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Abstract 
 

In recent years, there is an increasing interest from scientists to plant derived compounds 

both in cosmetic and nutraceutical products. Garcinia mangostana Linn (Mangosteen) belongs 

family Guttiferae which is a tropical fruit and cultivated in many tropical rainforest countries such 

Thailand, Vietnam, Indonesia and Philippines. Mangosteen hull was used as a traditional medicine 

for skin infection, wounds, dysentery and diarrhea for hundreds of years in the Southeast Asia. 

The pericarp (peel) of Mangosteen fruit have been reported to contain tannin, xanthone, 

chrysanthemin, garcinone, gartanin and other bioactive substances.  

α-Mangostin was found the most abundant in the major xanthones taken from the pericarps 

of the mangosteen fruit. This compound is a yellowish coloring matter and has been discovered 

with a wide range of biological activities both in in vitro and in vivo including anti-inflammatory, 

anti-tumor, cardioprotective and anti-obesity agents.  It has been indicated that has verify function 

in biological activities. Therefore, the following chapters here deal with understanding the multi-

biological functions of α-Mangostin with anti-metastasis, reduction of the cell stiffness and 

activation of leukocytes. 

Chapter 2: α-Mangostin was first investigated to establish method to extracted this 

compound from the pericarp of Mangosteen fruit. There are several methods have been reported 

to extract α-Mangostin. In this study, α-Mangostin was extracted from the pericarp by using 

ethanol and silica gel, and optimized the condition and solvent to obtain the highest yield. 

Chapter 3: The effect of α-Mangostin on cancer cell metastasis was indicated on human lung 

cancer cells. The metastasis of cancer is very completed, and almost the research of anti-metastasis 

of α-Mangostin were studied on mono-culture which is deficient in interaction between cancer 

cells and surrounding cells. Therefore, I developed a co-culture system that cultured cancer cells 
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and normal cells together in order to reflect the communication between cancer cells and normal 

cells. Then impacts of α-Mangostin were examined on this co-culture system. 

Chapter 4: I found that α-Mangostin reduced the cell surface stiffness of various types of 

cells. The cell surface stiffness is mainly attributed by the actin cytoskeleton, so after treatment 

with α-Mangostin, these cells were stained their actin cytoskeleton to observe the change. 

Chapter 5: The new biological function of α-Mangostin was found in activation of leukocytes. 

I found that α-Mangostin induced the adhesion of leukocytes and it also reduced the stiffness of 

leukocytes. In addition, the activation of protein kinase C (PKC) and protein phosphatase were 

necessary for α-Mangostin-activated leukocytes. 

In this research, it was made clear that α-Mangostin presented its diversified biological 

functions, it was not only found with anti-cancer, but also has other effects with different cell types.  

The anti-metastasis of α-Mangostin has been found in several researches on cancer cells, but in 

this study, I found that α-Mangostin also had positive effect on normal cells which were 

surrounded cancer cells. This finding is important to optimize the conditions of this compound as 

a chemotherapeutic and chemopreventive agent for cancer treatment. In addition, α-Mangostin 

changed the mechanical properties which has been proposed to participate in regulation of cell 

state and fate. The mechanical properies is also play important role in leukocytes, α-Mangostin 

reduced the cell stiffness followed by induced the cell adhesion and activated leukocytes. These 

results contribute to complete the whole picture of the biological function of α-Mangostin, and 

these functions of α-Mangostin are useful for studies on the potential pharmacological principles 

as well as the preclinical applications of the α-Mangostin. 
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Chapter 1: General Introduction 

1 – 1. Garcinia Mangostana Linn and potential compounds 

 Garcinia Mangostana Linn, commonly known as mangosteen, is a tropical evergreen tree 

with edible fruit and native to nations of Southeast Asia. Its exact origins are unknown due to its 

widespread cultivation since ancient times, but it is believed to have been somewhere between the 

Sunda Island and the Moluccas, and mainly grows in Southeast Asia, southwest India and other 

tropical countries (Morton et al., 1987; Karp et al., 2006, 2007). Mangosteen is one the praised of 

tropical fruits, and certainly the most esteemed fruit in the family Guttiferae. There are numerous 

variations in nomenclature: among Spanish-speaking people, it is called “mangostan”; to the 

French, it is “mangostanier”, “mangoustanier”, “mangouste” or “mangostier”; in Dutch, it is 

“manggis” or “manggistan”; in Vietnamese, “mang cut”.  

 The place of origin of the mangosteen is unknown but they now grow almost in the Asian 

region as Malaysia, Myanmar, Thailand, Philippines, India and Vietnam. Especially, Vietnam used 

to be known the largest mangosteen gardens in the world. Mangosteen is a tropical tree, so it 

prefers hot and humid climate with temperate range from 25-35oC with a relative humidity over 

80% (Yaacob et al., 1995; Diczbalis, 2011). Therefore, in Vietnam, mangosteen is mainly 

distributed in the Mekong River Delta (Mekong Delta) and Southeast regions (Fig. 1.1). 

Mangosteen fruit are almost planted in Mekong Delta, the total mangosteen planting area is about 

4.9 thousand hectares and giving a yield of 4.5 thousand tons per year. One mangosteen tree has 

normally about 80 kg mangosteen fruit for each harvest. According to current of the statistics, Ben 

Tre province has about 4.5 thousand hectares of mangosteen which accounts for 77% of the total 

mangosteen area. The distribution of mangosteen is shown in Figure 1.1. 
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 The mangosteen tree is very slow-growing, erect with a pyramidal crown and attain 6-25 m 

in height. The tree trunk has dark-brown, flaking bark and the inner bark contain much yellow, 

gummy, bitter latex. The fruit is capped by the prominent calyx at the stem end and with 4 to 8 

triangular, is round and dark-purple to re-purple and smooth externally, has 3.4-7.5 cm in diameter. 

The rind is 6-10 mm thick, red in cross-section, purplish-white on the inside. It contains bitter 

yellow latex and a purple, staining juice. There are 4 to 8 triangular segments of snow-white, juicy, 

soft flesh (actually the arils of the seed) (Fig. 1.2). The fruit may be seedless or have 1 to 5 fully 

developed seeds. The flesh is slightly acid and mild to distinctly acid in flavor and is acclaimed as 

exquisitely luscious and delicious.  

 Mangosteen fruit is moderately low calories (63 calories per 100 g) and contains no saturated 

fats or cholesterol, is a good source of nutrients, vitamins and minerals. Consuming 100 gram of 

mangosteen supplies, 17.91 g of Carbohydrate, 31 µg of Vitamin B9 (Folate, Folic acid), 0.069 

mg of Copper, Cu, 1.8 g of Total dietary Fiber, 0.054 mg of Vitamin B1 (Thiamin), 0.102 mg of 

Manganese, Mn, 0.054 mg of Vitamin B2 (Riboflavin) and 0.3 mg of Iron, Fe. The detail 

nutritional value of Mangosteen is described in Table 1. 

 Some parts of mangosteen tree had a history of use in traditional medicine which has been 

reported almost in South Asia. It has been used to treat skin infections, wounds, dysentery, urinary 

tract infection and gastrointestinal complaints, although there is no high-quality clinical evidence 

for any of these effects (Morton, 1987; Obolskiy et al.,2009). Dried fruits are shipped from 

Singapore to Calcutta and to China for medicinal use. The sliced and dried rind is powdered and 

administered to overcome dysentery. Made into an ointment, it is applied on eczema and other 

skin disorders. The rind decoction is taken to relieve diarrhea and cystitis, gonorrhea and gleet and 

is applied externally as an astringent lotion. A portion of the rind is steeped in water overnight and 
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the infusion given as a remedy for chronic diarrhea in adults and children. Filipinos employ a 

decoction of the leaves and bark as a febrifuge and to treat thrush, diarrhea, dysentery and urinary 

disorders. A bark extract called "amibiasine", has been marketed for the treatment of amoebic 

dysentery ((Morton, 1987).  

 In addition, the rind of partially ripe fruits contains over 68 xanthone-type compounds, in 

which a-mangostin, b-mangostin, g-mangostin, garcinone E, and gartanin are the most abundant 

(Ilyas et al., 1994) (Fig. 1.2). By far, the most studied xanthone is α-mangostin (α-MG) for which 

anti-oxidant, anti-proliferative, pro-apoptotic, anti-inflammatory, anti-carcinogenic, and anti-

microbial activities have been reported. 

1 – 2. α – Mangostin and its biological functions 

α-Mangostin (Fig. 1.2) was found among the major xanthones taken from the pericarps of 

the mangosteen fruit in 1855 (Schmid, 1855). In 1855, α-mangostin was found among the major 

xanthones taken from the pericarps of the mangosteen fruit (Schmid, 1855). The compound is a 

yellowish coloring matter (Dragendorff, 1930), the structure of this xanthone was subsequently 

construed by Dragendorff and Murakami (Dragendorff, 1930; Murakami, 1932). The molecular 

formula, type and position of the substituent groups of α-mangostin were then determined by Yates 

and Stout in 1958.  

α-Mangostin is extracted from the pericarp of the mangosteen fruit (G. mangostana Linn.) 

and is a metabolite of 1,3,6,7-tetrahydroxy-2,8-di(3-methyl-2-butenyl) xanthone. The α-mangostin 

is a derivative of xanthones that are widely present in the hull of the mangosteen fruit. The 

molecular formula of α-mangostin is C24H22O6 with molecular weight 410.46 g/mol, and melting 

point 180-182°C (Peterson and Terrence, 2009). 
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Physical and chemical properties of α-mangostin: α-mangostin is a yellow amorphous 

crystal with melting point 180-182°C.  This compound has a maximum wavelength at 215, 243, 

and 317 nm (Ee et al., 2008). α-Mangostin is soluble in methanol and has a water solubility 

2.03×10−4 mg/L at 25°C. A qualitative analysis was performed by thin-layer chromatography 

(TLC) and detected by ultraviolet lamps with or without ammonia or using phenolic spray reagents. 

A quantitative analysis can be done with liquid chromatography (Walker et al., 2007; Tosa et al., 

1997). 

This compound has been discovered to possess a wide range of biological activities 

including anti-inflammatory, anti-tumor, cardioprotective, antidiabetic, antibacterial, antifungal, 

antiparasitic, antioxidant and anti-obesity activities (Fig. 1.3).  

1 – 2. 1. Antioxidant properties 

The antioxidant properties of α-mangostin were demonstrated through the ferric 

thiocyanate method (Fan and Su, 1997, Yoshikawa et al., 1994). α-Mangostin reduced copper- or 

peroxyl radicals-induced oxidation of the human low-density lipoproteins (LDL) (Williams et al., 

1995). They also found that α-mangostin: (i) dose-dependently prolonged the lag time of 

conjugated dienes at 234 nm; (ii) decreases the production of thiobarbituric reactive substances 

(TBARS); and (iii) diminishes the consumption of α-tocopherol that is induced by LDL oxidation. 

In addition, nitric oxide (NO) was also significantly inhibited from lipopolysaccharide (LPS)-

stimulated RAW 264.7 cells, and the inhibition showed an IC50 value of 12.4 μM (Chen et al., 

2008). α-Mangostin scavenged singlet oxygen, superoxide anion and peroxynitrite anion in a 

concentration-dependent manner (Pérez-Rojas et al., 2009). On the contrary, the compound was 

unable to scavenge hydroxyl radicals and hydrogen peroxide. α-Mangostin was also able to 

improve the neuronal death induced by 3-nitropropionic acid (3-NP) in a concentration-dependent 
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manner. This protective effect of the α-mangostin was related to the amelioration of 3-NP-induced 

reactive oxygen species formation. The protective effect of α-mangostin on cardiac reperfusion 

damage was found (Buelna-Chontal et al., 2011). The findings indicate that α-mangostin preserves 

the mechanical work of the cardiac, reduces the area of infarct as well as prohibits the decrease in 

cardiac ATP and phosphocreatine levels in the re-perfused myocardium. 

1 – 2.2. Anticancer and cytotoxic properties 

α-Mangostin inhibited the cell growth of the human leukemia cell line HL60 (Matsumoto 

et al., 2003), induced cell death PC12 rat pheochromocytoma cells (Sato et al., 2004). Moreover, 

α-mangostin remarkably inhibited the sarco/endoplasmic reticulum Ca2+-ATPase. The Ca2+-

ATPase inhibitory effects and the apoptotic effects of the xanthone derivatives showed a 

correlation with each other. On the contrary, α-mangostin treatment caused one of the signaling 

molecules of endoplasmic reticulum (ER) stress, c-Jun NH2-terminal kinase (JNK/SAPK), to be 

activated. These findings imply that α-mangostin inhibits Ca2+-ATPase to bring about apoptosis 

through the mitochondrial pathway. α-Mangostin had exceptional apoptotic effects on the human 

head and neck squamous carcinoma cell lines, HN-22, HN-30 and HN-31, which induced the 

down-regulation of bcl-2, while on the other hand caused an up-regulation of bax and p53 in HN-

22, HN-30 and HN-31 (Kaomongkolgit et al., 2011). 

α-Mangostin strongly suppressed cell growth DLD-1 human colon cancer cells 

(Matsumoto et al., 2005). The antiproliferative effect of α-mangostin was attributable to cell-cycle 

arrest by affecting the cyclins, cdc2 and p27 expression. α-Mangostin was found that cytotoxicity 

against DLD-1 human colon cancer cells (Nakagawa et al., 2007), 20 μM of α-mangostin reduced 

the number of viable cells consistently, which largely due to apoptosis. The antiproliferation of 

canine osteosarcoma cells, D-17, induced by α-mangostin showed an IC50 value of 15 μg/ml 
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(Krajarng et al., 2012). Nuclear condensation and fragmentation, normally observed in apoptosis, 

were also induced by α-mangostin, as revealed through Hoechst 33342 nuclear staining and 

nucleosomal DNA-gel electrophoresis. α-Mangostin was also able to induce sub-G1 peak as 

demonstrated by cell-cycle analysis, as well as membrane flipping of the phosphatidylserine and 

the loss of mitochondrial membrane potential in D-17 cells. 

The effectiveness of α-mangostin as an antimetastatic agent against the expressions of 12-

O-tetradecanoylphorbol-13-acetate (TPA)-induced matrix metalloproteinase-2 (MMP-2) and 

matrix metalloproteinase-9 (MMP-9) was investigated in human breast adenocarcinoma cells, 

MCF-7 (Lee et al., 2010). Moreover, α-mangostin inhibited the activation of extracellular signal-

regulated kinase 1 and 2 (ERK1/2) that takes place in the down-regulation of TPA-induced enzyme 

activities, protein, and MMP-2 and MMP-9 messenger RNA levels, as well as TPA-induced 

degradation of inhibitor of kappaBα (IκBα) and the nuclear levels of nuclear factor kappa B (NF-

κB), c-Fos, and c-Jun. α-Mangostin treatment also resulted in a dose-dependent inhibition of the 

binding abilities of NF-κB and activator protein-1 (AP-1). Furthermore, MCF-7 cells treated with 

the specific inhibitor for ERK (U0126) could inhibit TPA-induced MMP-2 and MMP-9 

expressions as well as cell invasion and migration. Results revealed the effectiveness of α-

mangostin as a novel and effective antimetastatic agent that acts through the down-regulation of 

MMP-2 and MMP-9 gene expressions. It was also observed that α-mangostin treatment resulted 

in a dose-dependent inhibition on the binding abilities of NF-κB. The effect of α-mangostin is 

further potentiated in the reduction of FAK or ERK1/2 phosphorylation by FAK small interfering 

RNA (FAK siRNA) (Shih et al., 2010). α-Mangostin also suppressed the subsistence of lung 

cancer cells, A549 and displayed anti-metastatic activities by inhibiting the migration and invasion 

in co-culture condition, and reducing the actin cytoskeleton of cancer cells (Phan et al., 2018). 
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1 – 2.3. Anti-inflammatory, anti-allergy analgesic properties 

α-Mangostin produced prominent anti-inflammatory activity in rats, via both 

intraperitoneal and oral routes. In fact, this anti-inflammatory activity was present in bilaterally 

adrenalectomized rats as well. Administration of α-mangostin in rats revealed considerable 

antiulcer activity of the compound (Shankaranarayan et al., 1979). α-Mangostin could also inhibit 

primary and secondary responses of adjuvant-induced arthritis in rats (Gopalakrishnan et al., 1980). 

In addition, α-mangostin significantly inhibited lipopolysaccharide-stimulated NO-production and 

cytotoxicity in mouse leukemic monocyte macrophage cell line (RAW 264.7 cells) (Chen et al., 

2008). To prove the effect of this xanthone, the induction of inducible nitric oxide synthase as well 

as COX enzyme expressions was measured. α-Mangostin concentration was found to reduce iNOS 

induction in a dependent manner. Moreover, α-mangostin potently inhibited paw edema. α-

Mangostin exhibited analgesic effects in the hot-plate and the results showed the potent peripheral 

and central antinociceptive effects exerted by α-mangostin in mice (Cui et al., 2010). α-Mangostin 

was shown to inhibit the production of Interleukin (IL)-6, prostaglandin D2 (PGD2) and 

leukotriene C4 (LTC4) as well as degranulation in bone marrow-derived mast cell (BMMC) 

induced by phorbol 12-myristate 13-acetate (PMA) plus A23187 (Chae et al., 2012). Another 

effect of α-mangostin that was observed was the repression of cyclooxygenase (COX)-2 

expression. These results reflect the potential usefulness of α-mangostin in alleviating allergic 

inflammatory responses mediated by the mast cell. 

1 – 3. Anticarcinogenic activities of α-Mangostin 

Among the many studies showed, the anticancer and cytotoxic properties of α-mangostin 

have been the most interesting of scientists studied through a numerous of studies. The anti-cancer 

activities of include cell cycle arrest, suppression of tumor cell proliferation, induction of apoptosis 
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and differentiation, reduction of inflammation, and inhibition of adhesion, invasion, and metastasis 

(Akao et a;., 2008; Pedraza-Chaverri et a;., 2008; Hung et al., 2009). Figure 1.4 presents the 

molecular mechanism changed by α-mangostin. 

1 – 3.1. Induction of Apoptosis 

It has been reported that α-mangostin induces apoptosis in various cancer cell types by 

activating pro-apoptotic signaling molecules and by inhibiting anti-apoptotic molecules of the 

intracellular signal transduction pathways. The induction of apoptosis in human promyelocytic 

leukemia (HL-60) cells by α-mangostin was mediated by the activation of caspase-9 and caspase-

3, but not caspase-8, indicating that α-mangostin may be involved in the mitochondrial apoptotic 

pathway (Matsumoto et al, 2004). PC12 cells treated with α-mangostin demonstrated typical 

apoptotic DNA fragmentation, caspase-3 cleavage, mitochondrial membrane depolarization, 

cytochrome c release, sarco-endoplasmic reticulum Ca2+-ATPase inhibition, and c-Jun NH2-

terminal kinase (JNK/SAPK) activation (Sato et al., 2004). The cytotoxic effect of α-mangostin 

on human colon cancer DLD-1 cells was found to be caused by apoptosis, but there is either 

activation of caspases or changes in Bax, Bcl-2 protein and apoptosis-inducing factor following α-

mangostin treatment (Nakagawa  et al., 2007). α-Mangostin-induced apoptosis may be involved 

the miR-143/ERK5/c-Myc pathway and mitochondrial factors endonuclease-G which is unique 

mechanisms of α-mangostin-induced apoptosis. 

1 – 3.2. Induction of Cancer Cell Cycle Arrest 

It is well known that the cell cycle is normally regulated by a number of proteins, including 

p53, p21waf, the cyclin-dependent kinases (cdks) and their activators, the cyclins. The 

dysregulation of cell cycle machinery and checkpoint signaling pathways is a hallmark of 

malignant cells (Collins and Garrett, 2005; Gali-Muhtasib and Bakkar, 2002). Thus, modulation 
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of cell cycle progression is one of the major strategies for both chemoprevention and chemotherapy. 

Treatment of α-mangostin results in a direct inhibition of the proliferation and viability of various 

cancer cell types in vitro, as manifested by the significant arrest of cells at various phases of the 

cell cycle (Akao et al., 2008). The antiproliferative effects of α-mangostin were associated with 

cell cycle arrest mediated by modulation of the expression of cyclin A, B1, D1, E1, cdc2 or p27 in 

human colon cancer DLD-1 cells (Matsumoto et al., 2004). The exposure of α-mangostin to DLD-

1 cells resulted in G1 arrest (Han et al., 2009). These findings provide a rational basis for the 

development of α-mangostin  as agent for cancer prevention or for use in combination with anti-

cancer drugs; however, further experiments are required to explore the precise molecular 

mechanisms underlying the observed induction of cell cycle arrest. 

1 – 3.3. Anti-Invasive and Anti-Metastatic Effects 

Metastasis of cancer cells is a complex, multistage process that involves changes in cell 

adhesion, migration, invasion, rearrangement of the extracellular matrix (ECM), anoikis-

suppression and reorganization of cytoskeletons (Brábek et al., 2010; Kargiotis et al., 2010; Sato 

et al., 2010; Mareel  et al., 2010). α-Mangostin exhibited an inhibitory effect on adhesion, 

migration, and invasion of human prostate carcinoma cells (PC-3). This effect was associated with 

decreased expression of MMP-2, MMP-9, and urokinase-plasminogen activator (u-PA) mediated 

by suppression of the JNK1/2 signaling pathway and inhibition of NF-κB and AP-1 binding 

activity (HUng et al., 2009). α-Mangostin could inhibit invasion, and migration events of human 

breast adenocarcinoma cells, MCF-7 and human lung adenocarcinoma cells, A549 (Shih et al., 

2010, Lee et al., 2010). α-Mangostin could inhibit the activation of extracellular signal-regulated 

kinase 1 and 2 (ERK1/2), and downregulate the enzyme activities, protein, and messenger RNA 

levels of MMP-2 and MMP-9; this compound could also inhibit the degradation of inhibitor of 
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kappaBα (IκBα) and the nuclear levels of NF-κB, c-Fos, and c-Jun. In A549 cells revealed that 

ERK1/2 inhibition occurred via blocking the activation of αvβ3 integrin and focal adhesion kinase 

(FAK). FAK is a non-receptor tyrosine kinase that is primarily localized to cell–matrix adhesions. 

It acts as a central regulator of focal adhesion, influencing cell survival, differentiation, 

proliferation, migration, and tissue remodeling. Briefly, α-mangostin is a novel, effective, 

antimetastatic agent that functions in regulating MMP-2 and MMP-9 gene expression.  

Promisingly, the merely in vivo study about anti-metastatic activity of xanthones had been 

progressed in a BALB/c mice model with breast cancer cell, BJMC3879. The results showed that 

lung and Lymph node metastasis tended to decrease using 5000 ppm panaxanthone in their diet. 

These results suggest that the observed anti-metastatic activity of xanthone may be of clinical 

significance as adjuvant therapy in metastatic human breast cancer (Watanapokasin et al., 2010). 

Although the anti-invasive effect of xanthones has been observed, the underlying mechanism in 

the invasion process remains unclear. It is known that tumor growth is dependent upon 

angiogenesis and that for the process of metastasis to successfully occur to different organs, tumor 

cells must possess sufficient blood supply. Although the effect of xanthones exposure on 

angiogenesis and the regulation of HIF-1a and VEGF have yet to be reported, these areas warrant 

investigation.  
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Figures 

 

 

 

 

Figure 1.1. Mangosteen tree Garcinia mangostana Linn and its distribution in Vietnam. 

Mangosteen are planted almost in Mekong Delta and Southeast of Vietnam. Especially, Ben Tre 

is province where has the largest Mangosteen garden and contributes above 70% Mangosteen fruit 

yield every year.  

  

Ben Tre has the largest 
Mangosteen garden 
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Figure 1.2.  Mangosteen fruit and the chemical structure of the main xanthones found in its 

pericarp. a-mangostin, b-mangostin, g-mangostin are the main xanthone extracted from the 

pericarp and they are the most studied.  
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Figure 1.3: Pharmacological properties of α-mangostin 
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Figure 1.4: Molecular mechanisms behind the anticarcinogenic activities of α-Mangostin 
  

α-Mangostin 

Induction of cell cycle arrest  
G1-arrest, cyclin D1↓, p21WAF1↑, p21CIP1↑, cdc(s) ↓, PCNA↓, CHEK2 ↑ 
cyclinD1/CDK4 ↓, p27KIP1↑, cyclinE ↓, phosphorylated Rb↓ , p16 INK4A↑, 
p38MAPK↓, Bmi-1↓, G2/M arrest, topoisomerases activity↓ 

Inhibition of angiogenic and metastatic progression 
VEGF ↓, VEGF-A/SDF-1↓, VEGFR2↓, EKR1/2↓, MMP-2/MMP-9/NF-κB/Akt1↓,  
IκBα↑, αvβ3↓, FAK↓, NK1/2↓, NF-κB/AP-1↓, NF-κB-DNA↓, E-cadherin↑, 
Akt phosphorylation↓, pNF-κB/p65Ser552↓, pStat3Ser727↓, pStat3Tyr705↓, 

Induction of the apoptotic signaling pathway 
cytochrome c↑, Akt1/NF-κB↓, caspase-7, -8, -9 and -3↑,ROS↑, Bcl-2↓, Bax↑, 
Hsp70↓, NF-κB↓, ATP↓, phospho-ERK, JNK, Akt↓, p53↑, Bmf↑, Fas↑, 
microRNA-143↑, ERK5↓, c-Myc↓, PARP cleavage, Bid↓, ERα↓ 



 26 

Table 1: Nutritional value of Mangosteen fruit 
(Source: USDA National Nutrient database) 

Serving Size: 1 Cup (100 g)  Calories 73 Kcal. Calories from Fat 5.22 Kcal. 
Proximity Amount % DV 

Water 80.94 g   

Energy 73 Kcal   

Energy 305 kJ   

Protein 0.41 g 0.82% 

Total Fat (lipid) 0.58 g 1.66% 

Ash 0.16 g   

Carbohydrate 17.91 g 13.78% 

Total dietary Fiber 1.8 g 4.74% 

Minerals Amount % DV 

Copper, Cu 0.069 mg 7.67% 

Manganese, Mn 0.102 mg 4.43% 

Iron, Fe 0.3 mg 3.75% 

Magnesium, Mg 13 mg 3.10% 

Zinc, Zn 0.21 mg 1.91% 

Calcium, Ca 12 mg 1.20% 

Phosphorus, P 8 mg 1.14% 

Potassium, K 48 mg 1.02% 

Sodium, Na 7 mg 0.47% 

Vitamins Amount % DV 

Vitamin B9 (Folate, 
Folic acid) 31 µg 7.75% 

Vitamin B1 (Thiamin) 0.054 mg 4.50% 

Vitamin B2 
(Riboflavin) 0.054 mg 4.15% 

Vitamin C (Ascorbic 
acid) 2.9 mg 3.22% 

Vitamin B3 (Niacin) 0.286 mg 1.79% 
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Vitamin B6 
(Pyridoxine) 0.018 mg 1.38% 

Vitamin B5 
(Pantothenic acid) 0.032 mg 0.64% 

Vitamin A 2 µg 0.29% 

Beta Carotene 16 µg   

alpha Carotene 1 µg   

Beta Cryptoxanthin 9 µg   
 

*Above mentioned Percent Daily Values (%DVs) are based on 2,000 calorie diet intake. Daily 

values (DVs) may be different depending upon your daily calorie needs. Mentioned values are 

recommended by a U.S. Department of Agriculture. They are not 

healthbenefitstimes.com recommendations. Calculations are based on average age of 19 to 50 
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Chapter 2: Extraction of α – Mangostin  

2 – 1. Overview 

A huge number of compounds are widely distributed in nature and many of these possess 

medicinal/biological/pharmacological activity. α-Mangostin, a natural xanthone isolated from the 

pericarps of mangosteen, represents one of the most studied chemopreventive agents. This 

compound has been reported to interfere with all the major stages of carcinogenesis: initiation, 

promotion, and progression. A number of mechanisms have been proposed for its anticarcinogenic 

activities. Therefore, in order to obtain the biological active compound, the present study was 

designed for the extraction of this compound from the fruit pericarp of Garcinia mangostana L.). 

The extraction condition and solvent were optimized, the dried pericarp powder was extracted with 

ethanol and loaded on silica gel. A high yield of α - mangostin was extracted from dry pericarp. 

The verification of experimental results under optimized conditions showed that α - mangostin 

value for mangostin pericarp was 18.65g/kg dry matter. The chemical structure of α-mangostin 

was then verified by mass spectrometry (MS), nuclear magnetic resonance (1H NMR and 13C 

NMR), and infrared spectroscopy (IR).  
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2 – 1. Introduction 

Mangosteen (Garcinia mangostana L.) belongs the Garcinia genus which is mainly 

cultivated in Thailand, Vietnam, Indonesia and other tropical countries. The pericarp of G. 

mangostana has been used as traditional medicines for diarrhea, skin infection, cholera, purulence 

and other diseases (Chopra, Nayar & Chopra, 1965; Garnett & Sturton, 1932; Mahabusarakam, 

Wlriyachitra & Taylor, 1987). A variety of active ingredients, including xanthones, 

polysaccharides, phenolic acids and pigments has been extracted from mangosteen pericarp and 

α-mangostin is one of the most important natural xanthone derivative (Zarena, 2015; 

Weecharangsan, 2006; Moongkarndi, 2014; Yu LM, 2014; Kosem, 2013, Ketsa, 2011; Zhang, 

2011). 

Extraction is an important process for the preparation of medically useful extracts that 

contain an optimum level of active constituents. An appropriate extraction method as well as a 

suitable solvent for extraction is the first requirement for producing an appropriate yield of active 

constituents in the extracts. There have been some reports on obtaining preparations of mangosteen 

pericarp extraction that have increased amounts of α-mangostin, for example, an extraction of the 

pericarps with (95%) ethanol using the Soxhlet apparatus produced the highest yield of an extract 

(26.60% dry weight) and the highest content of α-mangostin (13.51% w/w of crude extract). This 

yield was much higher than when other extraction methods were used, such as maceration, 

percolation, ultrasonic extraction and extraction using a magnetic stirrer, and the use of other 

extraction solvents (70% and 50% ethanol). Recently, dichloromethane has been reported that was 

the most suitable solvent for extraction of α-mangostin from G. mangostana pericarps, and yielded 

α-mangostin content of up to 46.2% w/w (Pothitirat et al., 2010). However, the use of 

dichloromethane, a halogenated hydrocarbon, as a solvent for extraction may be harmful due to its 
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toxicity including the possibility of the onset of dizziness, headache, nausea, irritation or intense 

burning in the skin, eyes and respiratory tract. There are also reports that dichloromethane can 

induce pancreatic, liver, biliary passages, breast and brain cancers (Ames et al., 2000). Moreover, 

dichloromethane is expensive and must be completely removed by evaporation before use. 

Obviously, this results in an increased cost for producing the product. Recent trends in extraction 

techniques have largely focused on finding solutions that could minimize the use of potentially 

toxic solvents. 

Therefore, in the present study, I have focused on investigating an extraction method of α-

mangostin based on the design of extraction produces that can prevent waste, less use hazardous 

chemical solvent, and ensures a safe, cheap and high-quality extract.   
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2 – 2. Experiment results 

 α-Mangostin was isolated from the ethyl acetate extract using silica gel column separation 

as a yellow amorphous powder with melting point 180-181°C (Lit. 181.6-182.6°C). MS and NMR 

spectroscopy was utilized to identify the recrystallized α-mangostin. The results of mass spectra, 

1H- NMR (deuterated chloroform), 13C - NMR (deuterated chloroform), IR- spectra are shown as 

follows: A total of 24 carbons were observed in the 13C NMR spectrum where the signal at δ 131.3 

comprises two overlapped carbons (Fig. 2.1).  

 The DEPT spectrum indicated five methyls (δ 17.8, 18.2, 25.8, 25.9, 61.1), two methylenes 

(δ 21.9, 26.8), four methines (δ 93.0, 102.6,123.4, 124.7) and thirteen quaternary carbons (δ 182.8 

(C-9), 163.1 (C-3), 161.6 (C-1), 157.5 (C-6), 156.1 (C-5a), 155.6 (C-4a), 144.4 (C-7), 138.0 (C-

8), 131.3 (C-3’), 131.3 (C-3”), 111.8 (C-8a), 111.0 (C-2), 103.5 (C-9a)) in the molecule (Fig. 2.2). 

Further, the mass spectrum showed the presence of a molecular ion peak at m/z 410 which 

validated a molecular formula C24H26O6. 

Analysis of the IR spectrum is indicated in Fig. 2.3, an absorption at 3422 cm-1 indicated 

the presence of a phenolic group. Meanwhile the presence of a chelated carbonyl group in the 

middle ring and a methoxy group were proved by a strong absorption at δ 1642 cm-1 and 1284 cm-

1. The absorptions at 2926 cm-1 and 2344 cm-1 indicated the presence of CH2 and CH3. Besides 

this, the absorption peak at 1459 cm-1 was due to the C=C aromatic stretching of the xanthone 

skeleton.   

 From the 1H NMR spectrum (Fig. 2.1), a sharp singlet was observed in the down field region 

at δ 13.80 (1-OH) which indicated the presence of an intra-molecular hydrogen bonded hydroxyl 

group. Two singlet signals at δ 6.25 and δ 6.72 were assigned to the two isolated aromatic protons 

at positions C-4 and C-5 respectively. Meanwhile the presence of 3-methylbut-2-enyl groups was 
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confirmed by the following characteristic signals. Two doublet signals at δ 3.37 (J=7.3 Hz) and δ 

4.10 (J=7.3 Hz) were attributed to the benzylic methylene groups at C-11 and C-16. A triplet at δ 

5.26 which integrated to two protons were due the vinylic protons at C-12 and C-17. Meanwhile, 

four singlet signals at δ 1.71, δ 1.82, δ 1.68, and δ 1.84 were assigned to H-14, H-15, H-19 and H-

20, respectively. The extracted α-Mangostin was therefore identified as α-mangostin as shown in 

Figure 2.1 and the spectral data are summarized in Table 2. 

 The final total amount of total α-mangostin which extracted from 1 kg dry pericarp of G. 

mangostana fruit was 18.62 g. 

Yield = !".$%
!&&&

× 100 = 1.862 % (with dry pericarp) 

Yield = !".$%
'"$(

× 100 = 0.383 % (with fresh fruit) 

Through the analysis, we confirmed that the crystallized sample is α-mangostin of high 

purity. The IR, MS and NMR spectral results were in accordance with those previously reported 

(Sen AK et al., 1982; Ee GCL et al., 2006). The IR- and NMR-spectral results conclusively 

confirmed the structure of the sample.   
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2 – 3. Conclusion and discussion 

In this paper, α-mangostin of relatively high purity was extracted successfully using silica 

gel fraction, and the extraction process engineering is simple, inexpensive with high yields. The 

mainly way to extract mangosteen pericarp is the novel extraction technique – subcritical ethanol 

extraction. According to this method for extracting the alpha-mangostin from the Garcinia 

mangostana pericarp, water extraction and alcohol extraction are used for obtaining the crude 

extract first in the extracting process, the content of the α-mangostin of the crude extract is 70%-

80%, then subcritical extraction is conducted, and the content of the alpha-mangostin is further 

made to reach 98%. The method is short in time, small in dosage of reagents, simple in step and 

high in yield and content, a subcritical extraction agent is volatilized directly to obtain a product, 

and thus the method is more suitable for industrial production. 

In the extraction process of bioactive compounds from plant, organic solvents such as 

methanol, ethanol, chloroform and ethyl acetate are known as solvents. However, due to their 

toxicity and volatility these organic solvents are considered contributing the environmental 

pollution and health hazard (Fig. 2.6) (Bi et al., 2013; Duan et al., 2016; Azmir et al., 2013). 

Therefore, it is needed to optimize the extraction method in order to give minimum negative impact 

to the environment and human health which is emerging become the focus of many researchers 

now days for the conventional organic solvents. 

 In addition, the sample to solvent ratio significantly affected to the extraction yield 

(Scheme 1). For the experiment, ethanol, hexane and ethyl acetate were applied to investigate this 

affect to the extraction yield. The extraction was carried out in the laboratory equipment. Xanthone 

extraction was increased with increasing of percent ethanol and extraction time. The increasing of 

percent ethanol, extraction time and temperature increased solubility of xanthone in solvent 
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(Nuttawan Yoswathana and M. N. Eshtiaghi, 2015). It was found the extraction constant conditions 

were at extraction time 2 days and room temperature in 95% ethanol. The solvent ratio of hexane 

and ethyl acetate were investigated 10:0, 10:1, 5:1, 2:1 (v/v) as shown in scheme 1. The yellow 

crystallized was found only in the fraction of 5:1, this crystallized was then determined as α-

mangostin. The uncrystallize was chromatographed with isocratic solvent n – hexane/EtOAc 5:1 

and 3:1, the yield of α-mangostin were collected 12.16 g and 4.26 g, respectively. This result 

indicated that the maximum extraction yield was obtained at the ratio of hexane and ethyl acetate 

of 5:1 (v/v). In addition, nearly no increasing of α-mangostin within 0.5 to 2 h could be detected 

with increasing of extraction time. Therefore, α-mangostin was increased with increasing of 

extraction time that means 30 min extraction time was long enough to extract xanthone at applied 

technique conditions. 

In conclusion, in this study I successfully extracted α-mangostin based the traditional 

method using ethanol. I investigated to optimize the extraction condition to save the solvent and 

decreased the process cost. In addition, it is more important that this method minimized the impacts 

from used solvents to human and environment, by using minimized the ratio of hexane and ethyl 

acetate with highest yield of α-mangostin. 
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2 – 4. Material and experimental method 

Materials 

Mangosteen fruit pericarp were collected at Cau Giay district, Hanoi province, Vietnam in 

April, 2019. The pericarp of mangosteen fruit were then dried and milled to be fine powder before 

extraction. n – Hexane and ethyl acetate solvents were obtained from Thermo Fisher Scientific 

(Waltham, MA, USA). Dioleoylphosphatidylcholine (DOPC), cholesterol (Chol) and 

polycarbonate membranes (100 nm) were purchased from Avanti® Polar Lipids (Alabaster, AL, 

USA). Phosphate buffered solution (PBS) was obtained from Sigma  

Extraction of α-mangostin 

The pericarp powder of mangosteen fruit (1kg) was extracted by maceration with EtOH (2L 

x 3 times) at room temperature in 2 days each. The combined extracts were filtrated and evaporated 

the solvent under reduced pressure to form 144.9 g of dark brown residue. Purified water H2O (400 

ml) was used to disperse the extract then followed by extraction with n – hexane (2 x 250ml), 

EtOAc (4 x 250 ml) and H2O – soluble extracts. 

The n – hexane and ethyl acetate (EtOAc) extracts were pre-adsorbed on SiO2, that was 

chromatographed by silicagel column with n – hexane/EtOAc (from 10:0 to 2:1), to give 4 fractions 

(E1 – E4).  Fraction E3 (38g) was recrystallized to give α-mangostin (2.2 g) and 2 fractions (E-

3.3; E-3.4). The crystallinity E-3.3 fraction (7.15 g) was chromatographed with isocratic solvent n 

– hexane/EtOAc (3: 1) to give more of α-mangostin (4.26 g). E-3.4 fraction was splitted by 

silicagel column with hexane - Acetone (5: 1) to give α-mangostin more (12.16 g). The extraction 

scheme was shown in Scheme 1. 
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Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1. 1H NMR and 13C NMR spectra of α-mangostin in deuterated chloroform CDCl3 
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Figure 2.2. DEPT spectrum of α-mangostin 
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Figure 2.3: The results of IR spectra of α-mangostin 
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Figure 2.4. Mass spectrometry of α-mangostin 
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Figure 2.5. α-Mangostin is collected after extraction. A yellow crystalline powder of α-

Mangostin was obtained after extraction process. 
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Figure 2.6: The solvents using for extraction process and their hazard. 
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Table 2. NMR data for α-mangostin in deuterated chloroform CDCl3; 500 Hz 
 
 

  δH; ppm (mult., J in 
Hz) δH (500MHz, CDCl3  1 

1 - - 

2 - - 
3 - - 
4 6.29 (s; 1H) 6.3 (s) 
4a -   
5 6.82 (s; 1H) 6.83(s) 
6 - - 
7 - - 
8 - - 
8a - - 
9 - - 
9a - - 
10 - - 
11 3.46 (d;J= 7Hz; 2H) 3,46 (d; J= 7.5 Hz) 
12 5.3 (m, 1H) 5.29 (t; J=7Hz) 
13 - - 
14 1.77 (d; CH3) 1.77 (s) 
15 1.83 (d; CH3) 1.83 (s) 
16 4.09 (d; J=6.5 Hz, 2H) 4.09 (d; J=6.5 Hz) 
17 5.3 (m; 1H) 5.29 (t; J=7Hz) 
18 - - 
19 1.84 (s; CH3) 1.84 (s; CH3) 
20 1.69 (d; CH3) 1.69 (s; CH3) 
OCH3 (7) 3.8 (s,3H) 3.8 (s,3H) 
OH (1) 13.77 (s) 13.78 (s) 
OH (3) 6.14 (s) 6.15 (s) 
OH (6) 6.3 (s) 6.31 (s) 
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Scheme 1: The isolation of a-mangostin 
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Chapter 3: α – Mangostin inhibits metastasis of lung cancer cells 

3 – 1. Overview 

Several studies have indicated that α-mangostin exerts anti-metastasis and anti- subsistence 

effects on several types of cancer cells. Especially, the anti-metastatic effect of α-mangostin on 

cancer cells is a prospective function in cancer treatment. However, the metastasis process is 

complicated, and includes migration, invasion, intravasation, and extravasation; thus, the main 

target of anti-metastatic effect of α-mangostin is not known. In this study, I investigated the effects 

of α-mangostin on the invasion, subsistence, and migration of lung cancer cells under co-culture 

conditions with normal cells and regular mono-culture conditions. I found that α-mangostin killed 

the lung cancer and normal cells in a dose-dependent manner. Furthermore, the alteration in the 

surface mechanical properties of cells was examined by using atomic force microscopy. Although 

the α-mangostin concentrations of 5 and 10 μM did not affect the short- term cell viability, they 

considerably decreased the Young’s modulus of lung cancer cells implying a decline in cell surface 

actin cytoskeletal properties. Additionally, these concentrations of α-mangostin inhibited the 

migration of lung cancer cells. In co- culture conditions (cancer cells with normal cells), the 

invasive activities of cancer cells on normal cells were discernibly observed, and was inhibited 

after treatment with 5 and 10 μM of α-mangostin. Taken together, α-mangostin suppressed the 

subsistence of lung cancer cells and displayed anti-metastatic activities by inhibiting the migration 

and invasion, and reducing the actin cytoskeleton of cancer cells. Our findings suggest that α-

mangostin could be a potential therapeutic agent for cancer treatment. 
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3 – 2. Introduction 

3 – 2.1. Cancer metastasis 

Cancer metastasis is the propagation of cancer cells from their original location (the 

primary tumor) to distant organs and locations to form secondary tumors (Fig. 3.1). This is the 

result of a series of molecular events involving not only through their association with the ECM 

and invasion of adjacent tissues. The process is composed of a number of sequential events which 

must be completed in order to the tumor cell to successfully metastasize, the so called metastatic 

cascade (Chambers et al., 2002). 

The metastatic cascade can be divided into three main processes which includes invasion, 

intravasation and extravasation. Once cancer cells lose cell-cell adhesion capacity which allows 

them to dissociate from the primary tumor mass and changes in cell-matrix interaction enable the 

cells to invade the surrounding stroma, this called invasion. The abnormalities such as mutation or 

dysregulation can lead to the dissociation of the primary tumor and enhanced potential for 

dissemination of cancer cells. The regulators of cell-cell adhesion which are play important role 

are tight junction (TJ), gap junction, E-cadherin (Jiang et al., 2015). In epithelial cell, the TJ 

functions in an adhesive manner and can prevent cell dissociation. A change in cancer cells by 

upregulation or downregulation of TJ protein results in loss of cell-cell association, cell contact 

inhibition, leading to uncontrolled growth, loss of adhesion to and degradation of the basement, 

then help cancer cells passages through this barrier. Beside, E-cadherin is essential in weakening 

of cell-cell adhesion occurs to allow cells become motile and metastasis and modification in the 

adhesive properties of cells (Tracey A. Martin et al., 2013; Jiang et al., 2015). 

The tumour will not develop if lack of angiogenesis process, it is necessary to local 

diffusion for transport of nutrients to and removal of waste products. The blood vessel within the 
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tumour’s vicinity can then provide a route for the detached cells to enter the circulatory system 

and metastasize to distant sites called the process of intravasation (Tracey A. Martin el at., 2013). 

Cancer cells breach the basement membrane and invade nearby blood vessels to gain access to the 

circulation and are subsequently transported to a distant site. The cancer cells take in use blood 

vessel tissue to product pro-angiogenic factors such as vascular endothelial growth factor (VEGF) 

family, FGF, hepatocyte growth factor (HGF), then bind to and activate endothelial cells of a 

neighboring blood vessel begin to produce enzyme that break down the basement membrane of 

the blood vessel creating tiny pore (Jiang et al., 2015). Endothelial proliferated and migrate through 

this pores, toward the angiogenic source, then undergo a tubule formation phase, and recruit 

additional cell types to support the vessel and allowing blood follow to the angiogenic source. 

The tumour cell has arrived at a likely point of intravasation, it interacts with the endothelial 

cells to form stronger bonds, and penetrates the endothelium and the basement membrane, it called 

extravasation (Don X. Nguyen et al., 2009). Cancer cell contact to mesothelial cells is followed 

consequently by adhesion, invasion and growth of tumor cells at such a new site. Factors released 

from tumor cells or adjacent stroma provide a favorable environment for the interaction between 

cancer cells and mesothelial such as IL-1β or TGF-β1 from cancer cells which can act on the 

mesothelial cells and adjacent stroma to promote peritoneal dissemination (Tracey A. Martin et al., 

2013). 

3 – 2.2. The anticancer properties of α-Mangostin  

α-Mangostin is the major xanthone extracted from the pericarp of mangosteen (Garcinia 

mangostana Linn) fruit. Mangosteen is a prevalent fruit in the tropical rainforests of Southeast 

Asian nations, and its pericarp has had a long history of medicinal value in this region (Pedraza-

Chaverri, 2008). The dried pericarp powder has been used as a medicinal agent for treatment of 
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skin-related diseases, wounds, and amoebic dysentery (Chopra, Nayar & Chopra, 1965; Garnett & 

Sturton, 1932; Mahabusarakam, Wlriyachitra & Taylor, 1987). The pericarp of mangosteen fruit 

contains a variety of secondary metabolites such as prenylated and oxygenated xanthones 

(Govindachari et al., 1971; Peres, Nagem & De Oliveira, 2000; Sultanbawa, 1980). Exudates from 

the mangosteen pericarp include α-, β, and γ-mangostin, garcinone B and E, along with 

mangostinone, tannins, and a flavonoid called epicatechin (Wexler, 2007). Especially, α-

mangostin is the most abundant prenylated xanthone present in the pericarp. 

α-Mangostin displays strong pharmacological effects (Ibrahim et al., 2016); specifically, its 

potential in cancer treatment has attracted increasing attention from scientists. Several studies have 

indicated that α-mangostin is effective against various types of cancer. α-Mangostin has been 

shown to induce apoptosis in rat pheochromocytoma (Sato et al., 2004) and human head and neck 

squamous carcinoma cells (Kaomongkolgit, Chaisomboon & Pavasant, 2011). The anti-

proliferative effects of α-mangostin were discovered in human colon cancer (Matsumoto et al., 

2005) and canine osteosarcoma cells (Krajarng et al., 2012). The anti-metastatic properties of α-

mangostin were found in human prostate carcinoma (Hung et al., 2009), breast adenocarcinoma 

(Lee et al., 2010), and lung adenocarcinoma cells (Shih et al., 2010). Studies in in vivo experiments 

revealed that α-mangostin reduced the tumor growth and lymph node metastasis (Aisha et al., 

2012; Shibata et al., 2011). Thus, α-mangostin is considered to be able to prevent cancer cell 

metastasis as well as subsistence. 

3 – 2.2. The purpose of this study 

Although a broad range of biological and pharmacological activities of α-mangostin have 

been reported, the mechanism behind its anti-metastatic effects is not fully understood. In the 

metastasis process, the cancer cells undergo multiple steps including migration, invasion, 
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intravasation, as well as extravasation (Sahai, 2007). These steps are probable targets for the 

inhibition of metastasis, especially invasion, which is an early and important target for the 

inhibition of metastatic process. In this study, I focused on the invasion process of cancer cells and 

examined the effects of α-mangostin on the progression of initial invasion of cancer cells that come 

in contact with normal cells (Fig. 3.2). In order to reflect the anti-invasion activities of α-mangostin 

more accurately in cancer treatment, I established a co-culture system of cancer and normal cells 

that imitated the initial invasive progression of cancer cells. Lung cancer is one of the most 

aggressive cancers with a five-year overall survival rate in 10–15% of the patients. This is 

attributable to the early metastatic process of lung cancer cells via the rapid spread to many distant 

sites within the body. Therefore, in this study, I employed non-small cell lung cancer A549 cells 

along with one normal bronchus diploid cell line CCD-14Br and used them in co-culturing 

experiments. 
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3– 3. Experimental results 

3 – 3.1. Cytotoxicity of α – Mangostin on lung cells 

The cytotoxicity of α-mangostin on A549 cells was evident by a dose- and time-dependent 

inhibition of cell viability and growth (Shih et al., 2010). I first evaluated the cytotoxicity of α-

mangostin by treatment of both the non-small cell lung cancer A549 and pulmonary normal diploid 

CCD-14Br cell lines with various concentrations of α-mangostin for 24 h. The cell viability was 

evaluated by the reduction of formazan dye produced from WST-8 in the presence of an electron 

mediator by the activities of dehydrogenases in cells. α-Mangostin exhibited cytotoxic effects on 

A549 and CCD-14Br cells at higher concentrations (Fig. 3.3A). The half-maximal effective 

concentration (EC50) values of α-mangostin for the cytotoxicity of A549 and CCD-14Br cells 

were 19 μM and 22 μM, respectively (Fig. 3.3). Furthermore, I examined the cytotoxic effects of 

α-mangostin on these cells in time course experiments (24–96 h culture). The EC50 values of α-

mangostin for the cytotoxic effects for A549 and CCD-14Br cells decreased in a time-dependent 

manner (Figs. 3.3B and 3.3C). The EC50 values of α-mangostin for the cytotoxic effects for A549 

cells almost plateaued at 48 h of culturing and was about 10 μM (Fig. 3.3B). On the other hand, 

the EC50 values of α-mangostin for the cytotoxic effects for CCD-14Br cells gradually decreased 

(Fig. 3.3C). Thus, CCD-14Br cells were less sensitive to the cytotoxic effects of α-mangostin than 

the A549 cells. Compared with the untreated control, A549 and CCD-14Br cells treated with α-

mangostin at concentrations below 5 μM were not significantly different, proving that these 

dosages are non-toxic to these cells. However, those treated with more than 10 μM of α-mangostin 

displayed some cytotoxicity in both A549 and CCD-14Br cells (Fig. 3.3). Therefore, I used less 

than 10 μM of α-mangostin for subsequent experiments. 
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3 – 3.2. α – Mangostin decreases the cell surface stiffness 

I then examined the effect of α-mangostin on the mechanical properties of cells using AFM. 

Alterations in cell activities or states often entail a change in the mechanical properties of cells 

(Haghparast et al., 2013; Shimizu et al., 2012), and the mechanical alterations are largely 

attributable to the actin cytoskeleton (Dai & Sheetz, 1995; Sugitate et al., 2009). Thus, analyzing 

the alteration in mechanical properties of cells can reveal the changes in characteristics of their 

underlying actin networks as well as their states (Haghparast, Kihara & Miyake, 2015; Haghparast 

et al., 2013; Kihara et al., 2011). AFM indentation is a sensitive method for analyzing the surface 

mechanical properties of cells (Haghparast, Kihara & Miyake, 2015; Haghparast et al., 2013). 

Figure 3.4 shows the distribution of the Young’s modulus of the cells treated with α-mangostin. 

The distribution of Young’s modulus of normal CCD-14Br cells (fibroblast-like morphology) has 

a logarithmic average value of 8.9 kPa, which was clearly higher than that of cancerous A549 cells 

with logarithmic average value of 3.6 kPa (Fig. 3.4). The difference in mechanical properties of 

normal and cancer cells is based on the difference in F-actin structures at the apical surface of these 

cell types (Cross et al., 2007; Haghparast et al., 2013; Lekka et al., 2012). 

Addition of 5 μM or 10 μM of α-mangostin to the cells reduced the distribution of the 

Young’s moduli in A549 as well as CCD-14Br cells in a dose-dependent manner (Fig. 3.4). 

Particularly, the Young’s modulus of A549 cells significantly decreased (Fig. 3.4). Thus, even 

though its concentration does not affect cell viability in a short-time period, α-mangostin clearly 

reduced the surface rigidity of cells. Furthermore, A549 cells, whose surface stiffness was 

originally soft, were more sensitive to the effect of α-mangostin than the CCD-14Br cells. Lung 

cancer cells A549 are more sensitive with α-mangostin compared with normal cells CCD-14Br in 

changing the mechanical properties. 
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3 – 3.3. α-Mangostin inhibit cell migration 

The effect of α-mangostin on lung cancer A549 cell motility was measured by the wound 

healing assay (Liu et al., 2013), an established method for studying directional cell migration in 

vitro. The migration of several types of cancer cells was reportedly inhibited after treatment with 

α-mangostin (Shih et al., 2010; Wang, Sanderson & Zhang, 2012; Yuan, Wu & Lu, 2013). In the 

untreated control group, cells exhibited marked cell migration in the wounded area, whereas the 

wounds treated with α-mangostin showed a delayed healing (Fig. 3.5). The ratio of recovered area 

of wound closure in the untreated cells was about 0.47 at 12 h and almost 0.98 after 24 h (Fig. 

3.5B). On the other hand, α-mangostin, at 5 and 10 μM, reduced the ratio of recovered area of 

wound closure to approximately 0.36 after 12 h, and 0.87 after 24 h (Fig. 3.5B). This result 

indicated that α-mangostin inhibited the migration of A549 cells in vitro. 

3 – 3.4. Impacts of α – Mangostin on metastasis of lung cancer cells 

The co-culturing system of A549 and CCD-14Br cells was used as a model for evaluating 

cancer cell invasiveness, which imitate the initial invasive progress of cancer cells. Then I 

examined the potential effects of α-mangostin on cancer cell invasion (Fig. 3.7A). Besides, the 

monoculture of each cell type was also conducted to compare their results with those of the co-

culture (Fig. 3.6). 

When only cancerous A549 cells were cultured, the cells grew and covered almost all of the 

plate surface after six days under α-mangostin concentration of less than 5 μM; however, the cells 

treated with 10 μM of α-mangostin showed a gradual decrease in the area covered by cells (Fig. 

3.6, A549 and Fig. 3.7B, A549 mono-culture). Conversely, when CCD-14Br cells were cultured 

under α-mangostin condition, the cells gradually proliferated (Fig. 3.6, CCD-14Br and Fig. 3.7B, 

CCD-14Br mono-culture). These results suggest that A549 cells were relatively sensitive to high 
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concentration of α-mangostin and showed gradual cell death at 10 μM of α-mangostin after three 

days culture. These results are roughly corresponding to our cytotoxic experiments (Figs. 3.3B and 

3.3C).  

After A549 and CCD-14Br cells were co-cultured, the A549 cells gradually grew and almost 

covered the whole area at six days (Figs. 3.7A, ctrl and 3.7B, Co-culture of control condition). 

Conversely, the covered area of CCD-14Br cells increased within several days, and after coming 

in contact with A549 cells, the area of CCD-14Br cells gradually decreased (Figs. 3.7A, control 

and 3.7B, Co-culture of ctrl condition). A549 cancer cells killed and eroded the normal CCD-14Br 

cells and resulted in a decline in the area of the CCD-14Br cells. In contrast, in the presence of α-

mangostin, A549 cells could not cover the whole surface area of the culture plate, and the coverage 

area of the CCD-14Br cells did not decrease (Fig. 3.7A, 5 μM of α-mangostin and 10 μM of α-

mangostin and 3.7B, Co-culture of 5 and 10 μM of α-mangostin conditions). Thus, invasive 

activities of A549 cells on CCD-14Br cells were inhibited by treatment with α-mangostin. 

Furthermore, in the presence of 10 μM of α-mangostin, A549 cells proliferated gradually but did 

not show any cell death as seen with the monoculture (Fig. 3.7B, 10 μM of α-mangostin).  

Thus, normal CCD-14Br cells probably rescue A549 cells from the cytotoxic effects of 

highly concentrated α- mangostin. These results demonstrate that by using a co-culturing system, 

I can conspicuously observe the invasive activities of cancer cells acting on normal cells and α-

mangostin exhibited its potential effect in repressing cancer cell invasion. 
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3 – 4. Conclusion and Discussion 

 Metastasis is a critical biological process in cancer pathophysiology and is a therapeutic 

target for treating active cancer. Previous studies have shown that α-mangostin displays anti-

metastatic properties in many carcinoma cells and lymph node metastasis (Hung et al., 2009; Lee 

et al., 2010; Shibata et al., 2011; Shih et al., 2010). Although it has been demonstrated that α-

mangostin decreased the expression of many cancer-related signal transductions and matrix 

metalloproteases (Fang et al., 2016; Hung et al., 2009; Krajarng et al., 2011; Shih et al., 2010), the 

detailed anti-metastatic mechanism of α-mangostin remains unclear. One of the reasons is that the 

metastatic process consists of multiple biological steps including migration, invasion, intravasation, 

and extravasation; thus, it is difficult to determine which steps are the targets of α-mangostin. 

Previous studies have been conducted only in a monoculture condition, where normal and cancer 

cells were cultured in isolation. Cancer development, progression, and invasion are positively and 

negatively affected from the tumor microenvironment, in which cancer cells interact with 

associated stroma (Quail & Joyce, 2013). Interaction between the cancer cells and the associated 

stroma present a powerful relationship that influences disease initiation and procession and patient 

prognosis. However, the monoculture condition alone cannot reproduce the cell responses 

associated with the cell–cell interactions. In this study, I established a 2D co-culturing system 

using cancer and normal cells; this model was devised to explore the interactions during the 

process of lung cancer invasion. Indeed, previous studies demonstrated that the co-culturing 

system showed dramatically different cellular properties in terms of morphology, proliferation, 

and cellular function (Angelucci et al., 2012; Furukawa et al., 2015).  

 Thus, the co-culturing system better simulates the living environment and cellular 

interactions that occur under in vivo conditions. However, our co-culturing system is based on a 
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2D culture system and thus I are unable to ascertain cancer cell-extracellular matrix interactions. 

If I want to simulate the whole invasion process of cancer cells, I may have to develop a 3D co-

culture system using cancer cells and normal cells in the future. In this study, I demonstrated that 

α-mangostin exerts pharmacological effects in lung cancer treatment, by using not only the 

monoculture but also co-culture conditions with non-small cell lung cancer A549 cells and normal 

bronchus diploid CCD-14Br cells. 

 Our results indicated that A549 cells, which are highly invasive carcinoma cells, invaded 

and caused serious damage to normal CCD-14Br cells. However, the invasive and erosive 

activities of A549 cells declined following treatment with α-mangostin, which could rescue the 

CCD-14Br cells from the invaded damage. Another interesting finding was that the A549 cells 

gradually died when treated for a long time period with high concentration of α-mangostin under 

the monoculture condition, meanwhile the cancer cells survived under co-culture with normal cells. 

Communication between cancer and surrounding cells is probably mediated by secreted proteins, 

including growth factors and cytokines (Mueller & Fusenig, 2004; Polyak, Haviv & Campbell, 

2009; Quail & Joyce, 2013). In previous study, α-mangostin was indicated that inhibited some 

growth factors (PDGF), cytokines (TGF, MCP1), proteases which are released from cancer cells 

and send to surrounding cells (cancer-associated fibroblast, stroma cells) in order to recruit other 

factors for cancer growth and metastasis (Fig. 3.8). Therefore, α-mangostin inhibited cancer-

released signals following by breaking down the communication between cancer cells and normal 

cells. In addition, I consider that the surrounding normal cells support the cancer cell subsistence 

by secreting cytokines. I believe that co-culturing of cancer cells with normal cells provides an 

environment similar to the tumor microenvironment (Quail & Joyce, 2013) and a more accurate 

characterization of the invasive ability of cancer cells. 
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α-Mangostin affected cell surface stiffness of A549 and CCD-14Br cells, especially the 

Young’s modulus of A549 cells, which clearly declined by treatment with 10 μM α-mangostin. 

The surface stiffness of cells reflects their underlying actin networks as well as their states 

(Haghparast, Kihara & Miyake, 2015; Haghparast et al., 2013; Kihara et al., 2011). Therefore, α-

mangostin clearly altered the actin network of A549 cancer cells. It is known that the stiffness of 

cancer cells is lesser than that of the corresponding normal cells (Cross et al., 2008; Guck et al., 

2005; Lekka, 2016), and softer cancer cells show higher malignant properties than stiffer cancer 

cells (Cross et al., 2011; Ramos et al., 2014). On the other hand, F-actin modification reagents 

usually decrease cell migration (Yamaguchi & Condeelis, 2007), and apoptotic cells are less stiff 

than normal cells (Kihara et al., 2009; Kim et al., 2012). α-Mangostin-treated cancer cells 

presented a decrease in their migration and invasion properties. Thus, α-mangostin probably 

affects the F-actin structures or mass, and this change has negative effects on cancer cell properties. 

 Finally, I discuss the pharmacological potential of α-mangostin. I suggest that α-mangostin 

shows an ability to suppress cancer cells at concentrations about 10 μM, which could effectively 

inhibit cancer progression by inhibiting cell growth, migration, and invasion. Using this dosage of 

α-mangostin, I aim to treat cancer by turning off the growth and development of cancer cells. 

However, only low levels of α-mangostin are adsorbed through the gastrointestinal tract in treated 

mice and the bioavailability F value of α-mangostin from oral administration is about 0.8% (Choi 

et al., 2014). The terminal half time of α-mangostin after intravenous administration is about 3 h 

in mice (Choi et al., 2014). For further research and effective application of α-mangostin in cancer 

treatment, it is necessary to develop an efficient system to deliver the optimal amount of α-

mangostin to the cancer-affected area in our body. 
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 I demonstrated that α-mangostin exerts pharmacological effects in lung cancer treatment, by 

using monoculture and co-culture conditions with non-small cell lung cancer A549 cells and 

normal bronchus diploid CCD-14Br cells. The EC50 values of α-mangostin cytotoxicity on A549 

cells were lower than those of CCD-14Br cells. Although the dosages below 10 μM of α-mangostin 

did not show significant toxicity in an early 24-h cell culture, the treatment clearly affected A549 

cancer cell properties. α-Mangostin decreased surface stiffness and inhibited the migration of 

A549 cells. Furthermore, α-mangostin repressed cancer cell invasion in normal cells. Our findings 

thus suggest that α-mangostin could be a potential therapeutic agent for cancer treatment. 

Furthermore, I established a co-culturing system using cancer and normal cells; and this model 

was devised to explore the interactions involving the cancer cell and normal cell as cancer invades. 
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3 – 5. Materials and experimental methods 

Material  

 Human lung adenocarcinoma cell line A549 cells and normal human bronchogenic 

epithelioid cell line CCD-14Br cells were purchased from Japanese Collection of Research 

Bioresources (JCRB) cell bank (Osaka, Japan). 3,3’-Dioctadecyloxacarbocyanine perchlorate 

(DiO), 1,1’-Dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine perchlorate (DiI), and antibiotics 

were purchased from Sigma-Aldrich (St. Louis, MO). Cell harvesting solution TrypLE express 

and fetal bovine serum (FBS) were purchased from Life Technologies Japan Ltd. (Tokyo, Japan). 

a-Mangostin was purchased from Wako Pure Chemical Industries Ltd. (Osaka, Japan). Cell 

counting kit-8 was purchased from Dojindo Molecular Technologies, Inc. (Kumamoto, Japan). 

The cone probe (BL-AC-40TS-C2; spring constant: around 0.05 N/m) was purchased from 

Olympus (Tokyo, Japan). Other reagents were purchased from Sigma-Aldrich, Wako Pure 

Chemical Industries Ltd., or Life Technologies Japan Ltd. 

Cell culture 

 The cells were cultured in DMEM containing 10% FBS and antibiotics (100 units/mL 

penicillin G and 100 μg/mL streptomycin sulfate) in humidified atmosphere of 95% air and 5% 

CO2 at 37 °C 

Determination of cell viability 

 The viability of cells after treatment with various concentrations of a-mangostin was 

evaluated by the cell counting kit-8 as recommended by the manufacturer. Briefly, cells were 

seeded on a 96-well-plate at 104 cells/well with 100 µL medium and cultured for 24 h, so as to 

allow the cells to adhere to the plate. The culture medium was replaced by 100 µL of fresh culture 

medium diluted with various concentrations of a-mangostin for a 24-h treatment. The medium 
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was replaced by adding 100 µL fresh medium diluted with 10 µL of cell counting kit-8 solution to 

each well. The cells were cultured for suitable time periods for each cell type. The plate absorbance 

was then measured at 450 nm using a microplate reader. Ratio of cell viability Vc was calculated 

as:  

Vc	=
)*+!"#$%!,)*+&"'($#)*+,
)*+'!#-,)*+&"'($#)*+,

 

where Vc is the cell viability ratio, Abstarget is the absorbance of a-mangostin-treated cells, Absctrl 

is the absorbance of control cells, Absbackground is the absorbance of the background. 

Measurement of mechanical properties of cells 

 The cultured cells treated with a-mangostin for 24 h were manipulated by atomic force 

microscopy (AFM) (Nanowizard III; JPK Instruments AG, Berlin, Germany) at room temperature. 

Combining optical microscopy (IX-71; Olympus) and AFM allows the probe to be placed on a 

particular region of the cell surface. In this study, the AFM probe was indented at the top of the 

cell surface with a loading force of up to 0.5 nN and velocity of 5 μm/s. The Young’s modulus of 

the cell was calculated using the Hertz model (Hertz, 1882). The force-distance curve for a region 

up to about 1 μm of cell surface indentation was fitted using JPK data processing software (JPK 

instruments AG) as: 

𝐹 =
𝐸

1 − 𝜈%
2𝑡𝑎𝑛𝛼
𝜋 𝛿% 

  

Where F = force, δ = depth of the probe indentation, ν = Poisson’s ratio (0.5), α = half-angle of 

the cone probe (9º), and E = Young’s modulus. More than 25 cells were used per experiment, and 

25 points were examined on the surface of each cell. The logarithmic Young’s modulus values for 

each group were compared by analysis of variance followed by Mann-Whitney U test. Young’s 
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modulus of the polystyrene tissue culture surface was more than 1× 107 Pa (Haghparast, 2015). 

The range of Young’s moduli of cell surface was in the order of about 102 to 104 Pa. Thus, I were 

convinced that the surface stiffness of the cells could be measured by this method without affecting 

the rigidity of culture surface. 

Invasion assay 

 In order to evaluate the invasion ability of cancer cells, a co-culture system was established 

by culturing both cancer and normal cell lines together. Briefly, cells were trypsinized, spun, and 

resuspended with fresh medium. Then, the cell suspension was fluorescently labeled with DiI for 

A549 cells or DiO for CCD-14Br cells for their membrane at 37 °C for 1 h in the dark. Cells were 

then spun at 200 × g for 5 min; the medium was then removed, and cells were resuspended with 

fresh medium and spun one more time. The labeled cells were cultured in 12-well-plates at a 

density of 2 × 104 and 4 × 104cells/well with CCD-14Br and A549 cells, respectively. For 

monoculture, A549 or CCD-14Br cells were prepared separately at the same density. After 

incubation for 24 h, the cells were exposed to a-mangostin at 0, 5, and 10 µM concentrations. The 

cells were observed and image acquisition was done by using fluorescence microscopy at the first 

time point (t = day 0). Then, the cells were cultured for 1, 2, 3, 4, 5, and 6 days and image 

acquisition was done for each day.  

 The fluorescence images were analyzed by ImageJ software. After binarization of each 

fluorescent color image, the cell area estimated by DiI or DiO fluorescence was calculated. Finally, 

I evaluated the cell area as cell coverage ratio, Ac:  

 

Ac = !"#$%&'(&)(&	+&,&(,-."&	/01&"'
2$,-"	03-4&	/01&"'
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Figure 3.1: The metastatic cascade. Cancer cells in a primary tumor detach from adjacent cells 

in a tumor mass, they grow and then invade the basement membrane and traverse extracellular 

matrix surrounding tumor epithelium and subsequently invade endothelium of local blood vessel. 

The cells intravasate into blood vessel and are carried by the circulation. 
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Figure 3.2: Co-culture definition and motivation. Co-culture compositions of at least two 

different type of cell (i.e., cancer/fibroblast, epithelial cell/lymphocyte, etc.) have been established 

in order to evaluate cell–cell interactions in cancer microenvironment through maximum 

simulation to in vivo microenvironment of human cancer. 
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Figure 3.3. The cytotoxicity of a-mangostin on the human lung cell lines. Cells were treated 

with various concentration of a-mangostin (0-100 µM) incubated for 24 hours, then measured the 

O.D value using CCK-8 kit. The cell viability was expressed as a ratio of a-mangostin treated cells 

to that of the control.  
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Figure 3.4. Young’s modulus of A549 and CCD-14Br cells. The distributions of the Young’s 

moduli of cells are shown as scatter plots in different concentration treatment of a-mangostin. 

Each condition displays the Young’s modulus of more than 20 individual cells.  
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Figure 3.5. The effect of a-mangostin on migration of A549 cells. The cells were treated with 

5 and 10 µM of a-mangostin for 24 h, and were subjected to analyser for cell migration. a) Images 

of migratory A549 cells were recorded at 0, 12, and 24 h by a microscope at x40 magnification, b) 

The percentage of the wound area by cell migration was calculated by using Fiji software. a-

Mangostin displayed an inhibitory on cell migration for A549 after 12 h and 24 h.  
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Figure 3.6. The effect of a-mangostin on migration of A549 cells. Cells were cultured in 

monoculture condition, then exposed with or without α-mangostin. (A) A549 cells were labeled 

with red fluorescence and (B) CCD-14Br cells were labeled with green fluorescence.  
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Figure 3.7. Invasion of cancer A549 to CCD-14Br cells in co-culture conditions treated with 

α-mangostin. Cells were cultured in co-culture condition, then exposed with or without α-

mangostin. (A) Fluorescence images of co-cultured cells. A549 cells were labeled with red 

fluorescence and CCD-14Br cells were labeled with green fluorescence. (B) Ratio of each cell area, 

Ac, cultured in monoculture or co-culture with A549 and CCD-14Br cells. The cell area was 

calculated from more than seven fluorescence images in each condition. Inverse value of the 

doubling time of each culture condition, t−1d (d−1) is shown in each graph. 
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Figure 3.8: The interaction between cancer cell and surrounding cells. Cancer cells release 

some secreted protein, cytokines and growth factors to surrounding cells, then they response to 

secret the necessary cytokines to cancer cells. α-Mangostin was improved that inhibited some 

proteins, cytokines in cancer cells, so it may be break down the communication between cancer 

cells and normal cells in co-culture system. Therefore, α-mangostin inhibited the invasive activities 

of cancer cells and prevent cancer cells-damaged normal cells. 
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Chapter 4: α – Mangostin reduces the cell surface mechanical of 

various cell types 

 

4 – 1. Overview  

Alpha-mangostin (α-mangostin) has been identified as a naturally occurring compound 

with potential anticancer properties. α-Mangostin was found to reduce the mechanical stiffness of 

human lung cells. α-Mangostin was demonstrated that decreased the cell surface stiffness of lung 

cancer A549 cells and lung normal fibroblast-like CCD-14Br cells. Of these two cell types, the 

surface stiffness of A549 cells decreased significantly when treated with α-mangostin. The 

question is here that "Is the α-mangostin-induced reduction of surface stiffness in A549 cells 

related to the effects of α-mangostin on cancer cells?". The following cell types were examined: 

human fibroblast TIG-1 cells, human cancerous HeLa cells, human embryonic kidney HEK293 

cells, mouse macrophage RAW 264.7 cells, and human myeloblasts KG-1 cells. Cells were treated 

with α-mangostin, and then examined for cell viability, actin cytoskeletal structures, and surface 

mechanical stiffness using atomic force microscopy. α-Mangostin demonstrated cytotoxicity 

against TIG-1, HeLa, HEK293, and KG-1 cells, but not against RAW 264.7 cells. The cytotoxic 

effect of α-mangostin varies according to cell type. On the other hand, α-mangostin reduced the 

mechanical stiffness of all cell types, including RAW 264.7 cells. Upon treatment with α-

mangostin, F-actin was slightly reduced but the actin cytoskeletal structures were little altered in 

these cells. Thus, reducing mechanical stiffness of animal cells is an inherent effect of α-mangostin. 

Our results show that α-mangostin is a naturally occurring compound with potential to change the 

actin cytoskeletal micro-structures and reduce the surface stiffness of various cells. 
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4 – 2. Introduction 

4 – 2.1. The mechanical properties of animal cells 

Cells remain it phenotypes through combination of physiological functions, physical 

properties and gene expression (Figure 4.1). Physical properties refer to properties that can be 

observed or measured without changing the composition of the material. Mechanical property of 

simple materials depends on their material characters. Cell mechanics is a sub-field of biophysics 

that focuses on the mechanical properties and behavior of living cells and how it relates to cell 

function. It encompasses aspects of cell biophysics, biomechanics, soft matter physics and 

rheology, mechanobiology and cell biology (Moeendarbary et al, 2014). The mechanical 

properties of individual cells have been supposed as unique indicators of their states, which could 

constantly change in accordance with cellular events and diseases. Alterations in biological 

activities and transformation of cell states often entail a change in the mechanical behavior of cells. 

In particular, alterations in cell stiffness/elasticity have emerged as a marker for cellular 

phenotypic events and diseases. 

Cell surface stiffness is attributed to the actin cytoskeleton (Dai, 1995; Collinsworth, 2002; 

Guilak, 2002; Trickey, 2004), and reflects the cell surface actin architectures (Haghparast, 2013; 

Haghparast, 2015) (Fig. 4.2). Moreover, cell surface stiffness changes in accordance with cellular 

events related to the remodeling of the actin cytoskeleton (Matzke, 2001; Kunda, 2008; Fletcher, 

2010; Shimizu, 2012). Therefore, analyzing cell surface stiffness may reveal changes of cell 

characteristics, and provide a better understanding of the actin cytoskeleton remodeling process in 

certain cellular events and disease states. The mechanical properties is possible to provide specific 

information about the different states, types of animal cells. In addition, the mechanical properties 

of cells have been showed to be a useful maker of cell states and is promising biomarker indicative 
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of various cells disease processes and changes in cell state. Examples include changes in red blood 

cell stiffness in cytoskeletal disorders such as spherocytosis (Li et al., 2007; Lee et al., 2007), 

increased cell deformability of invasive cancer cells compared to benign or normal cells of the 

same origin, malignant cancer cells exhibit lower stiffness than normal cells (Cross et al., 2007; 

Guck et al., 2005; Haghparast et al., 2013; Suresh et al., 2007, 2005), and changes in stiffness of 

leukocytes in response to activation with antigens or other signals (Khismatullin, 2009). The 

mechanical properties of mesenchymal stem cells are attributed to their diverse characteristics and 

states (Kihara et al., 2011; Maloney et al., 2010; Sugitate et al., 2009), an increased deformability 

has also been identified as a potential biomarker for pluripotent stem cells (Pajerowski et al., 2007; 

Chowdhru et al., 2010). The cortical stiffness changes during mitotic cell rounding (Kunda et al., 

2008; Shimizu et al., 2012); and the stiffness of the retinal epithelium changes during optic-cup 

morphogenesis (Eiraku et al., 2011). Therefore, analyzing the mechanical features of cells can 

reveal the characteristics of their underlying actin networks. It is also possible to characterize the 

sub-membrane actin networks in each cell type as indicators of surface stiffness. 

4 – 2.2. Atomic Force Microscopy (AFM) measures the cell surface stiffness 

In order to measure the cell surface stiffness, multiples methods have been developed 

including particle-tracking micro-rheology (Hoffman et al., 2006, 2009; Lau et al., 2003; Liu et 

al., 2006), magnetic twisting cytometry (Deng et al., 2006), micropipette aspiration (Oh et al., 

2012; Hochmuth, 2000) and micro-indentation (Levental et al., 2010; Mahaffy et al., 2004; 

Radmacher, 1997) have been developed to measure the elasticity of cells. Particle tracking micro-

rheology traces the thermal vibrations of either submicron fluorescent particles injected into cells 

or fiducial markers inside the cell cytoskeleton (Crocker et al., 2007). Elastic and viscous 

properties of cells are calculated from the measured particle displacements using the fluctuation-
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dissipation theorem (Hoffman et al., 2006; Crocker et al., 2007). The micropipette aspiration 

method applies negative pressure in a micropipette of diameter ranging from 1 to 5 μm to suck a 

small piece of cell membrane into the pipette. Cell stiffness is calculated from the applied negative 

pressure and cell membrane deformation (Oh et al., 2012). The indenting force and the resulting 

indentation in cells often follow the prediction of the Hertz model. Young's moduli of cells can be 

calculated from the force-indentation curves by fitting them to the Hertz model. This method has 

been widely applied to test the mechanical properties of tissue and cells despite of its limitations 

such as uncertainty in contact point determination, applicability of the Hertz model, and the 

potential to physically damage the cells. Among the many devices for micro-indentation, the 

Atomic Force Microscope (AFM) is commercially available and has been widely applied to 

characterize mechanical properties of living cells and tissues (Mahaffy et al., 2004; Liu, F. & 

Tschumperlin, D.J., 2011; Solon et al., 2007; Wu et al., 1998; Radmacher et al., 1996) 

The Atomic Force Microscope (AFM), inventedin 1986 (Binnig et al., 1986) emerged 

within a few years into an important tool for various physical and biological applications. AFM is 

nowadays one of the most sensitive (∼1 pN) and spatial resolution (∼1 nm) techniques for 

examining cell mechanics under physiological cell culture conditions (Radmacher, 1996). The 

atomic force microscope is a high resolution surface characterization technique, that has become 

rapidly adopted for imaging and mechanical characterization of a range of biological samples 

(Müller DJ and Dufrêne YF., 2008). AFM contains a nano-sized probe which can determine cell 

surface stiffness by indentation (Rotsch, 1997; Matzke, 2001) (Fig.4.3). Furthermore, this method 

is used to analyze surface stiffness of both adherent cells and suspension cells by using a substrate 

coated with hydrophilic cell-anchoring molecules (Kato et al., 2003) (Fig. 4.4), can be used to 

measure the stiffness of suspended leukocytes and trypsinized cells (Haga, 2000; Matzke, 2001; 
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Kihara, 2011; Kagiwada, 2010; Shimizu, 2012; Shimizu, 2012). Thus, AFM can be a powerful 

tool for analyzing the mechanical stiffness and actin cytoskeleton states of various cells.  

4 – 2.3. The purpose of this study 

α-Mangostin is one of the major xanthone compounds extracted from the pericarp of 

mangosteen (Garcinia mangostana Linn.) fruit. It has been demonstrated to possess numerous 

bioactive functions, both in vitro and in vivo, against various diseases, including cancer, 

inflammation, allergy, and bacterial and viral infections (Chen, 2018}. α-Mangostin targets 

different cellular factors through various mechanisms such as inducing apoptosis in cancer cells 

by regulating Bcl-2, Bax, and p53 (Watanapokasin, 2011; Kaomongkolgit, 2011; Lee, 2017); 

preventing the metastatic activities of cancer cells via inhibition of MMP-2, MMP-9, and NF-κB 

(Hung, 2009; Lee, 2010; Shih, 2010); and directly scavenging reactive oxygen species (ROS), 

thereby preventing neurotoxicity and ROS production by 3-nitropropionic acid in cultured neurons 

(Pedraza-Chaverri, 2009). Furthermore, recent research has illustrated that α-mangostin reduces 

cell surface stiffness in lung cancer cells (Phan, 2018). 

 I recently reported that α-mangostin suppressed the subsistence, migration, and invasion of 

lung cancer cells (Phan, 2018). In that study, I demonstrated that α-mangostin decreased the cell 

surface stiffness of lung cancer A549 cells and lung normal fibroblast-like CCD-14Br cells. Of 

these two cell types, the surface stiffness of A549 cells decreased significantly when treated with 

α-mangostin (Phan, 2018). The mechanical changes in cancer cells are important indicators of 

cancer state and type: softer cancer cells show more invasive properties (Cross, 2011; Ramos, 

2014; apoptotic cancer cells are softened (Kihara, 2009; Kim, 2012). Is the α-mangostin-induced 

reduction of surface stiffness in A549 cells related to the effects of α-mangostin on cancer cells? 

To answer this question, I have to first identify the range of cells on which α-mangostin has an 
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effect, and then to elucidate the mechanism of how α-mangostin reduces the surface stiffness of 

these cancer cells.  

 In the present study, I examined the cell types that were affected by α-mangostin with 

respect to cell surface stiffness. Identifying the range of cells that are impacted by the action of α-

mangostin may help us to elucidate the mechanism. I used different cell types including normal 

human fibroblast TIG-1 cells, human cervical cancer HeLa cells, human embryonic kidney 

HEK293 cells, mouse leukemia macrophage RAW 264.7 cells, and human leukemia myeloblasts 

KG-1 cells. TIG-1, HeLa, HEK293, and RAW 264.7 cells are adherent cells and KG-1 cells are 

suspension cells. The morphologies of these cells vary, and the features of the actin cytoskeleton 

vary in these cell types. TIG-1 cells have an elongated morphology; HeLa and HEK293 cells have 

a shortly extended morphology; RAW 264.7 cells have weakly adhering morphology; and KG-1 

cells are suspended and spherical shape. I examined the sensitivity of these cells to α-mangostin 

and the effects of α-mangostin on cell mechanics, actin cytoskeleton, and cell viability.  
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4 – 3. Experimental result 

4 – 3.1. Cytotoxic sensitivity to α – Mangostin varies by cell types 

Firstly, I examined the cytotoxic effects of α-mangostin on TIG-1, HeLa, HEK293, RAW 

264.7, and KG-1 cells. TIG-1, HeLa, HEK293, and RAW 264.7 cells are adherent cells, and were 

seeded onto culture plates and pre-cultured for 24 h. They were then treated with α-mangostin for 

24 h. KG-1 cells are suspension cells and were seeded onto culture plates and cultured with α-

mangostin for 24 h. The survival cell number was evaluated by activity of living cells' 

mitochondrial tetrazolium reductase enzyme. α-Mangostin exhibited cytotoxic effects on TIG-1, 

HeLa, HEK293, and KG-1 cells at a concentration of 100 μM (Fig. 4.5). On the other hand, α-

mangostin did not affect the cell viability of RAW 264.7 cells even at the concentration of 100 μM 

(Fig. 4.5). This result is in agreement with that of a previous study by Chen et al. (Chen, 2008). In 

Chen’s study, the xanthones from mangosteen extracts, whose major component was α-mangostin, 

demonstrated no cytotoxicity on RAW 264.7 cells. The half-maximal effective concentration 

(EC50) values of α-mangostin for the cytotoxicity of TIG-1, HeLa, HEK293, and KG-1 cells were 

estimated as 13, 16, 30, and 7.5 μM, respectively (Fig. 4.5). KG-1 cells were relatively sensitive 

but HEK293 cells were relatively resistant to the cytotoxic effects of α-mangostin. Thus, α-

mangostin demonstrated cytotoxic effects on a number of different adherent cells and suspension 

leukemia myeloblasts. However, RAW 264.7 cells proved to be resistant to the cytotoxic effects 

of α-mangostin.  

4 – 3.2. α-Mangostin reduces mechanical stiffness of various cells 

Our previous study showed that α-mangostin suppressed the subsistence and decreased the 

mechanical properties of A549 cancer and CCD-14Br normal cells (Phan, 2018). Mechanical 

changes caused by α-mangostin appeared within 6 h, which was before the onset of cytotoxic 
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effects (Phan, 2018). I examined the impact of α-mangostin on cell mechanics in TIG-1, HeLa, 

HEK293, RAW 264.7, and KG-1 cells. These cells were exposed to α-mangostin for 6 h after 

which surface stiffness was examined using AFM. The morphologies of these cells are shown in 

Fig. 4.6. TIG-1, HeLa, and HEK293 cells adhered and extended on the dish. TIG-1 cells in 

particular showed a highly elongated morphology (Fig. 4.6). While these cells remained extended 

after the 6 h α-mangostin treatment, HeLa and HEK293 cells appeared somewhat shrunken (Fig. 

4.6). RAW 264.7 cells adhered but did not extend significantly, and after treatment with α-

mangostin for 6 h, their morphology appeared unchanged (Fig. 4.6). KG-1 cells were fixed on cell 

anchoring dishes to measure their surface stiffness using AFM. The morphology of KG-1 cells 

was spherical and they were unchanged by treatment with α-mangostin (Fig. 4.6).  

 The distribution of the elastic modulus (Young's modulus) of these cells is shown in Fig. 

4.7. The values of Young's modulus are plotted in logarithmic scale as they were distributed in a 

log-normal pattern (Shimizu, 2012). With regard to the controls, the log-average values of the 

Young's moduli of TIG-1, HeLa, HEK293, RAW 264.7, and KG-1 cells were 5.4, 2.0, 0.28, 0.84, 

and 1.0 kPa, respectively (Fig. 4.7). TIG-1 fibroblasts had the highest surface stiffness of the cells 

tested, while HEK293 cells had the lowest. This result complements the data from our previous 

studies (Shimizu, 2012; Haghparast, 2013; Haghparast, 2015). The surface stiffness of suspension 

KG-1 myeloblasts was higher than that of adhered HEK293 and RAW 264.7 cells (Fig. 4.7). Thus, 

it appears that the actin cytoskeleton near the plasma membrane mechanically supports the surface 

of spherical KG-1 cells.  

 The Young’s modulus of these cells reduced following α-mangostin treatment (Fig. 4.7). 

The Young’s modulus of normal fibroblast TIG-1 cells was slightly reduced from 5.4 to 3.3 kPa 

following treatment with 10 μM of α-mangostin (Fig. 4.7). The Young’s modulus of cancerous 
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HeLa cells was markedly reduced from 2.0 to 0.68 kPa following treatment with 10 μM of α-

mangostin (Fig. 4.7). This result demonstrates a similar trend to our previous analysis, such that 

normal fibroblast-like CCD-14Br cells softened slightly, and lung cancer A547 cells softened 

significantly following treatment with α-mangostin (Phan, 2018). The Young’s modulus of 

HEK293 cells was too low and they had few mechanically supporting actin cytoskeletons, 

resulting in only a slight softening after treatment with α-mangostin (Fig. 4.7). RAW 264.7 cells, 

whose Young’s modulus was relatively low, and which were resistant to the cytotoxic effects of 

α-mangostin, were also slightly softened by treatment with 10 and 20 μM α-mangostin (Fig. 4.7). 

Floating KG-1 cells, which had moderate stiffness and were sensitive to the cytotoxic effects of α-

mangostin, were significantly softened by treatment with 5 and 10 μM α-mangostin (Fig. 4.7). 

Thus, although the impact of α-mangostin on cell mechanical properties varied by cell type, the 

mechanical stiffness of all cell types was reduced by the short-interval treatment with α-mangostin. 

4 – 3.3. Actin cytoskeleton structures of α-mangostin-treated cells.  

The mechanical stiffness of cells is largely attributed to the actin cytoskeleton (Dai, 1995; 

Collinsworth, 2002; Guilak, 2002; Trickey, 2004). Thus, the actin filaments of α-mangostin-

treated cells were stained with rhodamine labeled-phalloidin and observed under the fluorescence 

microscope (Fig. 4.8). TIG-1 cells originally showed highly developed long actin stress fibers 

along the cell body. HeLa cells showed many weak actin fibers inside the cells and microvilli and 

protrusions on the edges. HEK293 and RAW 264.7 cells showed immature F-actin at the cell-cell 

border and many protrusions on the edges. KG-1 cells showed cortical F-actin and fine microvilli 

on the plasma membrane. Upon treatment with 10 μM α-mangostin, the F-actin amounts were 

slightly reduced and the actin cytoskeletal structures were little changed (Fig. 4.8). On the other 

hand, when these cells were treated with actin depolymerization reagent cytochalasin D, the F-
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actin structures were significantly distorted (Fig. 4.8). Especially, the actin structures of TIG-1, 

HeLa, and HEK293 cells were fully destroyed, and in KG-1 cells, the cortical actin almost 

vanished and F-actin aggregates appeared (Fig. 4.8). Thus, the mechanism of mechanical alteration 

by α-mangostin clearly differed from that of actin depolymerization reagent cytochalasin D. 

Probably α-mangostin is involved in changing the actin cytoskeletal micro-structures or reducing 

the amount of the actin cytoskeleton gently, and then reduces the mechanical stiffness in various 

cells.  
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4 – 4. Conclusion and Discussion 

In this study, the results indicate that α-mangostin has cytotoxic effects on some of the cell 

types and the ability to soften the mechanical properties of all the cell types that were analyzed. 

The impact of α-mangostin on cell mechanical properties varied in different cell types, and the 

sensitivity results also varied from that of the cytotoxic effect analysis.  

 First, I interpret our results from the perspective of actin cytoskeleton. The height of the 

value of Young’s modulus reflects the structure and state of the actin cytoskeleton present near the 

cell surface. TIG-1 cells have well-developed actin stress fibers, and their surface stiffness is highly 

enhanced due to the developed actin stress fibers (Figs. 4.7 and 4.8). The surface stiffness of TIG-

1 cells was slightly reduced and the elongated cell morphology and F-actin structures were 

unchanged upon treatment with α-mangostin (Figs, 4.6, 4.7 and 4.8). Thus, the developed stress 

fibers in TIG-1 cells are relatively stable against α-mangostin. HeLa cells have weak stress fibers 

and numerous protrusions and microvilli, and their surface stiffness is moderately enhanced by the 

presence of actin structures (Figs. 4.7 and 4.8). The surface stiffness of HeLa cells was markedly 

reduced, and the morphology appeared slightly shrunken, following the treatment with α-

mangostin (Figs. 4.6 and 4.7). Thus, the weak actin structures with many protrusions and microvilli 

in HeLa cells were very sensitive to α-mangostin. HEK293 cells have immature actin 

cytoskeletons, and as such, the mechanical stiffness of HEK293 cells is very low (Figs. 4.7 and 

4.8) (Haghparast, 2015). Although the surface stiffness of HEK293 cells is slightly reduced, it is 

difficult to evaluate the cell sensitivity to α-mangostin, since there is little room for decreasing the 

stiffness to begin with. However, the morphology of HEK293 cells was also somewhat shrunken 

upon treatment with α-mangostin, and therefore, they were most likely affected by α-mangostin 

(Fig. 4.8). RAW 264.7 cells did not display an extended morphology and exhibited F-actin at the 
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cell-cell border and cortical region with protrusions (Figs. 4.6 and 4.8). Also their surface stiffness 

was relatively low (Fig. 4.7). RAW 264.7 cells did not show any cell death after treatment with 

100 μM of α-mangostin for 24 h (Fig. 4.5), and their surface stiffness was hardly reduced (Fig. 

4.7). Thus, RAW 264.7 cells were resistant to not only cytotoxic, but also mechanical changes 

caused by of α-mangostin. The suspended KG-1 cells had cortical actin and microvilli at the 

plasma membrane (Fig. 4.8) (Ohnishi, 2013). These cells were very sensitive to the cytotoxic 

effects of α-mangostin and almost half of the cells died after treatment with 7.5 μM α-mangostin 

for 24 h (Fig. 4.5). Their mechanical stiffness also softened remarkably following the treatment 

with 5 and 10 μM of α-mangostin for 6 h (Fig. 4.7). Thus, KG-1 cells and their actin structures 

were very sensitive to α-mangostin. 

 The impact of α-mangostin on the surface stiffness of HeLa and KG-1 cells was high 

compared to other cell types (Fig. 4.7). On the other hand, the actin structures of these cells were 

different; for instance, HeLa cells had many fine actin fibers inside the cells and KG-1 cells had 

cortical actin (Fig. 4.8). These actin structures were not changed upon treatment with α-mangostin 

as observed in the images recorded by conventional fluorescence microscopy (Fig. 4.8). How does 

α-mangostin reduce the mechanical stiffness of these cells? Our previous study showed that the 

mechanical alteration determined by AFM is more sensitive method to determine the actin changes 

in the cells than by fluorescence microscopy (Shimizu, 2012). Thus, probably micro-structures of 

actin cytoskeleton are changed by treatment with α-mangostin. HeLa cells and cancer cells have 

many short microvillus and protrusions on their surface (Fig. 4.8) (Haghparast, 2013). KG-1 cells 

are also covered with short microvilli on the surface (Fig. 4.8) (Ohnishi, 2013; Tachibana, 2020). 

Thus, the short microvillus structure of actin cytoskeleton may be a sensitive target of α-mangostin. 

Microvilli structures are localized at the surface of leukocytes as well (von Andrian, 1995; 
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Majstoravich, 2004; Yamane, 2011). If the actin microvilli are sensitive targets of α-mangostin, α-

mangostin may also affect the mechanical stiffness of circulating leukocytes. 

 Then, what kind of signal cascade or actin modulation molecules are the potential targets 

of α-mangostin with respect to its effect on mechanical stiffness? Previous research work indicates 

that α-mangostin has various contradictory functions on the molecules that affect the actin 

cytoskeleton; it inhibits myosin light-chain kinase (MLCK) and cyclic AMP-dependent protein 

kinase (PKA) (Jinsart, 1992); it increases myosin light-chain (MLC) phosphorylation and induces 

Ca2+ influx in platelets (Liu, 2015); it inhibits Ca2+-ATPase in the sarcoplasmic reticulum 

(Furukawa, 1996); and it reduces Ca2+ elevation by suppressed Ca2+ influx (Itoh, 2008). These 

contradictory functions of α-mangostin can modulate the actin cytoskeleton positively and 

negatively. Thus, at present, it is difficult to assess the right targets of α-mangostin with respect to 

its effect on mechanical stiffness. But, recently, it has been reported that the mechanical stiffness 

and surface microvilli structures of KG-1 cells were related to cell adhesion and stimulation, and 

these were regulated by Ezrin/Radixin/Moesin (ERM) proteins that were linker proteins between 

membrane proteins and cortical actin (Tachibana, 2020). In future, further studies using KG-1 cells 

might reveal the molecules involved in the processes of mechanical change caused by α-mangostin. 

The research will definitely help to better understand the complex and diverse functions of α-

mangostin on various cells, including cancer cells, and enhance the pharmaceutical potential of 

naturally occurring compound α-mangostin. 

 RAW 264.7 cells did not display any cell death but demonstrated slight mechanical change 

brought about by α-mangostin (Figs. 4.5 and 4.7). Other studies have also reported that α-

mangostin has no cytotoxic effect on RAW 264.7 cells but does inhibit NO and PGE2 production 

from lipopolysaccharide (LPS)-stimulated RAW 264.7 cells (Chen, 2008). Furthermore, α-
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mangostin suppressed TLR4/NF-κB mediated inflammation reactions in LPS-stimulated RAW 

264.7 cells (Tao, 2018). Thus, although RAW 264.7 cells are completely resistant to the cytotoxic 

effects of α-mangostin, their intracellular molecules are affected by the multiple biological 

functions of α-mangostin.  

 

In conclusion, I first reported that α-mangostin had a potential to reduce the mechanical 

properties of all cell types, including suspension cells, macrophages, and normal fibroblasts. The 

impact of α-mangostin on cell mechanical properties was found to be different from that of the 

cytotoxic effects on the cells. The surface stiffness of cancerous HeLa and floating KG-1 

myeloblast cells was significantly softened by α-mangostin. In contrast, the surface stiffness of 

normal fibroblast TIG-1 and macrophage RAW 264.7 cells was slightly reduced by α-mangostin. 

Thus, the naturally occurring compound α-mangostin appears to modulate the common signal 

cascades of the actin cytoskeleton inside these cells but further studies are needed to confirm this. 

Our findings will aid in the use of the complex and multi-functional α-mangostin in future medical 

applications.  
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4 – 5. Materials and experimental methods 

Material  

Human fetal lung normal fibroblast TIG-1 cells, human cervical cancer HeLa cells, and 

human embryonic kidney HEK293 cells were obtained from the Japanese Collection of Research 

Bioresources (JCRB) cell bank (Osaka, Japan). Human leukemia myeloblast KG-1 cells and 

mouse leukemia macrophage RAW 264.7 cells were obtained from Riken Cell Bank (Ibaraki, 

Japan). α-Mangostin, rhodamine labeled- phalloidin, cytochalasin D, DMEM, and RPMI1640 

medium were purchased from Wako Pure Chemical Industries Ltd. (Osaka, Japan). Cell anchoring 

molecule, SUNBRIGHT OE-020CS, was purchased from NOF Corporation (Tokyo, Japan). The 

cone probe (BL-AC-40TS-C2; spring constant: around 0.05 N/m) was purchased from Olympus 

(Tokyo, Japan). Cell counting kit-8 was purchased from Dojindo Molecular Technologies, Inc. 

(Kumamoto, Japan). Cell harvesting solution TrypLE express and fetal bovine serum (FBS) were 

purchased from Life Technologies Japan Ltd. (Tokyo, Japan). Antibiotics were purchased from 

Sigma- Aldrich (St. Louis, MO). Glass-based culture dishes were purchased from Matsunami 

Glass (Osaka, Japan). Other reagents were purchased from Sigma-Aldrich, Wako Pure Chemical 

Industries Ltd., or Life Technologies Japan Ltd. 

Preparation of cell anchoring dishes 

I coated cell anchoring molecule, SUNBRIGHT OE-020CS, on the culture dishes as 

described previously (Haghparast, 2013). Briefly, the polystyrene tissue culture dishes were coated 

with BSA, and then the surfaces were coated with SUNBRIGHT OE-020CS. SUNBRIGHT OE-

020CS contains an oleyl group at one end and keeps a floating cell on the coated dish (Kato, 2003}. 

The anchored cells are fixed, and then the cell surface stiffness can be measured by AFM (Shimizu, 

2012; Shimizu, 2012}.  
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Cell culture 

TIG-1, HeLa, HEK293, and RAW 264.7 cells were cultured in DMEM containing 10% FBS 

and antibiotics (100 units/ mL penicillin G and 100 μg/mL streptomycin sulfate), and KG-1 cells 

were cultured in RPMI1640 medium containing 10% FBS and the antibiotics in humidified 

atmosphere of 95% air and 5% CO2 at 37 °C. 

Cytotoxicity assay 

The cytotoxicities of α-mangostin on various cells were evaluated by the cell counting kit-8 

as recommended by the manufacturer. The adherent cells were seeded on a 96 well culture plate 

at 104 cells/well and cultured for 24 h, so as to allow the cells to adhere to the plate. The culture 

medium was replaced by 100 μL of fresh culture medium diluted with various concentrations of 

α-mangostin and cultured for further 24 h. The cell counting kit-8 solution (10 μL) was added to 

each well and incubated for 1 h. For KG-1 cells, the cells were seeded on a 96 well plate at 2 × 

104 cells/well with 100 μL of culture medium containing with various concentrations of α-

mangostin and cultured for 24 h. The cell counting kit-8 solution (10 μL) was added to each well 

and incubated for 2 h. The absorbance was then measured at 450 nm using a microplate reader. 

The absorbance values were fitted with the below Hill equation. 

 

𝑓(𝑥) = 𝑎 + *,-

!././0
#   

 

Where x = concentration of α-mangostin, h = value of EC50, r = Hill coefficient, a = base 

value of the absorbance, b = top value of the absorbance. 
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AFM measurements 

The cells were manipulated by AFM (Nanowizard III; JPK Instruments AG, Berlin, 

Germany) at room temperature. TIG-1, Hela, HEK293, and RAW 264.7 cells were cultured on 

normal culture dishes for 24 h and then treated with α-mangostin for 6 h. KG-1 cells were plated 

on the cell anchoring dishes for 1 h in serum free medium, then washed with PBS to remove 

unattached cells, and cultured for 6 h in α-mangostin containing complete culture medium. The 

cone shaped AFM probe was indented 25 different points within 1 μm × 1 μm of cell top with a 

loading force of up to 0.5 nN and velocity of 5 μm/s. Young's modulus of the cell surface was 

calculated with the Hertz model (Hertz, 1881); the force-indentation curve for a region up to about 

1 μm of indentation was fitted using JPK data processing software (JPK instruments AG) as: 

𝐹 =
𝐸

1 − 𝜈%
2 tan𝛼
π 𝛿% 

Where F = force, δ = depth of the probe indentation, ν = Poisson's ratio (0.5), α = half-angle of the 

cone probe (9°), and E = Young's modulus. The median value adopted for the Young's modulus of 

each cell (Kihara, 2011}. More than 21 cells and 525 force-distance curves were analyzed in each 

condition.  

Actin filaments staining 

TIG-1, Hela, HEK293, and RAW 264.7 cells were cultured on normal glass base dishes 

for 24 h and then treated with 10 μM α-mangostin for 6 h or 2 μg/mL cytochalasin D for 1.5 h. 

KG-1 cells were plated on the cell anchoring glass base dishes for 1 h in serum free medium, then 

washed with PBS to remove unattached cells, and cultured for 6 h in 10 μM α-mangostin or for 

1.5 h in 2 μg/mL cytochalasin D containing complete culture medium. The cultured cells were 

fixed with 4% paraformaldehyde, permeabilized with 0.3% Triton X-100, and then stained with 
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rhodamine labeled-phalloidin for actin filaments. Specimens were observed by fluorescence 

microscopy (IX81, Olympus).  
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Figures  

   
 
 
 
 
 
 
 

 
 
 
Figure 4.1: Cell phenotypes are determined via combinatorial factors. The cell phenotypes 

are remained through combination of physiological functions, physical properties, morphology 

and regulated by gene expression. 
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Figure 4.2: The elasticity of cells is attributed to actin cytoskeleton. The cell stiffness reflects 

the amount of F-actin and cortical actin strength inside the cell.  
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Figure 4.3.  Atomic force microscope (AFM). The force for probe over the probe indentation 

can be directly measured. The elastic modulus (Young’s modulus) of the surface of living cells 

can be calculate by using the force-distance curve for probe. 
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Figure 4.4: Preparing coating dish using BAM for suspended cells to measure AFM. BAM 

molecules covalently bind with BSA coated dish surface. The suspended round cells can be fixed 

on the BAM surface, then it can be measured the elasticity of floating cells by AFM using BAM 

surface. 
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Figure 4.5. Cytotoxicity of α-mangostin on TIG-1, HeLa, HEK293, RAW 264.7, and KG-1 

cells. These cells were treated with various concentrations of α-mangostin (0–100 μM) and 

incubated for 24 h. The viable cells were measured using the cell counting kit-8. The values were 

calculated from 3 experiments. The effective concentration (EC50) is shown in each graph. 
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Figure 4.6. Phase-contrast micrographs of TIG-1, HeLa, HEK293, RAW 264.7, and KG-1 

cells treated with α-mangostin. These cells were cultured with or without 10 μM of α-mangostin 

(AMG) for 6 h. The object at the left of each micrograph is the AFM cantilever. Bar 100 μm 
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Figure 4.7. Young’s modulus of cells treated with α-mangostin. Young’s modulus of TIG-1, 

HeLa, HEK293, RAW 264.7, and KG-1 cells were examined by AFM. The distribution of the 

Young’s modulus of cells treated with α-mangostin for 6 h is represented by scatterplots. Each 

point represents the median value of 25 measuring points in each cell, and the Young’s modulus 

in each condition is represented in more than 21 independent cells.   
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Figure 4.8. Fluorescence microscopy images of F-actin of cells treated with α-mangostin. 

TIG-1, HeLa, HEK293, RAW 264.7, and KG-1 cells were treated with 10 μM of α-mangostin for 

6 h or 2 μg/mL of cytochalasin D (CD) for 1.5 h, and then stained with rhodamine labeled-

phalloidin. Bar 50 μm. 
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Figure 4.9: α-Mangostin is sensitive with microvilli structure.  Microvilli are weak actin 

structures, they distribute high consistence the cell surface of Hela cells and KG-1 cells. The 

stiffness of these cells are significantly effected α-mangostin, so microvilli are sensitive with α-

mangostin. Moreover, α-mangostin was found to change actin modulation molecules (such as 

MLC), so it may cause the change to the actin stress fiber. 
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Chapter 5: α – Mangostin induces the cell adhesion and activates the 

leukocytes 

5 – 1. Overview  

Leukocytes, as well known as white blood cells, are a central part of the immune system 

who help to protect the body against foreign substances, microbes, and infectious diseases. Almost 

leukocytes are non-adhesion/or suspended cells, they travel through the body, moving between the 

organs and nodes and monitoring any potentially problematic germ or infection. However, 

leukocytes are possible to transform to adherent state, the adhesion of leukocytes to vascular 

endothelium is a hallmark of the inflammatory process. In previous research, I found that α-

mangostin reduced the cell surface stiffness of human myelomonocytic KG-1 cells, and it also 

found that α-mangostin induced cell adhesion in KG-1 to substratum. Therefore, in this study, I 

investigated to clarify mechanism of α-mangostin in change the cell surface stiffness and inducing 

cell adhesion of leukocyte. 

Leukocytes have spherical shape with cortical actin cytoskeleton on their cortex; which is 

almost the only mechanical structures of the cells. In addition, the mechanical properties are linked 

to the leukocytes activation, and all these events are linked to dephosphorylation of 

Erin/Radixin/Moesin (ERM) protein. The results showed a-mangostin decreased the cell surface 

stiffeness and induced cell adhesion in myelomonocytic KG-1 cells. However, PKC inhibitors, 

phosphatase inhibitor prevented a-mangostin reduce the surface stiffness and induce cell adhesion. 

Taken together, these findings strongly suggest a-mangostin decreased the stiffness through 

activating PKC, protein phosphatase then regulated the signal which relates the ERM-

dephosphorylation to activate cell adhesion in leukocytes. 
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5 – 2. Introduction 

White blood cells are floating cells that exist in the blood and have the role of attacking and 

eliminating foreign substances that have entered the body. When the tissue is damaged, the 

recruitment of leukocytes to adhere to the damaged vascular endothelial cells through adhesion 

molecules, and after rolling on the cells, migrate from the interstitial spaces of the vascular 

endothelial cells into the damaged tissue. Damaged cells caused the release of TNF-a and IL-1, 

and the vascular endothelial cells express the adhesion molecule selectin. This recruitment process 

and the requirement for (and participation of) specific adhesion glycoproteins in the binding of 

leukocytes to endothelial cells have been elegantly demonstrated using a variety of experimental 

approaches. The initial adhesive interactions between the leukocytes and venular endothelium are 

tethering (capture) and rolling. These low-affinity (weak) interactions are subsequently 

strengthened as a result of leukocyte activation (mediated by chemokine-dependent and 

chemokine-independent mechanisms). Consequently, the leukocytes attach to the endothelium and 

remain stationary. The current paradigm for leukocyte (neutrophil) recruitment in the inflamed 

microvasculature is summarized in Figure 5.1 The adhesive determinants are known to vary 

between vascular beds and between different leukocyte populations.  

The adhesion of leukocytes is regulated by adhesion-inhibitory sialomucin such as CD43  

(leukosialin) and CD34 (a cell surface sialomucin). CD43 is expressed in most of leukocytes 

(Fukuda, 1999), while CD34 is enriched in hematopoietic progenitor cells (Krause, 1996), and 

they are considered as inhibitor for cell adhesion (Drew, 2005). Gene disruption of CD43 and/or 

CD34 increased cell adhesion, while overexpression of CD43 or CD34 inhibited cell adhesion in 

adherent cells (Manjunath et al., 1993; Drew et al., 2005). In addition, the phosphorylation of 

Ezrin/Radixin/Moesin (ERM) are located at the surface of leukocytes and it could also inhibit cell 
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adhesion which express of Moesin-T558D, a phospho-mimetic Moesin mutant, inhibited cell 

adhesion to both substratum or other cells (Tachibana, 2015, 2019). The engagement of T cell 

receptor induced decrease of phosphorylated-ERM in correspondence with the re-distribution of 

CD43 and formation of immunological synapse (Delon et al., 2001; Allenspach et al., 2001). 

Combined with the binding of CD43 with phosphorylated-ERM (Yonemura et al., 1998), this 

decrease of phosphorylated-ERM is the likely mechanism of CD43 exclusion from attachment 

sites to promote cell adhesion in T lymphocytes. Moreover, stromal cell-derived factor 1 (SDF-1), 

a CXC chemokine, has been found to quickly induces decrease of phosphorylated-ERM as well as 

microvillus collapse in T lymphocytes (Brown et al., 2003). 

The cell surface mechanicals are altered following the alteration in bioactivities and 

transformation of cells. The cell surface stiffness is largely attributed to the actin cytoskeleton and 

display the cell surface actin architectures (Dai, 1995; Collinsworth, 2002; Guilak, 2002; Trickey, 

2004). The surface stiffness alteration reflects the remodeling of actin cytoskeleton in respective 

the cellular events and states (Matzke, 2001; Kunda, 2008). Thus, by analyzing the mechanical 

properties of cells, it may provide us to understand changes of cell characteristics. In addition, the 

surface stiffness measurement may evaluate the strength of the actin cytoskeleton network near 

cell surface and may provide better understanding about regulatory mechanism of cell surface actin 

skeleton. The cell surface rigidity is involved to the change of cell shape to adhesion states. 

Leukocytes have cortical actin placed on plasma membrane which mechanically supports their 

surface rigidity (Ohnishi, 2013). Their actin cortical is very special with very thin and uniform 

structure, it is different with intermittent cortical actin structures seen in other cells (Bray, 1986). 

The actin cytoskeleton at cellular cortex play important role in the maintenance of leukocyte’s 

spherical shape and microvilli (Chhabra, 2007), and contributes to cell surface rigidity (Shimizu, 
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2012). In addition, a decrease of phosphorylated-ERM has been shown to diminish cell surface 

rigidity (Tachinana, 2015), by linking cell surface molecules with cortical actin skeleton (Fiéver, 

2007; Niggli, 2008). Decrease the cell surface stiffness caused increase deformability of cell, so it 

is possibility enhance cell adhesion. 

Atomic force microscopy (AFM) is proved that is one of the most sensitive method in several 

method to detect the cell stiffness and mechanical properties under physiological conditions 

(Radmacher, 1996). This method has been indicated an effective method that can measure the 

stiffness of both adherent and suspended cells (Haga, 2000; Kihara, 2011; Kagiwada, 2010). 

Leukocytes were previously measured the stiffness by using AFM and a biocompatible anchor for 

membrane (BAM) substrate for anchoring the suspended cells (Kagiwade, 2010; Shimizu, 2012) 

(Fig. 4.2). Thus, this method AFM can be a suitable tool to analyze the mechanical stiffness of 

leukocytes. 

 

In this study, I investigated the mechanism of a-mangostin reduced the cell surface stiffness 

and induced cell adhesion in leukocytes, and activated PKC was found as the key event for the 

induction of leukocytes’ adhesion by external stimuli. 
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5 – 3. Experimental result 

5 – 3.1. α – Mangostin reduces the cell surface stiffness of leukocytes 

I previously found that α-mangostin decreased the mechanical properties of various cells 

including A549 lung cancer cells and CCD-14Br lung normal cells (Phan, 2018), human fibroblast 

TIG-1 cells, human cancerous Hela cells, human embryonic kidney HEK293 cells, mouse 

macrophage RAW 264.7 cells, and human myeloblasts KG-1 cells after 6 h treatment with α-

mangostin using the cone probe (BL-AC-40TS-C2) for AFM measurement (Phan, 2020). In this 

study, I change the cantilever to the pyramid probe (SN-AF01S-NT) to measure the AFM and KG-

1 cells were exposed with various concentration of α-mangostin for 6 h. KG-1 cells were fixed on 

cell anchoring culture dishes, then treated with 5, 10, 15 µM of α-mangostin for 6 h and surface 

stiffness was examined using AFM. The distribution of the Young’s modulus of KG-1 treated with 

α-mangostin is shown in Fig. 5.3. The results are consistent with my previous research event using 

different cantilever to measure the stiffness. The results indicated α-mangostin reduced the 

distribution of the Young moduli in KG-1 cells after short time treatment. Particularly, the Young’s 

modulus of KG-1 cells significantly decreased by treatment with 10 µM of α-mangostin, and it 

was almost exactly the same as at 15 µM.  

5 – 3.2. α – Mangostin alters leukocytes’ surface and cortical actin  

According to many published researches, the mechanical properties is largely attributed to 

the actin cytoskeleton (Dai, 1995; Collinsworth, 2002; Guilak, 2002; Trickey, 2004). Therefore, 

the actin filaments of KG-1 cells were stained with rhodamine labeled-phalloidin and DAPI to 

label nuclei, then observed under the confocal laser scanning microscopy. KG-1 cells showed the 

cortical F-actin and short fine microvilli on their plasma membrane in Fig. 5.4. They are spherical 
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land have abundant microvilli of varying lengths and high density. However, within short time of 

α-mangostin stimulation have undergone dramatic changes in surface features. The cells are 

observed that remain nearly spherical but show a marked reduction in microvilli exposing with α-

mangostin. In addition, α-mangostin slightly blurred the actin cortical and appeared blebbing on 

the surface. Bleb expansion occurs when the membrane detaches from the actin cortical 

cytoskeleton (Guillaume, 2006), so α-mangostin caused an impact to cortical actin and re-

arrangement f-actin binding membrane and cortical actin. The actin cytoskeleton of KG-1 cells is 

structured only by the actin cortical under plasma, so this results matched with the decrease of the 

stiffness caused by α-mangostin. 

5 – 3.3. α – Mangostin induces cell adhesion of leukocytes 

Most of leukocytes are non-adhesion cells which are spherical and do not attach to substrate, 

but they are possible to adhere to the other cells or substratum in response to external stimuli 

(Dustin, 1989; Van KooyK, 1989; Shimizu, 1991; Hynes, 1992; Hemler, 1993). KG-1 cells derived 

from acute myelogenous leukemia are non-adherent cells and express a4b1 integrin, but they 

hardly adhere to substrate even coated with Fibronectin, a ligand for a4b1 integrin (Ohnishi, 2013). 

However, I found that a-mangostin treatment intensified KG-1 cell adhesion to Fibronectin-coated 

substrate. In the control group, there are about 121.18 cells/mm2 of KG-1 cells adhered to the 

Fibronectin-coated substrate (Fig. 5.5). Meanwhile, percentage of KG-1 cell adhesion was 

significantly increased by treatment with a-mangostin at 5, 10, 15 µM in short time into 186.59, 

196.56, 287.96 cells/mm2, respectively (Fig. 5.5). This result indicated that a-mangostin 

augmented KG-1 adhesion mediated by integrin. 

5 – 3.4. Activation of PKC is essential for α – Mangostin-activated-leukocytes 
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Cell undergo the adhesion process is regulated by variable adhesion molecules. Activation 

of leukocytes adhesion is recently improved that related to dephosphorylation of 

Ezrin/Radixin/Moesin (ERM) protein which mediated by activation PKC and it also involves to 

protein phosphatase 1 and/or 2A (Tachibana, 2019). In order to clarify how a-mangostin induce 

adhesion of KG-1 cells, I further used phosphatase inhibitor Calyculin A and PKC inhibitor BIM 

I. KG-1 cells were treated with a-mangostin and Calyculin A/BIM I, then adherent cells were 

calculated, and results were shown in Fig. 5.6. As the results, the amount of a-mangostin induced 

adherent KG-1 cells were estimated around 300 cells/mm2, but it decreased when added Calyculin 

A and BIM I together with a-mangostin. Adding BIM I with a-mangostin caused a loss of adhered 

cells in dose-dependent, adherent KG-1 cells decreased to 293.49, 214.422, 198.866 cells/mm2 at 

BIM I concentration of 0.5, 1, 3 µM, respectively. Especially, Calyculin A significantly prevented 

a-mangostin induced KG-1 cell adhesion, the ratio of adhesion cells dropped to 171.71, 127.39, 

134.55 cells/mm2 by treatment with Calyculin A at 0.5, 1, 3 µM, respectively. Calyculin A and 

BIM I showed they inhibited a-mangostin induced KG-1 cell adhesion. Therefore, these results 

indicated that a-mangostin induced KG-1 cell adhesion related to activated PKC and protein 

phosphatase 1 and/or 2A. 

a-Mangostin induced adhesion of KG-1 cells was inhibited by PKC inhibitor and protein 

phosphatase inhibitor, so can it affect to a-mangostin reduced KG-1 cell mechanical? I further 

examine the surface stiffness of KG-1 cells treatment with a-mangostin adding BIM I or Calyculin 

A. As demonstrated in Figure 5.7, average surface stiffness of Calyculin A/BIM I-treated KG-1 

cells were higher than untreated cells, meanwhile KG-1 cells were significantly softened by 

treatment with 10 µM of a-mangostin. However, adding Calyculin A/ BIM I together with 10 µM 

of a-mangostin increased the average surface stiffness of KG-1 cells. The Young’s modulus of 
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Calyculin A and a-mangostin-treated KG-1 cells were markedly increased into 0.8, 1.2 and 5.8 

kPa by adding 0.3, 1 and 3 nM of Calyculin A. The results were also the same in adding BIM I 

together with 10 µM of a-mangostin, it’s Young modulus drastically raised to 1.9 kPa at 0.5 µM 

of BIM I, and around 3 kPa at 1µM and 3 µM of BIM I. These results showed, Calyculin A and 

BIM I prevent a-mangostin-reduced KG-1 cell rigidity, or activated PKC and protein phosphatase 

related/necessary for a-mangostin-reduced cell surface mechanical. 

In this study, I demonstrated that a-mangostin reduced the cell stiffness of leukocytes 

which are improved that related to induce the adhesion of leukocytes and activate leukocytes via 

the activation of PKC and protein phosphatase.  
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5 – 4. Conclusion and Discussion 

In this study, I investigated the mechanism of a-mangostin-reduced mechanical of KG-1 

cells, and the results indicated that a-mangostin has ability to activate the leukocytes due to turn 

on some main events which appear in activation process. In addition, activation of PKC was critical 

for a-mangostin-reduced stiffness and induced adhesion in leukocytes, because PKC inhibitor 

inhibited these processes. Previously, a-mangostin was reported that activated the expression of 

PKC (Yuan Fang, 2016). Therefore, PKC activated by a-mangostin results in decrease of the 

surface stiffness and inducing cell adhesion. Besides PKC inhibitor, Calyculin A also inhibited a-

mangostin-reduced stiffness and induced adhesion, that indicated the involvement of protein 

phosphatase 1 and/or 2A in these impacts.  

Leukocytes adhesion to endothelium is a multistep process in which chemokines play an 

important role of inducing strong adhesion by activating integrin. The chemokines SDF-1 induced 

T lymphocytes adhesion (Martin et al., 2003) and PMA activated KG-1 adhesion (Tachibana et al., 

2020) which are all regulated by ERM- dephosphorylation via activation of PKC. Since SDF-1 

engagements activate PLCs, these stimuli likely activate PKC via PLC-diacylglycerol-PKC 

pathway. Besides PKC inhibitors, Calyculin A inhibited PMA-induced ERM-dephosphorylation, 

indicating the involvement of protein phosphatase 1 and/or 2A in this dephosphorylation. However, 

the ERM-dephosphorylation has been not observed in KG-1 after treatment with a-mangostin (Fig. 

5.8), the most optimized treatment condition of a-mangostin has not been indicated in which 

induces the dephosphorylation of ERM. What is the next target regulated by a-mangostin to turn 

on the events of leukocytes activation? In addition, a-mangostin was indicated that elevated the 

contents of reactive oxygen species (ROS), which can activate protein kinases. Thus, the activation 

of PKC by a-mangostin may be involve to ROS (Fig. 5.9).  
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Microvilli are cell surface thin protrusion, composed of cytoplasmic membrane and parallel 

bundles of actin filaments. Microvilli are observed on the surface of lymphocytes and other 

hematopoietic cells (Mooseker et al., 1975; Chhabra et al., 2007).  Contradictory roles in cell 

adhesion were proposed for leukocyte microvilli. Several adhesion receptors are specifically 

localized on microvilli, and such localization may be critical for the binding to vascular 

endothelium (von Andrian et al., 1995; Berlin et al., 1995; Singer et al., 2001). Reduction of 

microvilli also affect to the cell adhesion. Microvilli are actin-rich protruding structures located at 

the cell surface. Functions of microvilli are to expanse cell surface area, molecule presentation and 

inhibit of cell adhesion (Chhabra, 2007). Because of their thin protruding structure, microvilli 

restrict attachment area, so it leads to inhibit cell adhesion. In addition, microvilli are collapsed by 

the stimulation of chemokines which was suggested for inhibition of cell adhesion (Brown, 2003). 

Therefore, a-mangostin caused an elimination of microvilli followed by inducing the cell adhesion 

of KG-1. Furthermore, most of leukocytes are suspended with spherical shape and surrounded with 

microvilli, so the cell surface stiffness plays important role in remaining their spherical shape. 

However, in adhesion process, leukocytes are essential to alter their shape and make some flat 

attachment sites by deforming cell shape which caused from reduction of the cell surface stiffness.  

The impacts of a-mangostin on leukocytes were observed which are some similar to  

leukocyte treated with PMA or T lymphocytes stimulated with SDF-1. In leukocytes treated with 

PMA or T lymphocytes treated with PMA, SDF-1 all induced dephosphorylation of ERM which 

were regulated by activation of PKC. a-Mangostin also reduced the cell surface stiffness and 

induced the cell adhesion of KG-1, and the activation of PKC and protein phosphatase are essential 

for these processes. However, the dephosphorylation was not observed in the process of a-
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mangostin-induced KG-1 cell adhesion. Therefore, the mechanism how does a-mangostin-

activated PKC induce KG-1 adhesion is further subject. 

To conclusion, in this study a-mangostin was found in decreases the cell surface rigidity 

which related to induce the cell adhesion and the activation of leukocytes via of activation of PKC 

and protein phosphatase. 
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5 – 5. Materials and experimental methods 

Materials 

Human leukemia myeoblast KG-1 cells were purchased from Riken Cell Bank (Ibaraki, 

Japan). α-Mangostin, rhodamine labeled phalloidin, DAPI (4′,6-diamidino-2-phenylindole), 

cytochalasin D, calyculin A, DMEM, and RPMI1640 medium were purchased from Wako Pure 

Chemical Industries Ltd. (Osaka, Japan). Bisindolylmaleimide I (BIM I) was obtained from 

Cayman Chemical (Michigan, USA). Cell anchoring molecule, SUNBRIGHT OE-020CS, was 

purchased from NOF Corporation (Tokyo, Japan). The pyramid probe (SN-AF01S-NT; spring 

constant: around 0.06 N/m) was purchased from Olympus (Tokyo, Japan). Fetal bovine serum 

(FBS) was purchased from Life Technologies Japan Ltd. (Tokyo, Japan). Antibiotics, phorbol 12-

myristate 13-acetate (PMA) were purchased from Sigma-Aldrich (St. Louis, MO). Glass-based 

culture dishes were purchased from Matsunami Glass (Osaka, Japan). 6 Channel µ-Slide was 

purchased from ibidi, Germany. Other reagents were purchased from Sigma-Aldrich, Wako Pure 

Chemical Industries Ltd., or Life Technologies Japan Ltd. 

Preparation of cell anchoring dishes 

The culture dishes were coated with cell anchoring molecule, SUNBRIGHT OE-020CS, 

as described previously (Haghparast, 2013). Briefly, the polystyrene tissue culture dishes were 

coated with BSA, and then the surfaces were coated with SUNBRIGHT OE-020CS. Floating cells 

are caught at oleyl group at one end of SUNBRIGHT OE-020CS in coated dishes (Kato, 2003). 

Therefore, the anchored cells were fixed and then the cell surface stiffness can be measured by 

AFM (Shimizu, 2012; Shimizu, 2012). 

 

Cell culture 
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KG-1 cells were cultured in RPMI1640 medium containing 10% FBS and the antibiotics 

(100 units/mL penicillin G and 100 μg/mL streptomycin sulfate) in humidified atmosphere of 95% 

air and 5% CO2 at 37°C.  

AFM measurements 

The cell stiffness was measured by AFM (Nanowizard III; JPK Instruments AG, Berlin, 

Germany) at room temperature. KG-1 cells were plated on the cell anchoring culture dishes for 1.5 

h in serum free medium, then washed with PBS to remove unattached cells, and cultured for 6 h 

in α-mangostin containing complete culture medium. The cone shaped AFM probe was indented 

25 different points within 1 μm × 1 μm of cell top with a loading force of up to 0.5 nN and velocity 

of 5 μm/s. Then the Young’s modulus of the cell surface was calculated with the Hertz model 

(Hertz, 1881); the force-indentation curve for a region up to about 1 μm of indentation was fitted 

using JPK data processing software (JPK instruments AG) as:  

𝐹 = 1
!,20

% 3456
7

𝛿%  

Where F = force, δ = depth of the probe indentation, ν = Poisson's ratio (0.5), α = half-angle of the 

cone probe (9°), and E = Young's modulus. The median value adopted for the Young's modulus of 

each cell (Kihara, 2011). More than 21 cells and 525 force-distance curves were analyzed in each 

condition.  

Actin filaments staining 

KG-1 cells were seeded on the cell anchoring glass base dishes for 1.5 h in serum free 

medium, then washed with PBS to remove floating cells, and cultured for 6 h in 10 μM α-

mangostin or for 1.5 h in 2 μg/mL cytochalasin D containing complete culture medium. Then the 

culture cells were fixed with 4% paraformaldehyde, permeabilized with 0.3% TritonX-100, and 



 125 

then stained with rhodamine labeled-phalloidin for actin filaments and DAPI for nucleus. 

Specimens were observed by fluorescence microscopy (IX81, Olympus).  

Adherent assay 

The 6 Channel µ-Slide were incubated with PBS containing 50 µg/mL of Fibronectin for 1 

h in room temperature, and then washed three times with PBS. Suspended KG-1 cells in medium 

at 1 x 106 cells/mL with α-mangostin or PMA, or BIM I were incubated in fibronectin coated Slide 

for 3 h in 370C. For counting, the Slides were washed three times with medium to remove floating 

cells, then specimens were taken photos by using phase contrast microscopy. The data were 

analyzed by ImageJ software (NIH, Bethesda, MD). 

Western blot analysis 

 KG-1 cells were treated with α-mangostin then washed with ice-cold PBS and lysed in ice-

cold RIPA buffer (1mM Tris-HCl pH 8.8, 150mM NaCl, 1% SDS, 1mM EDTA, 1M phosphatase , 

MiliQ water) with a protease inhibitor cocktail tablet (Roche, Germany) for 30 min at 40C. Protein 

from cell lysates were quantified using BCA Assay Kit (Thermo Fisher scientific), and equivalent 

amounts of proteins were loaded on sodium dodecylsulfate polyacrylamide gels. Separated 

proteins were transferred to a 0.45‐μm nitrocellulose membrane (GE Healthcare Life Sciences), 

then the membrane was blocked with blocking buffer (1% BSA, 1X PBST) for overnight at 40C. 

After blocking, the membrane was incubated with primary antibodies, then with HRP-conjugated 

anti-rabbit IgG. The complex with the HRP-linked secondary antibody was detected using DAB 

(3,3’-Diaminobenzidine). Densitometry analysis of Western blot data was carried out using Image 

J software. 
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Figures 

 

 

 

 

Figure 5.1. The leukocyte adhesion cascade. Progress has been made in defining steps: capture 

(or tethering), slow rolling, adhesion strengthening and spreading, and transcellular transmigration. 
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Figure 5.2. BAM molecules covalently bind with BSA coated dish surface. The suspended 

round cells can be fixed on the BAM surface. I can measure the elasticity of floating cells by AFM 

using BAM surface. 
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Figure 5.3. Young’s modulus of KG-1 cells treated with α-mangostin, then examined by AFM. 

The distribution of the Young’s modulus of cells treated with α-mangostin for 6 h is represented 

by scatterplots. Each point represents the median value of 25 measuring points in each cell, and 

the Young’s modulus in each condition is represented in more than 21 independent cells.  
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Figure 5.4.  The cortical actin of KG-1 after treatment with α-mangostin. KG-1 cells were 

exposed with α-mangostin for 6 h or 2 μg/mL of cytochalasin D (CD) for 1.5 h, and then the actin 

filaments stained with rhodamine labeled-phalloidin, and DAPI (4′,6-diamidino-2-phenylindole) 

labeled the nucleus. 
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Figure 5.5. α-Mangostin induced KG-1 cell adhesion to Fibronectin-coated dish.  Cell culture 

dishes were coated with Fibronectin for 1h, then KG-1 cells were seeded with/without α-

Mangostin (5, 10, 15 µM) or with PMA for 3 h incubation.  
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Figure 5.6. α-Mangostin induced KG-1 cell adhesion to Fibronectin-coated dish.  Cell culture 

dishes were coated with Fibronectin for 1h, then KG-1 cells were seeded with α-Mangostin 15 µM 

plus Calyculin A (CA) or Bisindolylmaleimide I (BIM) for 3 h incubation. 
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Figure 5.7. Young’s modulus of KG-1 cells treatment with α-Mangostin plus Calyculin A or 

Bisindolylmaleimide I. The distributions of the Young’s moduli of cells are shown as scatter plots 

in different concentration treatment of a-mangostin plus CA or BIM for 6 h. Each condition 

displays the Young’s modulus of more than 20 individual cells. 
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Figure 5.8: The ERM protein expression level after treatment with a-mangostin. KG-1 cells 

were pre-incubated with a-mangostin for indicated time, then the cells were subjected with 

western blot.   
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Figure 5.9: Schema of potential signaling pathways for a-mangostin-activated-KG1 cells. As 

for the mechanism by which a-mangostin induces KG-1 cell adhesion, activated PKC and protein 

phosphatase are one of important factors that a-mangostin regulated through to activate leukocytes. 

In addition, I hypothesize that a-mangostin induces ROS which activates PKC and regulate the 

protein phosphatase, so ROS may also play role in this signalling pathway.  
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Chapter 6: General Discussion and Conclusion 

In this study, the various functions of α-mangostin from pericarp of mangosteen fruit 

Garcinia Mangostana Linnincluding “α-mangostin inhibits metastasis” (Chapter 3), “α-mangostin 

reduces the cell surface mechanical of various cell types” (Chapter 4), and “α-mangostin induces 

cell adhesion and activates leukocytes” (Chapter 5) has been demonstrated. As mentioned in the 

General Introduction, α-mangostin has been explored with various biological function and also 

pharmacological properties. The anticarcinogenic properties of α-mangostin attracts the most 

interesting from sicientists. However, almost studies about the anticarcinogenic activities of α-

mangostin were examined on the mono-culture which are lack of interaction between normal cell 

and cancer cells. Therefore, I designed the co-culture system in order to mimic the communication 

of cancer cell and normal cell which also reflects the invasion process. The function of α-

mangostin on cancer cells were found that it did not only kill cancer cells at high dose, but also 

inhibit the migration and invasion of cancer cells. In addition, there are two new biological 

functions of α-mangostin on the cell stiffness and leukocyte which have not published, it has been 

described in the Chapter 4 and 5 in my studies. Therefore, my studies provided more evidences 

support for the multi-biological functions of α-mangostin. 

 

6 – 1. The variety function of α-mangostin on cancer cells  

 Several potential natural compounds are expected to develop chemotherapeutic agent with 

high efficiency and less side effects. α-Mangostin has been indicated as a potential candidate 

through hundred researches about anticancer activities. In my study, it is demonstrated that α-

mangostin can kill cell at high concentration treatment. Besides, α-mangostin has been improved 

that can prohibited the metastasis process of cancer cells. However, these researches are mainly 
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performed by detecting of cancer cells in mono-culture which lack the cell-cell interaction existing 

in the body. Therefore, in order to indicated more accurate result of the effect of α-mangostin on 

cancer metastasis, a co-culture system of cancer cells and normal cells are need to be establish.  

 In this study, I developed one simple co-culture system by culture both cancer cells and 

normal cells together, then α-mangostin was exposed and observed its impacts. In co-culture 

system, lung cancer cells presented their strong growth and damaged to lung normal cells with the 

percentage of cancer cells taking places in culture dish (Fig. 3.7). Comparison to mono-culture, 

cancer cells still grow well, but it is not strong like it in co-culture (Fig. 3.6). In addition, by 

treatment with α-mangostin significant inhibited the suffusion of cancer cells by increasing the 

area of normal cells on co-culture dish (Fig. 3.7). However, cancer cells in mono-culture were 

almost disappeared at them same concentration of α-mangostin and culture periods.  

 Therefore, in this study I found the multi-function of α-Mangostin on cancer cells including 

cause of the cytotoxicity on cancer cells, inhibition of the cancer cell migration. Especially, thanks 

to using the co-culture system which provides chance for cancer cells and normal cells make 

communication, α-Mangostin was found that inhibited the invasive activities of cancer cell and 

also support the survival of normal cells in this co-culture system. 

6 – 2. α-Mangostin reduces the stiffness of various cell types. 

 According many studies, alternations in biological activities and transformation of cells 

states often entail a change in the mechanical behavior of cells. The change in cell stiffness has 

emerged as a marker for cellular phenotypic events and diseases. Malignant cancer cells exhibit 

lower stiffness than normal cells. The mechanical properties are mainly attributed to the 

cytoskeleton components, especially actin microstructures. Therefore, the stiffness alternations 

reflect the remodeling process of the actin and other cytoskeletal elements in the respective cellular 
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events and disease states. α-Mangostin has been discovered inhibited the migration and invasion 

of cancer cells, so whether α-mangostin change the stiffness of cells. 

 Different cell types including normal human fibroblast TIG-1 cells, human cervical cancer 

HeLa cells, human embryonic kidney HEK293 cells, mouse leukemia macrophage RAW 264.7 

cells, and human leukemia myeloblasts KG-1 cells were used for this study. TIG-1, HeLa, 

HEK293, and RAW 264.7 cells are adherent cells and KG-1 cells are suspension cells. The 

morphologies of these cells vary, and the features of the actin cytoskeleton vary in these cell types. 

TIG-1 cells have an elongated morphology; HeLa and HEK293 cells have a shortly extended 

morphology; RAW 264.7 cells have weakly adhering morphology; and KG-1 cells are suspended 

and spherical shape. These cells are varied phenotypes and cytoskeleton structure, but their cell 

surface stiffness is reduced by treatment with α-mangostin.  

 The stiffness of TIG-1 cells, HEK293 cells and RAW 264.7 cells are slightly reduced 

comparison to KG-1 cells and Hela cells. TIG-1 cells show the well-developed actin stress fiber 

and their stiffness is also high due to the developed actin stress fiber. While the HEK293 cells 

contains immature actin cytoskeletons, and their stiffness are also slightly decreased by α-

mangostin. The cytoskeleton structures of RAW 264.7 cells contain of F-actin at the cell-cell 

border and cortical region along with protrusion. RAW 264.7 cells resistance the cytotoxicity of α 

-mangostin, but its stiffness was little changed. α-Mangostin also did not change the actin 

cytoskeleton structures of these cells (Fig. 4.8). 

The stiffness of KG-1 cells and Hela cells were largely reduced by α-mangostin. KG-1 cells 

had cortical actin, Hela cells obtained many fine fibers inside the cells, and both types of cells have 

many short microvillus and protrusion on their surface. At the base of each microvillus, the actin 

filaments are anchored into a specialized region known as the terminal web. This contains a 
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concentrated network of spectrin molecules and a layer of intermediate filaments. It is thought that 

spectrin imparts rigidity to the cell cortex; because the actin filaments are anchored to the terminal 

web, this keeps the microvilli orientated perpendicularly to the apical surface of the cell. The actin 

filaments are attached to the plasma membrane by lateral bridges composed of myosin-I and 

several other molecules including the Ca2+ and the Ca2+ binding protein, Camodulin. Therefore, α-

mangostin is sensitive with microvilli for the reduction of the stiffness. 

 α-Mangostin has been found reduced the cell surface stiffness but did not change the 

cytoskeleton actin structures. However, α-mangostin was improved that has contradictory 

functions on the molecules that impacts the actin cytoskeleton, such as it increases MLCP, reduces 

Ca2+ elevation, inhibits MLCK. Therefore, the results indicated α-mangostin regulate the signal 

cascades of the actin cytoskeleton inside these cells and it is needed to the further study to confirm. 

 

6 – 3. α-Mangostin reduces the cell stiffness related to the adhesion and activation of 

leukocytes. 

 In the above study, KG-1 cells were mentioned that is sensitive with α-mangostin in 

reduction of the cell surface stiffness. In addition, KG-1 had only cortical actin on plasma 

membrane and short microvillus on the cell surface. The mechanical properties and surface 

microvilli are involvement with KG-1 cells adhesion and stimulation. Therefore, in this study we 

continue to use KG-1 in order to reveal the molecules involved with the reduction of the stiffness 

caused by α-mangostin. 

 KG-1 cells were exposing with α-mangostin for 6 h and result in decrease of the cell surface 

stiffness. In addition, KG-1 cells just obtain a simple cytoskeleton structure – cortical actin and 

microvilli, so after treatment with α-mangostin they were stained with rhodamine phalloidin. The 
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results presented α-mangostin decreased significantly number of microvilli on KG-1 surface. In 

addition, it appeared the blebbing on surface which blurred the actin cortical. Therefore, these 

results indicated the actin microvilli is sensitive targeting of α-mangostin in changing the 

mechanical properties of leukocytes. 

 In addition, the decreased of leukocytes stiffness has been indicated that relates to leukocytes 

activation. KG-1 cells are non-adhesion cells in maintenance culture, but in the present of α-

mangostin, KG-1 cells adhered to Fibronectin-coated dish. α-Mangostin-induced KG-1 cell 

adhesion occurred in very short time, so it is the results of signal transduction, not the results of 

differentiation.  

 The induction of cell adhesion and reduction of stiffness of KG-1 by α-mangostin is 

prevented by Calyculin A (protein phosphatase 1/2A inhibitor) and BIM (PKC inhibitor). 

Therefore, the activation of PKC and protein phosphatase 1/2A (PPP1A) are the target signaling 

of α-mangostin in activation of leukocytes. The leukocytes are activated by PMA, SDF-1 which 

also regulated via PKC and PPP1A involved with dephosphorylation of ERM protein.  

 In previous researches indicate α-mangostin induces Ca2+ influx in platelets; it inhibits Ca2+-

ATPase in the sarcoplasmic reticulum; and it reduces Ca2+ elevation by suppressed Ca2+influx. 

The Ca2+ influx is involved with regulate stress fiber and result in change the cell surface stiffness. 

Therefore, further study examining Ca2+ influx might reveal the signal cascade related in the 

processes of the mechanical change caused by α-mangostin. 
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6 – 4. Conclusion 

The figure 6.1 shows a summary of the multi-biological function of α-mangostin 

discovered in my studies. α-Mangostin presented its cytotoxicity for different cell types at high 

concentration treatment excepted RAW cells. In addition, α-Mangostin also present its anti-

metastasis activities by disturbing the communication between cancer cells and normal cells. The 

secret proteins, cytokines and growth factors in cancer cells are declined by α-mangostin, it 

prevented cancer cells send “message” to normal cells. Thus, α-mangostin protects the normal 

cells from cancer cells and prohibited the invasion of cancer cells on normal cells.  

Whiles α-mangostin inhibited the migration of cancer cells, it is found that α-mangostin 

decreased the cell surface stiffness of various cells. α-Mangostin has been found that changed the 

cell surface stiffness not only cancer cells, but also different types of cells including human 

fibroblast cells, human cancerous cells, human embryonic kidney cells, mouse macrophage cells, 

and human myeloblasts cells. α-Mangostin dose not impact to change the actin cytoskeleton in 

these cells, but its target in the process of changing the cell stiffness is microvilli – a weak structure 

of actin filaments. In addition, α-mangostin is firstly investigated on the leukocytes and found that 

reduces the cell stiffness related to the cell adhesion and activation of leukocytes via activation of 

PKC and protein phosphatase 1/2A. 

To conclusion, my findings will provide more evidences for the use of complex- and multi- 

biological functional α-mangostin in future pharmaceutical application. 
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Figure 6.1: Summary the multi-biological function of α-mangostin. 
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