate when the buffer size is varied

from 50 to 1000 packets with a delay time of 200 ms and 20 flows. These results

show that TCP with simple FEC achieves a high recovery rate almost equal to

that of the fec-1/40 method. On the other hand, the fec-1/1 and fec-1/10 methods

waste redundant packets because the redundancy of these methods is too high

for the network conditions.
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Last, I investigate the load of TCP with simple FEC on the network. Figure

3.11 shows the redundancy rate when the delay time is set to 200 ms, and the

number of flows is set to 20. From this figure, I can see that TCP with simple

FEC has a very low redundancy rate compared with those of the other methods.

Consequently, TCP with simple FEC can recover lost packets effectively and

prevent retransmission by introducing adaptive FEC without placing an intensive

load on networks.

49



3.6 Conclusion

A Scheme is considered to simply apply FEC technology to the entire TCP op-

eration. To improve TCP performance in such networks, TCP with simple FEC

adapts FEC redundancy to the TCP transmission rate while considering the

tradeoff between the recovery success rate and effective use of network resources.

Simulation evaluations show that TCP with simple FEC enables higher through-

put than the conventional methods, especially in high latency environments. I will

consider a scheme to more appropriately determine the appropriate redundancy

level.
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4 Detailed Examination of TCP

with FEC

In this chapter, I examine the characteristics of the proposed scheme in detail. A

simple application of FEC to TCP operation might not work effectively. If the

redundancy is too low, lost packets might not be recovered effectively. Moreover,

unnecessary retransmissions are possibly caused due to the reception of duplicate

ACKs even if recovery is successful.

4.1 Introduction

In this study, I propose a scheme to apply FEC technology to the entire TCP op-

eration in order to prevent degradation of transmission rates as well as improve

throughput. However, a simple application of FEC technology to TCP opera-

tion might not work effectively. It causes unnecessary retransmission due to the

reception of duplicate ACKs even if recovery is successful as shown in Figure 4.1.

The sender creates a redundant packet XORed with the payload field of all

packets in a congestion window (cwnd) and transmits the redundant packet fol-

lowing the original packets. Namely, TCP-FEC forms a group of a redundant

packet and corresponding original packets. The receiver thus can use the redun-

dant packet to recover a lost packet within the cwnd. This scheme cannot recover
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lost packets when two or more packet losses occur within a cwnd. In that case,

the sender retransmits the lost packets through the original TCP operation.

Therefore, I consider three ways to control the redundancy level according to

transmission rates, to limit minimum redundancy, and to suppress the return of

duplicate ACKs. First, TCP-FEC introduces an upper limit to group size “fmax”

to prevent inefficient operation due to too low redundancy. Next, TCP-FEC

suppresses returning duplicate ACKs until it is determined that a lost packet

cannot be recovered; i.e., when another original packet or a redundant packet

in a group is lost. I show the effectiveness of this scheme through simulation

evaluations.
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4.2 Redundancy Control

When cwnd is large, i.e., network condition is good, redundancy should be low

to prevent additional loads; otherwise, it means that network condition is bad or

transmissions have just started, so that redundancy should be high to prevent

packet losses. Redundancy is defined as the ratio of a redundant packet to the

corresponding original packets; i.e., 1/(cwnd − 1). For example, redundancy is 1

when cwnd is 2. FEC group size is updated when the sender sends a redundant

packet, i.e., at the end of an FEC group. If redundancy is too low, lost pack-

ets might not be recovered effectively. Therefore, in TCP-FEC for random loss

environments, an upper limit to group size, “fmax”, is introduced to prevent

inefficient operation as shown in Figure 4.2. Redundancy is then expressed as

1/min(cwnd − 1, fmax). The effect of fmax was evaluated through simulations.

4.3 ACK Control

As mentioned above, FEC mechanisms cannot work effectively if simply applied

to TCP operation. When the redundancy is particularly low, FEC mechanisms

might cause unnecessary retransmission due to the reception of duplicate ACKs

even if recovery succeeds and might not recover lost packets effectively.

TCP-FEC for random loss environments can recover a lost packet from a re-

dundant packet within a group. FEC mechanisms might cause unnecessary re-

transmissions due to the reception of duplicate ACKs even if recovery succeeds.

Therefore, TCP-FEC for random loss environments suppresses returning dupli-

cate ACKs until it is determined that lost packets cannot be recovered; namely,

when another original packet or a redundant packet in a group is lost as shown

in Figure 4.3.
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The redundancy decreases as the transmission rate increases considering net-

work efficiency. This means that redundancy is high at a low transmission rate

where packet losses have a significant impact. Figure 4.4 illustrates the operation

of TCP-FEC. When destination receives TCP segments with duplicate sequence

number, it discards duplicating TCP segment as shown Figure 4.5.

4.4 Simulation Evaluation

To investigate the efficiency of TCP-FEC, I evaluated it through simulation us-

ing Network Simulator ns-2 ver. 2.35 [27] after implementing TCP-FEC. In this
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simulation, a sender communicates with the corresponding receiver through two

routers as show in Figure 4.6. The parameters used in the simulation are sum-

marized in Table.4.1. I assumed that random packet loss of 0.001–1% occurs over

the link between routers. The link has a bandwidth of 100 Mb/s and a delay

time of 10–300 ms. Other links have a bandwidth of 100 Mb/s and a delay time

of 1 ms.

The sender employing TCP with selective ACK option (sack) and TCP-FEC
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Table 4.1: Simulation parameters

Simulation time 220 [s]

Buffer size 50 [packet]

Packet size 1500 [byte]

Random loss rate 0.001–1 [%]

Number of trials 1–20

Upper limit of group size (fmax) 1, 10, 40

for random loss environments transmits continuous data packets to the receiver.

In TCP-FEC for random loss environments, I compared the performance of three

methods: “fec” method where the redundancy is adapted according to cwnd,

“fec+fmax n” methods which sets the upper limit of group size to n packets in

addition to the “fec” method, and “fec-dup” method which does not suppress

duplicate ACKs. In this simulation, the fmax value varied from 1 to 50.

To evaluate the effectiveness of TCP-FEC, I focus on the average throughput,

effective recovery rate, and number of TCP timeouts and fast recoveries. The
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effective recovery rate is defined as the ratio of recovered packets to redundant

packets; e.g., the rate of 10% means that the redundant packets of 90% are not

utilized effectively. I evaluated the average values over 40 simulation runs with

different random seeds.

4.5 Simulation Results

Figure 4.7, 4.8, 4.9, 4.10 shows the average throughput performance when the

delay time, packet loss rate, and fmax vary. From Figure 4.7, TCP-FEC achieves

higher throughput than “sack” method. Especially, “fec+fmax 10” method achieves

excellent throughput even as the delay time increases although throughput de-
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teriorates with other methods. On the other hand, “fec-dup” method attains

as low throughput as “sack” method. Namely, FEC technology cannot work ef-

fectively if simply applied to TCP operation. Figure 4.8 shows that TCP-FEC

achieves higher throughput than “sack” method in a wide range of packet loss

rates. Our scheme with large fmax achieves good throughput at a low packet loss

rate, while that with small fmax does it at a high packet loss rate. To investigate

the effect of fmax on throughput performance in detail, the average throughput

of “fec+fmax n” methods is shown in Figures 4.9 and 4.10, when the fmax value

varies. These results indicate that the packet loss rate has a large impact on

the effect of fmax compared with the delay time. Since large fmax means low
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redundancy, it degrades throughput significantly at a long delay time and high

packet loss rate. On the other hand, small fmax causes inefficient transmission

due to high redundancy. Therefore, an appropriate fmax value is 5–10 in this

environment.

Let’s investigate the reason for the above improvement. The number of fast

recoveries and timeouts, and effective recovery rate of each method are shown in

Figures 4.11, 4.12 and 4.13, when the delay time is set to 200 ms. From Fig-

ure 4.11, I can see that “fec+fmax n” and “fec” methods reduce the number of

fast recoveries much more than the other methods do. However, “fec+fmax 40”

and “fec” methods cause many timeouts at a high packet loss rate as shown in
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Figure 4.12. This is because the suppression time of duplicate ACKs increases

as the group size increases in these methods. It causes many timeouts as well

as a little throughput improvement. On the other hand, “fec+fmax 1” method

drastically reduces the number of fast recoveries and timeouts, although the ef-

fective recovery rate of it is very low as shown in Figure 4.13. Clearly, “fec+fmax

10” method can recover lost packets effectively and prevent retransmission by

redundant packets. Consequently, TCP-FEC improves throughput performance

regardless of the delay time by setting an appropriate redundancy level according

to packet loss rates.
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4.6 Conclusion

Packet losses significantly degrade TCP performance in high latency networks. To

improve TCP performance in such networks, I proposed a scheme to apply FEC

technology to the entire TCP operation. TCP-FEC for random loss environments

consists of three mechanisms to control the redundancy level, to limit minimum

redundancy, and to suppress duplicate ACKs. Simulation evaluations show that

TCP-FEC for random loss environments improves throughput significantly by

suppressing the return of duplicate ACKs and controlling minimum redundancy,

especially in high latency environments, although FEC technology cannot work

effectively when simply applied to TCP operation. In future work, I will consider
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a scheme to determine the appropriate redundancy level for network conditions

and to more effectively recover lost packets in a real environment, such as where

bust packet losses occur.
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5 Adapting TCP with FEC to

Real Environment

In this chapter, I consider adapting the TCP-FEC with Interleave to real envi-

ronments. FEC cannot recover lost packets if both of original and redundant

packets are “burstily” lost in a network. In addition, when FEC recovers lost

packets, congestion does not be controlled through original TCP operations.

5.1 Introduction

In this study, aiming to improve throughput, a scheme to apply FEC to the entire

TCP operation is proposed. If the redundancy is too low, lost packets might not

be recovered effectively. Moreover, unnecessary retransmissions and timeouts are

possibly caused, due to the reception of duplicate ACKs and lack of congestion

avoidance, respectively, even if recovery is successful.

On the Internet, packet losses commonly occur “burstily” rather than randomly

as shown in Figure 5.1. FEC cannot recover lost packets if both of original

and redundant packets are “burstily” lost in a network. In addition, when FEC

recovers lost packets, congestion does not be controlled through original TCP

operations. Therefore, a scheme to control transmission rates when recovery is

successful and interleave redundant packets from original packets is proposed
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Figure 5.1: Burst packet loss on a bottleneck link

hereafter. The effectiveness of this scheme is demonstrated through simulation

evaluations in burst loss environments such as actual environment.

5.2 Congestion Control

TCP-FEC for burst loss environments controls congestion based on the conven-

tional scheme such as TCP NewReno, which generally performs by detecting

packet losses. Since FEC mechanisms can recover lost packets, congestion does

not be controlled through original TCP operations in spite of excessive transmis-

sion rate as shown in Figure 5.2. To avoid congestion, TCP-FEC with Interleave
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Recover loss packetcwnd

Time

Network capacity

Figure 5.2: TCP-FEC without congestion avoidance

for burst loss environments uses ECN to notify the sender that lost packets have

been successfully recovered as shown in Figure 5.3. Specifically, the receiver adds

ECN information to a returning ACK when it recovers a lost packet. The sender

decreases transmission rate when it receives the ACK with ECN. Transmission

rate, i.e., cwnd, is calculated by using a reduction factor, “r” (0 < r ≤ 1), as

cwnd = r ∗ cwnd. (5.1)

For example, the reduction factor of TCP NewReno [28] is 0.5, and that of CUBIC

[29] is 0.8. The effect of the reduction factor on throughput performance was

evaluated through simulations.

5.3 Interleave Control

On the Internet, packet losses commonly occur “burstily” rather than randomly.

In random loss environment, TCP-FEC can effectively recover the lost packet

as shown in Figure 5.4. On the other hand, transmitting a redundant packet
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Figure 5.3: Concept of congestion control in TCP-FEC
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Recover

lost packet

Recover

lost packet

Burst packet losses

Figure 5.4: Recover the lost packet in random loss environments

following original packets might cause unsuccessful recovery due to burst packet

losses as shown in Figure 5.5. Therefore, as shown in Figure 5.6, TCP-FEC with

Interleave for burst loss environments interleaves each packet of a group with

packets of other groups to prevent multiple packet losses belonging to the same

group. The number of groups within a cwnd is defined as “g,” and each group

consists of the same number of packets to be interleaved. Namely, with TCP-

FEC for burst loss environments, number of groups is constant, and group size is

dynamically controlled. Group size is calculated as shown in Figure 5.7. When

69



P: Original packet

F: Redundant packet

F2

P8 P6P7 P5

P4F1 P3

P1

P2

Not Recover

lost packet

Burst packet losses

Figure 5.5: Recover the lost packet in burst loss environments

cwnd is less than 2∗g, the number of groups is set to 1; i.e., the packets cannot be

interleaved. The large number of groups will have high tolerance to burst packet

losses. However, timeouts will be caused by duplicate ACK suppression because

interleaving elongates maximum ACK suppression time. The effect of the number

of groups was evaluated through simulations as described in the following.

5.4 Simulation Experiment

The effectiveness of TCP-FEC with Interleave for burst loss environments in the

case of burst loss environments was evaluated through simulation using Network

Simulator ns-3 [30] after its implementation. Note that TCP-FEC with Interleave

for burst loss environments is based on simple TCP NewReno to focus on the effect

of recovery by FEC.

The parameters used in the simulation are summarized in Table 5.1. As shown

in Figure 5.8, a sender communicates with the corresponding receiver; that is, the

sender transmits continuous data packets to the receiver. Since TCP throughput

in burst loss environments is focused on in this study, it is assumed that the

bottleneck link has a bandwidth of 50 Mb/s and a delay time of 50–200 ms.
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Figure 5.6: Interleave control

Other links have a bandwidth of 100 Mb/s and a delay time of 1 to 5 ms.

In this simulation, the upper limit of group size (l) was varied from 0 to 40.

l of “0” means that TCP-FEC with Interleave for burst loss environments does

not limit group size. The reduction factor of transmission rates (r) was varied

from 0.5 to 1.0. r of 1.0 means that TCP-FEC with Interleave for burst loss

environments does not decrease transmission rate when it recovers a lost packet.

Note that r of 0.5 intends the same value of conventional scheme and r of 0.7

intends a middle value of 0.5–1.0. Number of groups (g) was varied from 1 to 5.

g of “1” means that TCP-FEC with Interleave for burst loss environments does

not interleave redundant packets.

Performance of TCP-FEC with Interleave for burst loss environments, focus-

ing on total throughput, compared with that of the conventional TCP NewReno

, was evaluated. Moreover, the characteristics of TCP-FEC with Interleave for
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Figure 5.7: Calculation of group size
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Figure 5.8: Simulation model

burst loss environments were analyzed in terms of number of TCP fast recoveries

and timeouts, number of recovery packets, average redundancy rate, and effective

recovery rate. Effective recovery rate is defined as the ratio of recovered packets

to redundant packets; for example, a rate of 10 % means that 90 % of redun-

dant packets are not utilized effectively. Furthermore, the characteristics of the

proposed and conventional schemes in transient and steady states were analyzed.

Transient and steady states are defined as a simulation period from 0 to 20 s and

that from 20 to 60 s, respectively.
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Table 5.1: Simulation parameters

Simulation time 60 [s]

Buffer size on routers 300 [packet]

Buffer size on end nodes ∞

Number of flows 8,16

Segment size 1000 [Byte]

Number of trials 10

Upper limit of group size (l) 0, 10, 20, 30, 40

Reduction factor (r) 0.5, 0.7, 1.0

Number of groups (g) 1, 2, 3, 4, 5

TCP algorithm TCP NewReno

5.5 Simulation Results

The simulation results are presented in the following, and the effectiveness of

TCP-FEC with Interleave compared with the conventional TCP is discussed.

The effect of upper limit of group size (l), reduction factor of transmission rate

(r), and number of groups (g) were investigated first. The effect of delay time

and number of flows were also examined. Next, the characteristics of proposed

and conventional schemes were then analyzed.

5.5.1 Preliminary Evaluation

First of all, I evaluate the fundamental characteristics of TCP-FEC with Inter-

leave for burst loss environments compared with the conventional scheme (TCP

NewReno and TCP-AFEC). The topology and parameters used in this simula-

tion are respectively summarized in Figure 5.9 and Table 5.2, which is the same
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Figure 5.9: Simulation model: Preliminary evaluation

simulation model used in [31]. A sender continuously communicates with the

corresponding receiver over a wireless link where random packet losses occur.

The average throughput performance of the proposed and conventional schemes

are summarized in Table 5.3. TCP-FEC with Interleave for burst loss environ-

ments with the reduction factor of 0.9 or 1.0 achieves higher throughput than the

conventional schemes.

5.5.2 Throughput Performance

Total throughputs when the proposed and conventional schemes were applied

over the whole simulation time are shown in Figures 5.10, 5.11, 5.12, 5.13 and

5.14. According to Figure 5.10, TCP-FEC with Interleave for burst loss environ-

ments achieves higher throughput than that of the conventional scheme, namely,

“tcp.” In the case of TCP-FEC with Interleave for burst loss environments, g is

set to 1, 3, and 5, and r is set to 0.7. In particular, TCP-FEC with Interleave

for burst loss environments with l of 30–40 attains the highest throughput in this

simulation. Small l will cause transmissions of wasteful redundant packets due

to excessive redundancy, while large l will cause unsuccessful recovery due to in-
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Table 5.2: Simulation parameters: Preliminary evaluation

Simulation time 180 [s]

Buffer size on access point 500 [packet]

Packet loss rate 0.1 [%]

Segment size 1000 [Byte]

Number of trials 30

Upper limit of group size (l) 30

Reduction factor (r) 0.5, 0.7, 0.9, 1.0

Number of groups (g) 3

TCP algorithm TCP NewReno

Table 5.3: Fundamental characteristics

TCP-NewReno TCP-AFEC
TCP-FEC with Interleave

r=0.5 r=0.7 r=0.9 r=1.0

8 [Mb/s] 19 [Mb/s] 8 [Mb/s] 11 [Mb/s] 23 [Mb/s] 24 [Mb/s]

sufficient redundancy. Namely, an appropriate redundancy should be determined

according to network conditions. That issue will be addressed in future work. In

the following simulation, l is set to 30. Total throughputs of the proposed and

conventional schemes when r was varied from 0.5 to 1.0 and g was varied from 1

to 5 are plotted in Figures 5.11 and 5.12, respectively. These figures indicate that

TCP-FEC with Interleave for burst loss environments achieves higher through-

put than that achieved by the conventional scheme regardless of the parameters

evaluated. In particular, TCP-FEC with Interleave for burst loss environments

attains the highest throughput when r and g are 0.7 and 2–3, respectively. From

Figure 5.13, TCP-FEC with Interleave for burst loss environments achieves higher
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Figure 5.10: Effect of upper limit of group size (r = 0.7)

throughput than the conventional scheme. TCP-FEC with Interleave for burst

loss environments maintains excellent throughput in a wide range of the delay

time although the conventional scheme degrades throughput as the delay time

increases. From Figure 5.14, TCP-FEC with Interleave for burst loss environ-

ments with large l achieves higher throughput than the conventional scheme in a

wide range of the number of flows, i.e., in the case where packet loss rates vary.

TCP-FEC with Interleave for burst loss environments with small l also improves

throughput at large number of flows, i.e., at high packet loss rates. This result

indicates that TCP-FEC with Interleave for burst loss environments will be fur-

ther improved by setting parameters to appropriate values according to network

conditions. Consequently, TCP-FEC with Interleave for burst loss environments
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Figure 5.11: Effect of reduction factor (l = 30)

can improve TCP throughput performance by applying FEC to TCP operation

to recover lost packets effectively. In the following subsections, the characteristics

of TCP-FEC with Interleave are discussed in detail.

5.5.3 Analysis of Characteristics of TCP-FEC

The reason that throughput was improved was investigated as described in the

following. Number of TCP fast recoveries and timeouts, number of recovery

packets, redundancy rate, and effective recovery rate for the proposed and con-

ventional schemes, when l is set to 30, are shown in Figures 5.15, 5.16, 5.17,

5.18 and 5.19. According to Figure 5.15, TCP-FEC with Interleave for burst loss

environments significantly reduces the number of TCP fast recoveries, although
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Figure 5.12: Effect of number of groups (l = 30)

the conventional scheme causes a large number of them. In the case of TCP-

FEC with Interleave for burst loss environments, the number of fast recoveries

decreases as number of groups increases, because a larger number of groups can

help to recover lost packets effectively by interleaving. On the other hand, TCP-

FEC with Interleave for burst loss environments with the large reduction factor

(r = 1.0) causes a large number of fast recoveries. This is because TCP-FEC

with Interleave for burst loss environments does not avoid congestion, although

it can recover lost packets effectively when the reduction factor is large. Number

of TCP timeouts, shown in Figure 5.16, shows a similar trend to that of number

of fast recoveries. However, TCP-FEC with Interleave for burst loss environments

with r of 1.0 and g of 3–5 increases the number of timeouts. This is because a
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Figure 5.13: Effect of delay time (l=30, r=0.7)

large number of groups increases maximum duplicate ACK suppression time, so

timeouts will easily occur in a congested situation (r = 1.0).

The effect of FEC on the recovery of lost packets was investigated as follows. As

shown in Figure 5.17, number of recovery packets increases as number of groups

due to the effect of interleaving. Namely, a large number of groups can help to

recover lost packets effectively, while it also causes high redundancy, as shown

in Figure 5.18. If redundancy is too high, redundant packets will be wastefully

transmitted; consequently, most redundant packets will not be used to recover

lost packets. This outcome can be confirmed in terms of effective recovery rate,

shown in Figure 5.19. It is clear from the figure that TCP-FEC with Interleave

for burst loss environments achieves the most-efficient recovery of lost packets
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Figure 5.14: Effect of the number of flows(r=0.7)

when number of groups is 3.

The above simulation results demonstrate TCP-FEC with Interleave for burst

loss environments achieves the highest throughput performance by recovering lost

packets effectively when r and g are set to 0.7 and 3, respectively.

5.5.4 Analysis Characteristics of TCP-FEC in Each State

The characteristics of the proposed and conventional schemes in transient and

steady states were investigate as follows. Total throughput, data-packet loss

rate, number of TCP timeouts, and effective recovery rate for the proposed and

conventional schemes in transient and steady states, are shown in Figures 5.20

and 5.21, respectively. According to Figures 5.20(a) and 5.21(a), TCP-FEC with
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Figure 5.15: Number of fast recoveries

Interleave for burst loss environments achieves higher throughput than the con-

ventional scheme by recovering lost packets effectively in both states. This result

can be confirmed by data-packet loss rate shown in Figures 5.20(b) and 5.21(b).

TCP-FEC with Interleave for burst loss environments can drastically reduce the

packet loss rate in both states. The packet loss rate in transient state is relatively

larger than that in steady state. This is because, in transient state, transmission

rate significantly changes (due to TCP’s slow-start mode) and packet losses can

easily occur. In particular, TCP-FEC with Interleave for burst loss environments

with large g (= 3–5) severely reduces packet loss rate in transient state for the

same reason described above. As shown in Figures 5.20(c) and 5.21(c), TCP-

FEC with Interleave for burst loss environments also reduces number of TCP
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Figure 5.16: Number of timeouts

timeouts in both states. In the case of TCP-FEC with Interleave for burst loss

environments, number of timeouts decreases as number of groups increases, in

a similar manner to the results for packet loss rate in transient state, because

a larger number of groups can help to recover lost packets effectively by inter-

leaving. However, in steady state, it increases when the reduction factor is 1.0

and number of groups is larger than 2. In steady state, since transmission rate,

i.e., cwnd, is relatively large, maximum duplicate ACK suppression time becomes

likely long, and it will easily cause timeouts, particularly in congested situations.

In transient and steady states, TCP-FEC with Interleave for burst loss environ-

ments with g of 3 and 2, respectively, attains the highest throughput. As shown

in Figures 5.20(d) and 5.21(d), this is because the lost packets can be recovered
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Figure 5.17: Number of recovery packets

most effectively in each state when the number of groups is set to these values.

In other words, bursty packet losses can more easily occur, and larger number of

groups is needed to effectively interleave in transient state than in steady state.

From the above results, the upper limit of group size and number of groups af-

fect recovery rate of lost packets. A small upper limit of group size achieves high

recovery rate but causes high overhead, while a large one achieves low overhead

but causes low recovery rate. Similarly, a large number of groups helps to recover

bursty packet losses but causes high overhead, while a small one achieves low

overhead but causes low recovery rate. The reduction factor has an impact on

the throughput and fairness performance. When some flows employing TCP-FEC

with Interleave for burst loss environments with the same reduction factor coexist
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Figure 5.18: Redundancy rate

on the shared link, high fairness will be achieved just like the case of conventional

TCP flows. On the other hand, flows with different reduction factors coexist, fair-

ness will be degraded. TCP-FEC with Interleave for burst loss environments can

therefore be further improved by dynamically adjusting the parameters according

to network conditions such as packet loss rate and competing flows, which will

be considered in future work, although it achieves higher throughput by applying

FEC with static parameter setting of appropriate values than the conventional

scheme.
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Figure 5.19: Effective recovery rate

5.6 Conclusion

Packet losses significantly degrade TCP performance in burst loss environments.

To improve TCP throughput in such networks, a scheme to apply FEC to the

entire TCP operation was proposed. This scheme consists of functions for control-

ling redundancy level and transmission rate, suppressing the return of duplicate

ACKs, and interleaving redundant packets. Evaluations of various characteristics

by simulation showed that TCP-FEC with Interleave for burst loss environments

offers higher TCP throughput performance than the conventional scheme by re-

covering lost packets effectively. In future work, I aim to devise a scheme to deter-

mine the appropriate values of each parameter according to network conditions

and to more effectively recover lost packets in order to achieve high throughput
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and fairness.
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(b) Data-packet loss rate

Figure 5.20: Transient state (0–20 s)
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(d) Effective recovery rate

Figure 5.20: Transient state (0–20 s)
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(b) Data-packet loss rate

Figure 5.21: Steady state (20–60 s)
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Figure 5.21: Steady state (20–60 s)
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6 Conclusion

In this chapter, this research is concluded. I describe a summary of this disser-

tation and future works in the following sections.

6.1 Summary of This Dissertation

The growth of the Internet has led to provide a wide variety of network services

such as multimedia services, e-commerce, online banking and trading, social net-

work services, and online games. Our desire in network services has changed

significantly as the Internet grows. In particular, there is a great demand for

real-time and delay-sensitive services to improve the quality of life. The quality

of such services depends especially on transmission delays. It has been improved

with the development of broadband network technologies, though the improve-

ment will have limitations due to physical distance between communication ends.

Therefore, further improvement should be achieved by improving the transmission

efficiency of communication protocols to transmit data between the communica-

tion ends.

TCP is still commonly used as reliable data-transmission protocol although net-

work environment for such services has significantly changed as described above.

It generally estimates an available bandwidth of networks on the basis of packet

losses due to congestion. Lost packets are recovered by retransmissions and the
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transmission rate is kept low while the lost packets are recovered. Since it needs at

least “one round-trip time” to recover lost packets, a long recovery time causes the

degradation of service quality. By this “reactive” control to recover lost packets,

TCP has an essential problem to provide real-time and delay-sensitive services.

To prevent this problem, the number of retransmissions must be kept as low as

possible.

One efficient way to prevent packet losses by “proactive” control is to apply

a technology called “forward error correction” (FEC). FEC enables a sender to

transmit packets with redundant information to recover lost packets by the infor-

mation at a receiver. The recovery success rate depends on the amount of redun-

dant information; however, redundant information places an additional load on

the network. It is typically used for UDP communication, which has a constant

transmission rate, while it is difficult to adapt to TCP communication, where

transmission rate changes often, because it is harder to select an appropriate re-

dundancy level according to network conditions. For this reason, although there

have been few studies on generally applying FEC to TCP operations, there have

been several studies on TCP restrictively using it.

This study aimed to improve TCP performance for real-time and delay-sensitive

services. To achieve this, I proposed schemes to apply FEC to the entire TCP

operation. The effectiveness of the proposed schemes was demonstrated through

simulation evaluations.

Chapter 2 introduced related works and basic knowledge which were necessary

for understanding this dissertation. For example, TCP’s congestion control and

error correction technology were explained.

In Chapter 3, I first considered a scheme to simply apply FEC technology to the

entire TCP operation. The proposed scheme dynamically controls redundancy

level according to transmission rates. I investigated the fundamental character-
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istics of the proposed scheme focusing on the redundancy, especially including

in a high-latency environment. Simulation evaluations showed that the proposed

scheme enabled higher throughput than the conventional schemes, especially in

high-latency environments.

In Chapter 4, I examined the characteristics of the proposed scheme in detail.

A simple application of FEC to TCP operation might not work effectively. If

the redundancy is too low, lost packets might not be recovered effectively. More-

over, unnecessary retransmissions are possibly caused due to the reception of

duplicate ACKs even if recovery is successful. Therefore, I extended the pro-

posed scheme to consider the ways to limit minimum redundancy and suppress

the return of duplicate ACKs. I investigated the characteristics of the proposed

scheme focusing on the introduced functions in an environment where random

packet losses occur. Simulation evaluations showed that the proposed scheme

improved throughput significantly by suppressing the return of duplicate ACKs

and controlling minimum redundancy, especially in high-latency environments,

although FEC technology cannot work effectively when simply applied to TCP

operation.

In Chapter 5, I considered adapting the proposed scheme to real environments.

FEC cannot recover lost packets if both of original and redundant packets are

“burstily” lost in a network. In addition, when FEC recovers lost packets, con-

gestion does not be controlled through original TCP operations. Therefore, I

further extended the proposed scheme to consider the ways to interleave redun-

dant packets from original packets and control transmission rates when recovery

is successful. I investigated the characteristics of the proposed scheme focusing

on these functions in a real environment where burst packet losses occur. Evalu-

ations of various characteristics by simulation showed that the proposed scheme

offered higher TCP throughput performance than the conventional scheme by
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recovering lost packets effectively.

6.2 Future Works

In future work, I will devise a scheme to determine the appropriate values of each

parameter according to network conditions and to more effectively recover lost

packets in order to achieve higher throughput and fairness.

In this research, I introduced a “proactive” control to recover lost packets into

TCP operations, which originally recovers lost packet by “reactive” control, i.e.,

retransmissions. I believe that this approach can be applied to a wide variety of

services such as satellite communications and telemedicine. For example, when

surgical images are missed or delayed in telesurgery that specialists examine and

treat patients over networks, the patient’s life will be risked. I believe that such

situations can be prevented by surely protecting communication data from losing

and delaying with error correction technologies. In addition, although dedicated

channels are generally needed for high-quality delay-sensitive services, this ap-

proach will be helpful to provide such services without dedicated channels in the

Internet. Therefore, this research can improve the quality of life on network users.
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