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ABSTRACT 

 

At present, the quality of the drinking water supply source is degraded by the pollutants 

originated from various human activities. Among those contaminants, ammonium and 

micropollutants are of critical concern due to their toxic and harmful effects to public health 

and aquatic system, as well as troubles induced in the operation of drinking water treatment 

processes. Different treatment methods could successfully remove ammonium and 

micropollutants from water; however, a technology that balanced the treatment efficiency, 

cost-effectiveness, and sustainability is desirable. 

In this regard, a nitrifying expanded-bed reactor using biological activated carbon (BAC) 

media appeared to be responsive to the demand. Rather than focusing on the adsorption 

capacity, this process uses exhausted granular activated carbon (GAC) media as the carrier 

for microbial colonization. This naturally occurring biofilm can biodegrade a wide variety 

of contaminants such as ammonium, micropollutants, disinfection by-products precursors, 

and other organic/inorganic substances. In this way, the service life of BAC media could 

be significantly extended. The up-flow direction also offers advantages, such as 

improvement of contact between water influent and the biomass in the whole expanded-

bed, or reduction of head loss and backwashing frequency. 

In the first part, a kinetic model of a nitrifying expanded-bed reactor for the pretreatment 

of drinking water was developed to analyze its behavior under different concentrations of 

influent dissolved oxygen, ammonium, and organic substrate. In the laboratory, an up-flow 

expanded-bed reactor was initially fed with synthetic water containing 1 mg NHx-N/L to 

stimulate nitrifiers growth, followed by varied NHx-N loadings (1–2 mg NHx-N/L with a 

fixed linear velocity). From tracer tests, the hydraulic regime of the expanded-bed reactor 

was simulated to be 11 tanks-in-series. To model the even distribution of media in the 

expended-bed height, a mathematical internal recycle flow allowing the movement of 

media between the cell tanks was made. The performances were also studied on the pilot- 
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and full-scale reactors receiving river water in two water treatment plants in Vietnam. A 

single set of biological kinetic and stoichiometric parameters was elaborated that 

successfully reproduced the five different datasets over the lab-, pilot- and full-scale 

reactors. The attachment/detachment specific rates of the biofilm were estimated during 

filtration cycles and backwash events. The graphical guidance and empirical equation were 

provided to obtain the reactor treatment efficiency under variable influent and temperature. 

Additionally, the dissertation summarized the principles of the biofilm and biological 

model with a focus on the Integrated Fixed-film Activated Sludge (IFAS) object on the 

GPS-X software. The sensitivity analysis of the numerical calculation and operational 

parameters on the calculation results was also carried out.  

In the second part, the possibility of degrading the pesticides using nitrifying expanded-bed 

reactor was investigated. The field analysis demonstrated that four pesticides Flutolanil, 

Buprofezin, Chlorpyrifos, and Fenobucard, were removed at the removal efficiencies of 

82%, 55%, 54%, and 52% respectively, while others were not significantly removed. Under 

controlled laboratory conditions with continuous and batch experiments, the adsorption 

onto the biological activated carbon media was demonstrated to be the main removal 

pathway of the pesticides. The contribution of microorganisms to the pesticide removals 

was rather limited. The pesticide removals observed in the field reactor was speculated to 

be the adsorption on the suspended solids in the influent water or to the biofilm in the 

reactor. The obtained results highlighted the need to apply a more efficient and cost-

effective technology to remove the pesticides in the drinking water treatment process.  
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1.1. AMMONIUM OCCURRENCE AND THE NEED OF REMOVAL IN 

DRINKING WATER TREATMENT 

At present, elevated concentrations of ammonium (NHx-N) are often encountered in 

different surface water sources worldwide. NHx-N is considered one of the most critical 

contaminants in freshwater due to its highly toxic nature and ubiquity in the water systems 

[1]. NHx-N of natural sources is mainly produced from the decomposition of organic 

nitrogen, such as animal excrements and dead plants or animals. However, NHx-N of 

anthropogenic sources are the primary factors contributing to freshwater degradation. In 

the industrial sectors, NHx-N is primarily used as the nitrogen source in fertilizers in 

agriculture land, with direct application of anhydrous NHx-N being the largest method of 

consumption [2]. To a lesser extent, NHx-N is also applied in various industrial activities, 

such as plastics, cleaning products, explosives, animal feed, and food additives. In addition, 

the discharge of untreated domestic and industrial sewage and runoff from areas with 

intensive animal husbandry are also major sources of NHx-N in the environment [3]. The 

principle emission sources of NHx-N to the water environment were illustrated in Figure 1. 

The specific origins and fate of NHx-N could be identified by analyzing the stable N 

isotopic compositions in water sources [4].  

 

Figure 1. Principle emission sources of ammonium to water environment [5] 
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In water, NHx-N is presented in two chemical forms, in which the ammonium ion (NH4-N) 

is more abundant than the unionized ammonia (NH3). The concentration of total ammonia, 

denoted as NHx-N, is the sum of NH4-N and NH3 concentrations. The ratio of these species 

depends on the pH and temperature of the aqueous solution, as shown in Figure 2. At the 

pH around 7 almost the total ammonia is presented as NH4-N; therefore, the term 

ammonium is often adopted for this contaminant in water. 

 

Figure 2. The fraction of ammonium ion and free ammonia as a function of 

temperature and pH [6]. 

Annually domestic wastewater released about 20 million tons of NHx-N into the 

environment, occupying nearly 10% of the total world emission. The figure is projected to 

further increase to 35 million tons annually by the middle of 21st century [7]. Consequently, 

various studies have observed growing trends of NHx-N contaminants in water sources, 

especially in developing countries. In Vietnam, the NHx-N concentrations in major rivers 

were higher than 0.3 mgN/L, which is the national threshold for drinking water purposes. 

In particular, very high concentrations of NHx-N of 6.5mgN/L were monitored in Cau River 

basin, where industrial wastewater was discharged without proper treatment [8]. In China, 

the NHx-N pollution issues in freshwater have drawn significant attention in the main river 
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basins such as Liao River, Yellow River, Songhua River, etc. For instance, the NHx-N 

concentrations were ranged from 0.32 to 8.12 mgN/L in winter and 0.91 to 6.95 in summer 

in Liao River [9]. In another study carried out in Tongshun River, another large and 

important river in Jianghan Plain in China, the NHx-N concentrations were ranged from 

0.07 to 10.25 mgN/L mainly due to the discharge of industrial and municipal wastes [4]. In 

Mongolia, a very high concentration of NHx-N reached 29.5 mgN/L was recorded in Tuurl 

River in the North center of the country due to anthropogenic discharge sources [10]. The 

NHx-N pollutants in rivers and canals in and around Dhaka City, the capital and the largest 

city of Bangladesh, were found to be varied from 6.35 to 34 mgN/L in 2008 and 2009, 

threatening the water supply source of Saidabad Water Treatment Plant.   

Opposing pictures relating to NHx-N pollutants have been drawn in the countries where 

adequate wastewater treatment facilities are in place. For example, over 21 years from 1992 

to 2012, the average NHx-N concentration in European rivers was decreased by 0.231 

mgN/L, which was equivalent to 3.5% per year thanks to implementing the Urban Waste 

Water Treatment Directive and national legislation [11]. In Canada, the NHx-N 

concentrations were found to be lower than 0.1 mgN/L in surface water systems[12]. In 

Japan, the NHx-N concentrations met the Water Environment Quality Standard, in which 

the allowable total nitrogen was ranged from 0.1 to 1 mgN/L, in almost all surface water 

monitoring sites [13][14]. These examples suggested that the NHx-N pollution situation in 

the aquatic environment and supply drinking water sources could be remedied with 

appropriate integrated water resources management, in which the removal of NHx-N from 

water sources played a critical role. 

The presence of NHx-N at high concentrations in surface water ecosystems represented one 

of the most harmful issues besides oxygen depletion. It could directly impact individual 

species, typically death, reduced growth rate, or reduced reproduction success. Indirect 

impacts are those that affect the ecosystem by changing the living conditions of organisms, 

for instance, eutrophication or acidification [2],[9]. Therefore, the ecology risks assessment 

caused by NHx-N has been carried out worldwide. In Liao River in China, the acute and 
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chronic water quality criteria of NHx-N based on the toxicity of the Liao River species were 

found to be 16.86 and 4.39 mgN/L. In Korea, an acute predicted no effect concentration 

value of 22 mgN/L for NHx-N was proposed based on short-term toxicity data of Korean 

native aquatic species. In the USA, the acute and chronic criteria of 17 and 1.9 mgN/L were 

updated since 2013 for NHx-N water quality criteria [9]. As for human health, the NHx-N 

in potable water is not of significant concern because of its lower concentration than the 

human capacity to detoxify [15]. Therefore the World Health Organization does not provide 

health-based guideline value for NHx-N [16]. However, the presence of NHx-N might 

induce objectionable taste and odor; therefore, its maximum concentration is regulated in 

several drinking water standards, such as 0.3 mgN/L in Vietnamese QCVN01-1:2008/BYT 

[17].  

The elevated concentrations of NHx-N at the supply drinking water sources are of particular 

concern for the operators of drinking water treatment plants (WTP). In biological 

nitrification, NHx-N will be decomposed into an intermediate nitrite (NO2-N) and final 

product nitrate (NO3-N). In some countries, NO2-N and NO3-N are regulated at strict values. 

For instance, Japan requests 0.04 mgN/L as NO2-N and 10 mgN/L for total NO2-N and 

NO3-N, while Vietnam requires 0.05 mgN/L as NO2-N and 2 mgN/L as NO3-N. Because 

the formation of NO2-N and NO3-N indicates the loss of NHx-N following a ratio of 1:1:1, 

their regulated values could be used as a secondary drinking water standard for NHx-N [18]. 

In particular, when chlorination disinfection is applied in the water treatment process, a 

large amount of chlorine would be needed to remove the NHx-N. A dose of 8 – 10 

mgCl2/mgNHx-N is often recommended to reach the chlorination breakpoint and obtain the 

free chlorine residual [19]. Therefore, high influent NHx-N is directly engaged to the 

increase in the operational costs. Additionally, in case that the influent dissolved oxygen 

(DO) is limited, the incomplete removal of NHx-N may result in the accumulation of NO2-

N in the system. The high concentration of NO2-N in tap water can cause 

methemoglobinemia in infants [20]. Consequently, more chlorine should be dosed to 

oxidize the generated NO2-N.  
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Therefore, effective technologies to remove NHx-N from water have been extensively 

studied, as presented in section 2.1. 
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1.2. MICROPOLLUTANT OCCURRENCE AND THE NEED OF REMOVAL IN 

DRINKING WATER TREATMENT  

In addition to the NHx-N contaminants, the micropollutants are of critical concern in the 

degradation of freshwater quality. As indicated in Figure 3, the surface and groundwater 

are being degraded by various due to multiple human activities. 

 

Figure 3. Typical sources and routes of micropollutants in the environment [21] 

The release of effluent from wastewater treatment plants to the aquatic environment 

contributes significantly to the increasing concentrations of contaminants of emerging 

concern (CECs) in surface water. Those wastewaters originated from domestic, industrial, 

and hospitals [21]. In developed countries, a high portion of generated wastewater is treated 

adequately to reduce the harmful effects. However, the discharge of untreated sewage to 

water bodies occurs in many regions of the world, representing a severe concern to public 

health and the ecosystem. Conventional wastewater treatment plants were not designed for 

dealing with these CECs; therefore, they could only be removed to a certain extend. Other 
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sources of CECs are the leakages from landfills, septic tanks, etc. Additionally, the 

management of industrial effluents from the production sectors of pharmaceuticals, 

personal care products, pesticides, and other compounds are not handled properly in some 

places, which increases the appearance of CECs in water. The runoffs from agriculture and 

livestock areas are also essential sources of micropollutants [21].  

In this study, the concurrence of pesticides in water supply sources was focused. Pesticides 

are one of the few toxic substances released deliberately into the environment to kill living 

organisms. Although the term pesticide is often misunderstood to refer only to insecticides, 

it is also applicable to herbicides, fungicides, and various other substances used to control 

pests [22]. Several hundred pesticides of different chemical compositions are currently used 

for agricultural and vector control purposes worldwide [23]. Newer pesticides that are more 

selective and less toxic to humans and the environment, which require fewer application 

dosages, are in the trend in developed countries. Meanwhile, significant use of older broad-

spectrum pesticides continues in many parts of the world. It was suggested that the 

mobilization of nutrients might have been surpassed the thresholds that will cause dramatic 

changes in continental-to-planetary-scale systems, including the pollution of ground and 

surface waters [24].   

The most common way to classify the pesticides is based on their chemical structure, in 

which the pesticides are divided into four main groups as follows.  

Table 1. Typical examples of chemical pesticides with their definition and 

applications [25] 

Pesticide group Definition and applications 

Organochlorines Stable compounds are too persistent in the environment and tend 

to accumulate in fatty tissue. Its primary use is in the eradication 

of disease vectors such as malaria, dengue, and malaria. They are 

also used in the cultivation of grapes, lettuce, tomato, alfalfa, corn, 

rice, sorghum, cotton, and wood, for preservation. Its way of 
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Pesticide group Definition and applications 

exposure is mainly on insects by contact or by ingestion 

Organophosphates They are esters derived from phosphoric acid. Organophosphorus 

compounds are most commonly used in agriculture; most are 

insecticides and miticides. Their way of joining these 

organizations is by ingestion and contact. They are used in 

vegetable crops, fruit trees, grains, cotton, sugarcane, among 

many others. 

Carbamates  They are esters derived from acids or dimethyl N-methyl carbamic 

acid are used as insecticides, herbicides, fungicides, and 

nematicides. They are less persistent than organochlorines and 

organophosphates, and likewise, the latter inhibit 

acetylcholinesterase 

Pyrethroids They originate from natural insecticides derived from pyrethrum 

extract derived from chrysanthemum flowers, known as 

pyrethrins. 

Others Other pesticides are triazine herbicides, ureic, hormonal, amides, 

nitro compounds, benzimidazoles, ftalamidas, bipyridyl 

compounds, ethylene dibromide, sulfur-containing compounds, 

copper or mercury, etc. 

The presence of pesticides in surface waters has been reported in many regions in the world, 

such as in Malaysia, Chile, Canada, India, Japan, Greece, Brazil, China, and Vietnam  

[26]–[34]. Different stages in which pesticides could reach the aquatic environment are 

illustrated in Figure 4. Pesticide contaminants in surface water are often generated from 

diffused pollution sources, such as runoff, leaching, and chemical spilling from agricultural 

zones.  
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Figure 4. The pathways of pesticides to the aquatic environment [29] 

As pesticides are designed to be toxic to particular groups of organisms, they can have 

considerable adverse environmental effects on other living creatures as well as diverse 

media, including air, soil, or water [25]. The hazardous effects of pesticides on human 

health by direct exposures have been well documented in [22], [29]. However, pesticides 

in drinking water are often of trace levels; hence the concern is primarily for their potential 

for causing chronic health problems. To the best of our knowledge, there is no scientific 

publication on the non-carcinogenic health risk, defined as the pesticide thresholds below 

which the effect does not occur, due to the human ingestion of pesticides in the finished 

water from WTPs [26]. The studies on the chronic exposure of pesticides were often based 

on laboratory animals for the measurement of incidence of cancer, birth defects, genetic 

mutations, or other problems such as damage to the liver or central nervous system. The 

information were interpreted in the context of its potential hazard under actual field 

conditions, providing the health-based data for the policy makers [35]. 

The drinking water guidelines are aimed at keeping pesticides at levels below those that are 

considered to cause any health effects in humans [35]. In 2017, the World Health 

Organization (WHO) had provided the guideline values for 31 pesticides presented in 
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drinking water, which were of health significance [16]. In Europe, a proposal for a revised 

drinking water directive has been adopted since 2018, in which a maximum concentration 

of 0.1 μg/L for individual pesticide and 0.5 μg/L for total pesticides were regulated [36].  

In the United States, the Environmental Protection Agency has identified 18 types of 

pesticides and herbicides with their maximum contaminant levels and potential health 

effects from long-term exposure in the National Primary Drinking Water Regulations [37]. 

In Japan, pesticides were not listed in the Drinking Water Standards but referred to the 

category of “Complimentary Items to Set the Target for Water Quality Management” [38]. 

In Vietnam, the Ministry of Health has recently listed 27 pesticides with their maximum 

limits in the National Technical Regulation on Drinking Water Quality (QCVN01-

1:2018/BTY) [17]. 

Therefore, effective technologies to remove the pesticides from drinking water sources are 

beneficial to improve the finished water quality and fulfill the drinking water standards.   
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1.3. INTRODUCTION ON GRANULAR ACTIVATED CARBON AND 

APPLICATION IN WATER TREATMENT 

Activated carbon (AC) is produced from rich-carbonaceous precursors, such as wood, coal, 

coke etc., via two main processes, which are thermal activation and chemical activation. 

Thermally activated carbon has high reactivity towards oxygen, which can induce catalytic 

reaction to convert the nonbiodegradable substances into biodegradable ones. On the other 

hand, chemically activated carbon showed better desorbability than thermally AC and 

resulted in enhanced adsorption capacity of AC for nonbiodegradable compounds. 

Therefore, the selection of AC types significantly affected the treatment performance 

purposes and could help to extend the service life of AC [39]. 

AC is manufactured in three main forms of powder AC (PAC), granular AC (GAC) and 

pelletized AC, which are differentiated by the particle size. GAC is more often adopted in 

water treatment due to its cost-effectiveness in continuous and extensive scale-systems. 

Typically, GAC's effective sizes in water treatment ranged from 0.5 to 0.7 mm, and 0.8 to 

1 mm [40]. The pore size distribution of GAC significantly affects its specific surface area 

and adsorption capacity. The pore diameters could be categorized as primary micropores 

(<0.8 nm), secondary micropores (0.8-2 nm), mesopores (2 – 50 nm), and macropores (>50 

nm) [41]. GAC' irregular crevices and porous particle shape offer an extremely high 

number of adsorption sites for the adsorption of various water contaminants.   

GAC was firstly used in drinking water treatment in the late 1920s to remove the taste and 

odor in finished water. The undesirable taste and odor in drinking water were mainly 

attributed to the presence of chlorophenol formed in water as a result of the chlorination of 

phenols at the disinfection stage. Currently, problems in drinking water treatment extend 

beyond the scope of taste and odor control [42]. CECs appear to be one of the most 

problematic issues as the quality of drinking water supply sources is gradually degraded. 

Additionally to the GAC adsorption, which has been employed for decades, the biological 

activated carbon (BAC) process, which uses exhausted GAC media for microbial 

colonization, has also received much attention. This naturally occurring biofilm can 
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biodegrade a wide variety of contaminants such as organic carbon, organic/inorganic 

substances, and disinfection by-products precursors [39], [43], [44]. Detailed on AC’s 

technologies adopted in water treatment will be presented in section 2.3. 
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1.4. BIOFILM MODEL IN ACTIVATED SLUDGE MODEL (ASM1) 

The development and application of the International Water Association (IWA) Activated 

Sludge Models (ASMs) have created fruitful transformation and achievement in water and 

wastewater treatment research and practice. The models offer efficient means to combine 

the knowledge of science, engineering, and practice into an executable tool. The design 

criteria of a model are to keep the complexity as low as possible while encompassing crucial 

components and processes. Their application progress relies on the continuous 

accumulation of successful and failure experiences. Additionally, their widespread 

application has created a common language between the researchers and practitioners [45], 

which pave the way for further model development and improvement.  

While the mathematical model of suspended-growth processes has been soundly 

investigated in various publications [46]–[48], the model of biofilm-based processes is 

more complicated due to increased complexity in describing the fate of wastewater 

constituents (i.e. particulate versus soluble substrate), differences in biofilm reactor 

configuration and operation, the impact of bulk-liquid hydrodynamics, and diffusional 

biofilm resistances. Over the last 30 years, the biofilm models have become more complex 

and more computationally intensive [49], with the model resolutions range from 1-

dimension (1-D) to 3-dimension (3-D), as indicated in Figure 5. A 1-D model allows 

property gradients in one direction, usually over the biofilm depth, i.e., from the bulk liquid 

to the substratum. Meanwhile, the 2-D and 3-D models are needed to reproduce complex 

spatial distributions of the components, complex biofilm geometries, etc. [50]; however, 

they also demand heavy computing resources and deep programming expertise [45]. The 

1-D model can capture the dominant processes of microbial reactions and mass transport 

[45]; therefore, it has been widely adopted in water treatment engineering, 

At present, different process simulators are offered for biofilm modeling, as listed in Table 

2. Among the available simulators, the GPS-X software was selected for the biofilm model 

in this study.  
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Figure 5. Biofilm models development over the last 30 years [49] 
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Table 2. Available simulators for biofilm models and wastewater treatment plants 

[51] 

Name Source Model type and biomass 

distribution* 

AQUASIM EAWAG, Swiss Federal Institute of 

Aquatic Science and Technology, Du¨ 

bendorf, Switzerland 

(www.eawag.ch/index_EN) 

1-D, DY, N; Heterogeneous 

AQUIFAS Aquaregen, Mountain View, 

California (www.aquifas.com) 

1-D, SE, N, Heterogeneous 

BioWin EnviroSim Associates Ltd., 

Flamborough, Canada 

(www.envirosim.com) 

1-D, DY, N, Heterogeneous 1-D, 

GPS-X Hydromantis, Inc., Hamilton, Canada 

(www.hydromantis.com) 

1-D, DY, N, Heterogeneous 1-D, 

Pro2D CH2M HILL, Inc., Englewood, 

Colorado (www.ch2m.com/corporate) 

1-D, SS, N(A), Homogeneous 

Simba ifak GmbH, Magdeburg, Germany 

(www.ifak-system.com) 

1-D, DY, N, Heterogeneous 

STOAT WRc, Wiltshire, England 

(www.wateronline.com/storefronts/ 

wrcgroup.html) 

1-D, DY, N, Heterogeneous 

WEST MOSTforWATER, Kortrijk, Belgium 

(www.mostforwater.com) 

1-D, DY, N(A)  

* Note: SS = steady-state, DY = dynamic, SE = semi-empirical, N = numerical, and N(A) 

= numerical using analytical solutions.  
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1.5. DISSERTATION STRUCTURE 

The dissertation is organized into nine chapters. Each chapter focused on a specific 

objective as briefly introduced below: 

In Chapter 1, the occurrences of ammonium and micropollutants were reported with their 

harmful effects on public health and the aquatic system. The granular activated carbon 

offered the capacity of adsorption and biodegradation that could respond to the treatment 

purpose. The mathematical biofilm model could provide insights on the biological 

reactions and mass transport processes that occurred in the attached-growth-process 

systems. 

In Chapter 2, the existing technologies to remove ammonium and micropollutants in 

drinking water treatment were documented together with their advantages and limitations. 

The nitrifying expanded-bed reactor using biological activated carbon media appeared to 

be a promising alternative to respond to the treatment request.  

In Chapter 3, a model concept used to simulate the nitrifying expanded-bed reactor was 

presented. The principles of biofilm and biological models on the platform of Activated 

Sludge Model 1 (ASM1) were summarized. A combined model with two-step-nitrification 

was proposed to simulate the nitrifying expanded-bed reactor.  

In Chapter 4, a physical model was developed to identify the physical boundaries in which 

the biological reactions occurred. An internal recycle flow with media was first introduced 

to simulate the even distribution and moving of media within the expanded-bed. 

In Chapter 5, an incorporated physical, biofilm, and biological model was applied to 

simulate the ammonium and organics removals of the nitrifying expanded-bed reactor on 

five different datasets of lab-, pilot- and full-scale reactors. A single set of kinetic and 

stoichiometric parameters were proposed for the oligotrophic heterotrophs and autotrophs. 

The complex biofilm attachment and detachment were investigated. The reactor 

performance was also studied under variation of influent water quality and temperature.  

In Chapter 6, a sensitivity analysis of the numerical calculation and operational parameters 
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on the calculation results of the Integrated Fixed-film Activated Sludge (IFAS) object was 

carried out.  

In Chapter 7, the possibility of the nitrifying expanded-bed reactor to remove the pesticides 

were investigated. The removal mechanisms of the pesticides in drinking water biofilm 

were revealed by the continuous and batch experiments on the full- and lab-scale reactors. 

In Chapter 8, a summary of the key findings was provided. The recommendations for 

further studies were also discussed.  
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2.1. REMOVAL OF AMMONIUM IN WATER TREATMENT 

Due to the harmful effects of NHx-N on the aquatic ecosystem, intensive studies have been 

carried out to remove NHx-N from water. Various processes have been used for NHx-N 

removal from wastewater, such as air/steam stripping, vacuum distillation, chemical 

precipitation as struvite, membrane filtration, etc. [6]; however, those which are frequently 

used in drinking water treatment will be focused in this study. In the following sections, a 

review of these processes with their advantages and limitations will be summarized.  

2.1.1. Physico-chemical technologies 

2.1.1.1. Breakpoint chlorination 

Breakpoint chlorination is a well-known method that has been applied for decades for the 

removal of NHx-N. In this section, the chemistry of chlorine in water treatment will be 

presented [52].  

Chlorine is often added to water under gaseous or liquid forms of sodium or calcium 

hypochlorite. These substances are rapidly hydrolyzed to hypochlorous acid according to 

the following equations:     

Cl2 + H2O → HOCl + H+ + Cl- Eq (1) 

Ca(OCl)2 + 2H2O → Ca2+ + 2HOCl + 2OH- Eq (2) 

NaOCl + H2O → Na+ + HOCl + OH- Eq (3) 

The two chemical species formed by chlorine in water, hypochlorous acid (HOCl) and 

hypochlorite ion (OCl-) are commonly referred to as free available chlorine. Hypochlorous 

acid is a weak acid and will disassociate to H+ and OCl-. In waters with a pH between 6.5 

and 8.5, the reaction is incomplete, and both species (HOCl and OCl-) will be present. 

As a relatively strong oxidizing agent, chlorine can react with a wide variety of compounds. 

As indicated in Figure 6, after adding chlorine to the water, the following processes will 
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happen [18] : 

 Zone 1: Initial chlorine demand is caused by reducing agents (Fe+2, Mn+2, H2S, 

NO2–) that consume most of the chlorine applied prior to forming combined 

residuals. 

 Zone 2: Additional chlorine combines with available total ammonia and reactive 

organics until forming maximum monochloramine residual. At the same time, 

uncombined free NH3 is being depleted until it reaches zero [52]: 

NH3 + HOCl → NH2Cl (monochloramine)+ H2O Eq (4) 

 Zone 3: More chlorine dosage converts monochloramine into odorous 

dichloramine and nitrogen trichloride. Total combined chloramine residual 

decreases, and total NHx-N concentration approaches zero at the breakpoint. 

NH2Cl + HOCl → NHCl2 (dichloramine)+ H2O Eq (5) 

NHCl2 + HOCl → NCl3 (trichloramine) + H2O Eq (6) 

 Zone 4: True free chlorine residual is obtained and provides the least nuisance odor 

when free residuals make up 85 % of the total chlorine concentration. Nuisance 

combined chlorine residuals survive, and the potential for disinfection by-products 

(trihalomethane and haloacetic acid) formation remains as free chlorine residual 

develops further. Continuous adding of chlorine after the breakpoint will convert 

trichloramine to nitrogen gas. The overall reaction for chlorination breakpoint is 

given as: 

NH4
+ + 1.5 HOCl = 0.5 N2 + 1.5 H2O + 2.5 H+ + 1.5 Cl-  Eq (7) 
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Figure 6. Interpretation of Breakpoint Chlorination Curve [18] 

The free chlorine residual concentration is regulated in drinking water standards as an 

indicator for sufficient disinfection, targeting pathogen killing  

As shown in Eq (7), the amount of chlorine to entirely oxidize NHx-N is stoichiometrically 

7.6 mgCl2 to 1 mgNHx-N. However, in practice, a dose of 8 – 10 mgCl2/mgNHx-N is often 

recommended to reach the chlorination breakpoint and obtain the free chlorine residual [19]. 

The chlorination breakpoint for NHx-N is a simple and well-established technique.  

However, in the case of high NHx-N concentrations, an increased dose of chlorine would 

be needed to fully oxidize such an amount, leading to high chemical reagent costs. Further, 

the side-effects of chlorination, such as unpleasant taste and odor, or the formation of 

harmful and carcinogenic disinfection by-products should be considered.   

2.1.1.2. Adsorption 

Adsorption is a process in which the substances are accumulated or concentrated at a 

surface or interface. In water treatment, the removal of NHx-N often occurs between the 

interface of the liquid phase and solid adsorbent materials. Because NHx-N is highly 

miscible with water, the primary driving force of adsorption is due to the high affinity of 
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NHx-N for the particular solid adsorbents rather than the solvent disliking character. The 

adsorption is induced by van der Waals attraction or chemical interaction of NHx-N with 

the adsorbent [53]. Hence, the efficiency of the adsorption process depends mainly on 

selecting suitable adsorbent media. Additionally, recent studies also highlighted the 

importance of other operational parameters, such as adsorbent dosage, pH, contact time, 

and coexisting ions [7].   

The adsorption of NHx-N onto solid media provided many advantages, including high 

removal efficiency, simple operation, and low energy consumption. It is suitable for a wide 

range of NHx-N concentrations from low-strength categories, such as in fish pond water (~ 

10 mgN/L), domestic wastewater (~ 40 – 60 mgN/L) to very high NHx-N loadings in 

landfill leachate (~ 100 – 1000 mgN/L) [7]. However, adsorption could not be used in the 

water pretreatment with high influent suspended solids (maximum tolerance of 20 mg/L) 

due to the blockages or pressure loss [54]. The major limitation of adsorption pertains to 

the saturation or exhaustion of adsorbent materials in which the breakthrough and 

exhausted points are reached. Regeneration of adsorbents is needed, including chemical 

washing, biological regeneration, electrochemical regeneration, mild heating, or electric 

field [7]. 

Numerous adsorbents have been studied so far for the adsorption of NHx-N in water 

treatment. They could be roughly categorized as conventional materials such as clay and 

carbonaceous matters, or nanostructured materials such as metal-organic frameworks, as 

shown in Figure 7. The conventional adsorbents are abundant and cost-effective; however, 

their bindings with NHx-N are relatively weak. The new materials, such as nanostructured 

materials, provides high adsorption capacity and rapid adsorption kinetics; however, they 

require expensive precursors, tedious preparation, and uncertainty [7]. Additionally, the 

adsorbents prepared from agricultural wastes or residues, such as strawberry leaf powder, 

were also studied intensively due to their abundance and cheap price [54] 
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Figure 7. Typical adsorbent materials for ammonium in water treatment [7] 

Among those adsorbents, activated carbon is considered a versatile material due to high 

specific surface area, porous structure, and rich surface chemistry. However, the bindings 

between activated carbon and NHx-N are relatively weak due to the lacking of sufficient 

surface acidity. Further, it should be noted that the average pore size of activated carbon is 

much higher than that of NHx-N molecule of 0.3 nm. Therefore, activated carbon is a less 

effective adsorbent for NHx-N [7].     

2.1.1.3. Ion exchange process 

The ion exchange process consists of reversible chemical reactions in which dissolved ions 

in a solution are replaced with other similar charged ions [54]. In the case of removing 

NHx-N from water, a cation exchanger using zeolitic minerals such as clinoptilolite, 

sepiolite, betonite, and mordenite, is commonly applied.  

In the conventional design, the ion exchange column consists of zeolite particles in the 

packed-bed through which the influent is tricked until a specific NHx-N breakthrough 

concentration is reached. This process is efficient at a wide range of temperature and NHx-
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N concentration and is responsive to NHx-N shock loading. However, significant use of 

chemical regenerants and rinse water are required to restore and reuse of the exchange 

column, leading to high operational costs. Further, at least one duplicate column is needed 

to maintain the continuous operation [54], [55].    

Most of the studies on the ion exchange process investigated the primary treatment of 

wastewater containing high NHx-N loading. Focusing on the low-strength NHx-N 

concentrations from 2 to 10 mgN/L, research was carried out using several zeolites of Na-

form, such as Na-mordenite, Na-ferrierite, NaZSM-5, Na-Y, and Na-β [56]. The result 

demonstrated that Na-modernite was an efficient cation-exchanger for the removal of low 

NHx-N concentration comparing to the remaining materials. The NHx-N uptake on Na-

modernite was neither impacted by the temperature at the range of 278 to 333 K, nor the 

presence of coexistent K+ and Na+ in water. However, the presence of Ca2+ and Mg2+ 

significantly reduced the NHx-N uptake.    

2.1.2. Biological technologies 

Aerobic nitrification consists of two-step microbial processes. In the first step, NHx-N will 

be oxidized to NO2-N by ammonium-oxidizing organisms (AOO) following the equation: 

2NH4
+ + 3 O2 = 2 NO2

- + 4H+ + 2H2O Eq (8) 

In the subsequent step, NO2-N will be converted into NO3-N by nitrite-oxidizing organisms 

(NOO) following the equation: 

2 NO2
- + O2 = 2 NO3

- Eq (9) 

The global nitrification reaction is given as follows: 

NH4
+ + 2 O2 = NO3

- + 2H+ + H2O Eq (10) 

The stoichiometric oxygen demands of the above three equations are 3.43, 1.14, and 4.57 
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mgO2 per 1 mgN, respectively. As nitrifying bacteria are obligate aerobes, the dissolved 

oxygen (DO) concentration is one of the decisive factors that control the process 

performance. 

On the other hand, NHx-N can be reduced anaerobically by anammox bacteria following 

the equation: 

NH4
+ + NO2 = N2 + 2H2O Eq (11) 

When dealing with high NHx-N concentrations as in wastewater treatment, various 

technologies have been developed using biological nitrification process, such as anaerobic 

ammonia oxidation (ANAMMOX), completely autotrophic nitrogen removal over nitrite 

(CANON), single reactor high activity ammonia removal over nitrite (SHARON), Oxygen-

limited nitrification and denitrification (OLAND), “NOX process”, and “aerobic de-

ammonification process” [54]. However, these techniques are not in the scope of study and 

will not be further discussed. 

In the drinking water sources where the substrates for microorganism growth are very 

limited, the oligotrophic bacteria with very low half-saturation coefficients (KS) [57], [58]  

such as AOO/NOO are favored. In this regard rather than ordinary heterotrophic organisms 

(OHO), nitrifiers are known to be sensitive to various environmental factors [59]. Their 

growth on the carrier might provide a more hospitable environment [60] and nitrifying 

biomass concentration in the reactor could be significantly increased. Therefore, most of 

the nitrifying reactors applied in drinking water treatment were of the attached-growth 

process and are referred to as “biologically active filter” or “biofilter” due to filtration 

capacity, with variation in the flow direction. Down-flow biofilters were widely used due 

to their simplicity. However, the high head loss, or uneven distribution of biomass in the 

bed, and the possible leakages of bacteria-attached particles were the main disadvantages 

that limited their acceptance in practice [61]. The up-flow or expanded-bed biofilters were 

proposed to overcome such limitations. In the expanded-bed biofilter, better contact of 
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water influent and the biomass was maintained in the whole fluidized bed, and bed clogging 

was reduced due to limited capture of suspended solids particles [62]. In this study, the 

performance of an expanded-bed nitrifying reactor to remove NHx-N and micropollutants 

from the water was investigate. 

However, unlike biological wastewater treatment systems, DO competition between 

nitrifiers and heterotrophs, and each reaction rate in low-strength influent have not been 

well formulated. Hence, at present, it is difficult to calculate the removable NHx-N and 

organic substrates and possible NO2-N accumulation in the pretreatment of WTPs. 

Additionally, there is little information regarding the kinetic and stoichiometric parameters 

of the AOO/NOO/OHO in drinking water treatment, which might be considerably different 

from those applied in wastewater treatment. 

The most significant advantage of the conventional nitrification process is the low-cost 

requirement. However, the bio-conversion process is low, and a long start-up period is 

needed before initiating the treatment [54]. Further, nitrifying bacteria are susceptible to 

environmental changes, such as DO, substrates, pH, temperature, etc, and are easily 

outcompeted by the heterotrophs in the presence of organic substrates. Therefore, the 

biological nitrification process is not responsive to influent variations.   
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2.2. REMOVAL OF MICROPOLLUTANTS IN WATER TREATMENT  

The conventional drinking water treatment process consists of coagulation, flocculation, 

sedimentation, filtration, and disinfection, as shown in Figure 8. Additionally, some other 

processes, such as advanced oxidation, adsorption onto activated carbon, or biofiltration, 

could also be used for micropollutant removals. 

 

 Figure 8. Conventional drinking water treatment process 

The removal of micropollutants in WTPs depends on various factors, such as configurations 

of systems, operation schedules, treatment conditions, and influent loadings in the influent 

source. The removal mechanisms of micropollutants in each treatment process should be 

studied at both field conditions in WTPs and laboratory-controlled conditions [63]. 

In this section, the micropollutant removal efficiencies in each process of WTPs will be 

discussed.  

2.2.1. Physico-chemical technologies 

2.2.1.1. Coagulation – Flocculation – Sedimentation 

The coagulant, flocculation, and sedimentation are subsequent processes to remove 

colloidal and suspended solids particles from water. Opposing viewpoints have been raised 

regarding the removal efficiencies of micropollutants in these processes. On the one hand, 

some researchers investigated the removals of pharmaceutical substances in the coagulation 

process, and the removal efficiencies reported were ranged from 8 to 30% [64], [65]. On 
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the other hand, others demonstrated that their removals obtained in the coagulation stage 

was not only by coagulation itself. In fact, it was reported that adsorption to the particles, 

direct sunlight photolysis, and hydrolysis are the main micropollutant removal mechanisms 

that operate during the coagulation process in a WTP. A broad range of removal efficiencies 

from 9 to 100% was observed when the turbidity of influent water was higher than 10 NTU 

[63].  

2.2.1.2. Sand filtration 

The sand filtration is designed to remove the remaining residual particles from the 

sedimentation process. Previous studies suggested that adsorption can be the dominant 

mechanism in accordance with the hydrophobicity of the compound during sand filtration. 

It was reported that compounds with logKow less than 1 had lower removal efficiencies 

(<50%) while hydrophobic compounds with log Kow higher than 2.5 had higher removal 

efficiencies (>80%). Hydrophobicity is a controlling factor in the removal of 

micropollutants during the sand filtration stage. However, some micropollutants, even with 

log Kow higher than 2.5, showed inefficient reductions during the filtration stage and 

sometimes negative removal efficiencies. Negative removal during sand filtration can be 

explained by the timing differences or desorption of accumulated pollutants in the filter 

bed. The filter bed could only temporarily capture the micropollutants by partitioning 

during filtration [63]. 

2.2.1.3. Advanced oxidation and disinfection 

Depending on the quality of the source water as well as on the requirements of the finished 

drinking water, drinking water treatment is often completed with one or more final 

polishing steps prior to distribution. Disinfection and oxidation processes are often 

employed to stabilize the biological quality of the finished water, remove color and odor, 

or to inactivate pathogens. These processes rely on the addition of either chemical oxidants 

such as hydrogen peroxide, free chlorine, chloramines, or ozone or UV radiation. The 

chlorination was previously presented in section 2.1.1.1. Ozonation or other advanced 
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oxidation techniques (e.g., combining ozonation with hydrogen peroxide and/or UV 

radiation to produce a high yield of reactive hydroxyl radicals) are popular alternatives to 

chlorination. However, both techniques have been shown to create a variety of persistent 

oxidation products that may have equal or more significant toxicity as the parent chemical 

[66].  

2.2.1.4. Adsorption onto granular activated carbon  

The adsorption onto granular activated carbon process is presented in detail in 2.3.1. 

2.2.2. Biological technologies 

Based on the above background, it was shown that the contribution of conventional 

drinking water treatment process to micropollutant removals was rather limited and 

uncertain. Some techniques might be useful in removing these compounds, such as 

adsorption onto activated carbon, however expensive operational costs are needed [66]. In 

this regard, the biotransformation approach emerges as a cost-effective and sustainable 

alternative targeting the persistent chemicals in drinking water sources.  

In biological technologies, single strains or microbial consortia that have the ability to 

degrade or mineralize target micropollutants partially were employed [66]. Their metabolic 

and co-metabolic strategies were illustrated as follows: 
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Figure 9. Schematic of the metabolic and co-metabolic biotransformation strategies 

[66] 

In the metabolic strategy, microorganisms interact with target micropollutants in growth-

linked processes that result in the mineralization of the micropollutants. In the co-metabolic 

strategy, microorganisms interact with non-target micropollutants in biochemical processes 

that result in the formation of oxidized metabolites. These oxidized metabolites can then be 

used as primary for heterotrophic members of the population [66]. 

As mentioned above, the raw drinking water sources are of oligotrophic conditions where 

the substrates are found at trace levels. Their concentrations are very low compared to that 

of the primary substrates; therefore, cometabolic might be the degradation pathway [67].  
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The attached-growth process was often adopted with various kinds of carriers, such as sand, 

activated carbon or anthracite. Several studies have reported the possibility of removing 

micropollutants using biologically active filters with varying removal efficiencies 

depending on the characteristics of micropollutants [61], [67]–[70]. Empty bed contact time, 

pH and DO, backwashing regime are among the parameters that influence the performance 

of biologically active filters [39]. Additionally, the association between nitrification rate 

and micropollutant removals has been documented in nitrifying activated sludge systems 

of wastewater treatment [71]–[74]. Nevertheless, there is still questionable if the nitrifying 

biofilms could remove the pesticides in drinking water treatment. The pesticide removals 

using biological activated carbon process were reported in [75], [70], [76], [77], in which 

the removal mechanism was thought to be simultaneous adsorption and biodegradation. 

However, because the removal mechanism is affected by various factors such as 

configurations of systems, operating conditions, and influent loadings in influent water, the 

examination and comparison should be carried out to reveal the removal pathways [63].  
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2.3. APPPLICATION OF ACTIVATED CARBON IN DRINKING WATER 

TREATMENT  

2.3.1. Adsorption onto granular activated carbon process 

Adsorption is considered to be an important phenomenon in most natural physical, 

biological, and chemical processes, and GAC is the most widely used adsorbent material 

in water treatment. In GAC adsorption process, the adsorption occurs between two phases, 

which are the GAC adsorbent in solid and the adsorbate compounds in liquid. In an 

adsorption system, equilibrium is established between the adsorbent and the adsorbate in 

the bulk phase. The transport mechanisms consist of four stages, including the bulk solution 

transport, external diffusion, internal diffusion, and adsorption, as illustrated in Figure 10 

[53]: 

 

Figure 10. External and internal transport of an adsorbate in activated carbon 

particle [53]  
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The irregular and porous shape of GAC provides an extensive network of adsorption sites. 

Various studies have focused on the ranges of pollutants that can be adsorbed onto the GAC 

surface, as shown in Table 3.   

Table 3. Classes of organic compounds adsorbed on activated carbon [42] 

Organic chemical class Examples 

Aromatics Benzene, Toluene, Ethylbenzene, Xylene 

Polynuclear Aromatics Naphthalene, Anthracenes, Biphenyls 

Chlorinated Aromatics Chlorobenzene, Polychlorinated biphenyls 

Phenolics Phenol, Cresol, Chlorophenols, Nitrophenols 

High-molecular-weight hydrocarbons Gasoline, Kerosene 

Chlorinated aliphatics Trichloroethylene, Carbon tetrachloride 

Aliphatic and aromatic acids Tar acids, Benzoic acids 

Ketones, esters, ethers, and alcohols Hydroquinone, Polyethylene glycol 

Surfactants Alkyl benzene sulfonates 

Soluble organic dyes Methylene blue, Indigo carmine 

The factors affecting the adsorption capacity are as follows [41], [42]: 

 Specific surface area of GAC: which is proportional to the extent of adsorption,  

 Physical and chemical properties of the adsorbate: the adsorbability of a compound 

increases with increasing molecular weight and increasing number of functional 

groups such as double bonds or halogens. Additionally, hydrophobic and non-

polar molecules adsorb better on GAC, 

 pH: Adsorption of most organic materials is higher at neutral conditions,  
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 Temperature: The extent of adsorption should increase with decreasing 

temperature because the adsorption reactions are exothermic. However, increased 

temperature also increases the rate of diffusion of the solute through the liquid to 

the adsorption sites, which eventually leads to increased adsorption, 

 Porosity of GAC: The adsorption performance is dependent on the condition of 

internal surface accessibility, defined as the pore size distribution, 

 Chemical Surface Characteristics of GAC: depends on their heteroatom content 

(oxygen, sulfur, and nitrogen), and mainly on their oxygen complex content. 

Heteroatoms are brought during the activation, providing charged groups with 

stronger valence forces in the carbon structure at which chemisorption may occur.    

Adsorption on GAC process has been used for decades due to its effectiveness and 

simplicity. Additionally, the adsorption process does not add undesirable by-products to 

drinking water [41]. However, the main limitation of GAC adsorption pertains to its 

saturation and exhaustion over time. In this regard, regeneration or frequent dosing is 

needed to reuse the materials, leading to high operational costs.  

2.3.2. Biological activated carbon process 

The introduction of the biological activated carbon (BAC) process could overcome the 

limitation of GAC adsorption. This process uses GAC as filtration media to physically 

remove undesired matters. As the GAC media is gradually exhausted, microbial 

colonization is developed on the surface of the media [43]. This naturally occurring biofilm 

can biodegrade a wide variety of contaminants such as organic carbon, organic/inorganic 

substances, and disinfection by-products precursors [39], [43], [44]. Among the targeting 

contaminants, organic micropollutants and NHx-N are of top concerns for WTP operators, 

and their removal efficiencies in the BAC process needed to be investigated.  

The macro-porous structure and irregular surface of GACs are suitable sites for bacterial 

attachment, providing good protection from shear stress. Meanwhile, microporous GACs 

may not be adequate for microorganisms penetration due to because of their larger size 
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compared to those of microorganisms. However, the extracellular material from biofilm 

can be established in the GAC micropores. The biofilm formation on GAC comprises 

microbial cells either immobilized on the carbon surface or embedded in an extracellular 

organic polymer matrix of microbial origin. The attachment of bacteria to a solid surface is 

governed by different types of interactions, which include van der Waals forces, 

electrostatic forces, steric interactions, hydrophobic bonding, and hydrogen bonds [78]. 

Furthermore, when compared to other media such as anthracite or sand, GAC has a much 

higher effective surface area and a better surface texture for biofilm attachment. These 

characteristics may increase the potential to hold a greater amount of biomass and the 

possibility of higher biodegradation rates [78]. 

As mentioned in section 2.1.2, the biofilters using BAC media could be designed as down-

flow or up-flow configuration, each with their advantages and limitations. 

The operating aspects affecting the performance of BAC process includes reactor 

configuration, environmental factor such as influent water quality and temperature, and 

operating condition such as hydraulic loading and backwashing regime. The performance 

of BAC process depends largely on how the biological reactions occurred in the reactor 

with interactions of oligotrophic OHO and AOO/NOO, or how the operational conditions 

affected microbial activities. Such knowledge in drinking water treatment is currently 

lacking.   

The most advantages of BAC process over GAC adsorption pertain to the cost-

effectiveness, in which spent GAC could be reused without regeneration or frequent dosing. 

In this way, the service life of the BAC bed could be extended from 6-12 months to several 

years [43], [79]. However, the biological process might be of low-speed and require a long 

start-up period before treatment initiation. Further, the biological system is susceptible to 

influent variation, so the reactor is not responsive in the case of influent shocks. 
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2.4. CONCLUSION 

From literature review, it was concluded that the biological active filters could be used as 

a low-cost technology to remove NHx-N and micropollutants in the pretreatment of 

drinking water. The attachment-growth process could be applied to increase the biomass 

concentration in the reactor, especially for the low-yield growers AOO/NOO. The 

biological activated carbon was selected as the media for the microbial colonization. The 

up-flow configuration, or expanded-bed reactors, could provide advantages in terms of 

reducing the head loss, better contacting between biomass and the influent, or distributing 

evenly the biomass in the expanded-bed media. However, the kinetics and interactions 

between the biomass AOO/NOO/OHO in the oligotrophic conditions of drinking water 

treatment were not well estimated. Additionally, the possibility of removing the pesticides 

in the biological active filters in drinking water treatment were still questionable. 

Based on the above-mentioned background, this study investigate the performance of a 

nitrifying expanded-bed reactor in the pretreatment of drinking water treatment plants. In 

the first part, a mathematical model will be developed which aimed at removing the NHx-

N and organics from water. In the second part, the removal mechanisms of the pesticides 

in the reactor were examined. 

    

 



 

     

CHAPTER 3. MATERIALS AND METHODS (PLATFORM OF 
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3.1. INTRODUCTION AND OBJECTIVES 

The nitrifying expanded-bed reactor could be expressed by an Integrated Fixed-Film 

Activated Sludge (IFAS) object in the GPS-X software simulator (Hydromantis Inc., 

Canada). The performance of the reactor could be modeled by a combined physical, biofilm 

and biological model. The existing biofilm model in GPS-X software was constructed and 

adapted from a biokinetic model developed by Spengel and Dzombak in 1992 [80] for 

rotating biological contactors. The theory and structure of the biofilm model were presented 

in different technical manuals of GPS-X; however, there is still a need to organize and 

summarize various sources of information to provide a better understanding of the biofilm 

model, especially for first learners. 

The biological model was used to calculate the removal of the substrates, e.g. NHx-N, NO2-

N, organic substrates and DO, in relation to the growth of responsible microorganisms 

(AOO, NOO, and OHO). In the ASM1 model, the nitrification process was represented in 

a single-step process with the direct conversion of NH4-N to NO3-N by the autotrophs 

biomass. However, in case the undesired product NO2-N was concerned, such a model 

could not provide an adequate response.  

In the combination of biological and biofilm model, the available substrates in the biofilm 

layers were engaged with the substrate diffusion and microbial utilization governed in the 

biofilm model. In each biofilm layer, the biological reactions were simplified to be a dense 

suspended-growth system with a set of mass transfer from/to the next biofilm layers. 

The objectives of this chapter were: 

1. To illustrate the combined physical, biofilm and biological model for NHx-N and 

organics removals. 

2. To introduce the biofilm model on GPS-X software with a set of mass balances of soluble 

and particulate materials,  
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3. To develop an ASM1-based biological model with two-step-nitrification and continuity 

checking of the model. 
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3.2. PHYSICAL DESCRIPTION OF THE REACTORS AND THE MODEL 

CONCEPT 

A lab-scale expanded-bed reactor with a cross-section area of 85 cm2 was installed in the 

laboratory. About 12.7 L of spent GAC media (diameter: 0.4-0.5 mm) collected from an 

identical biological expanded-bed filter in Anou WTP (Kitakyushu, Japan) was filled to the 

reactor until 1.5 m of designed height in a packed basis. The feeding water was controlled 

at a constant flow rate (Q) of 2.2 L/min, which was also a designed linear velocity of 15.5 

m/h. The bed height was expanded to 2.0 m, showing a working volume of 17.0 L.  

A pilot-scale reactor using BAC media of identical configuration and linear velocity as the 

lab-scale reactor was set up at Hoa Phu WTP (Ho Chi Minh City, Vietnam) for the 

pretreatment of the river water.  

A full-scale reactor using BAC media was studied in the headworks of Vinh Bao WTP (Hai 

Phong, Vietnam), receiving river water taken from an irrigation channel. The packed-bed 

was of dimension (WLH = 2.6  2.6  1.5 (m)), operating at the same velocity as that of 

the lab- and pilot-scale reactors with a working volume of 13.5 m3.  

A photo of the lab-, pilot- and full-scale reactors were shown in Figure 11 and Figure 12. 
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Figure 11. Lab-scale reactor at the University of Kitakyushu, Japan 

 

 

Figure 12. Pilot-scale reactor in Hoa Phu WTP (left) and Full-scale reactor in Vinh 

Bao WTP (right) 
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The performance of the lab-, pilot- and ful-scale reactors could be modeled using the 

combined physical, biofilm and biological model, as illustrated in Figure 13.  

 

Figure 13. Schematic illustration of the model concept  

The reactor was described as a plug-flow configuration composed of several tanks-in-series 

with the media traveled along the expanded-bed. The physical properties of the reactor will 

be modeled in the CHAPTER 4, while the mass transport and biological reactions will be 

expressed in CHAPTER 5.  
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3.3. BIOFILM MODEL IN GPS-X SOFTWARE 

3.3.1. Introduction of the biofilm model in GPS-X software 

The 1-D biofilm model consists of five biofilm layers and one attached liquid layer, 

as illustrated in  

Figure 14. Each biofilm layer was modelled as an individual CSTR reactor, in which the 

biological reactions were simplified to be a dense suspended-growth system with a set of 

mass transfer from/to the next biofilm layers. Based on the specific surface area, the media 

in the reactor was simulated to be a giant and homogenized surface, on the top of which the 

biofilm layers were placed.  

The mass transport in the biofilm model governed the following processes:  

 The diffusion of soluble components to the biofilm layers 

 The attachment and detachment of particulate components to/from the biofilm 

layers 

 The internal solids exchange of particulate components among the biofilm layers 

 The biological reactions in the biofilm layers 
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Figure 14. Illustration of biofilm processes in the expanded-bed reactor 

3.3.2. The mass balances for soluble and particulate components 

3.3.2.1. For soluble components 

a. The tank equation: Mass balance for substrate transported into or out of the 

bulk liquid 

Accumulatio

n in the tank 

Influent/efflu

ent advection 

Liquid layer 

advection 

Diffusion into 

biofilm 

Air/liquid 

exchange 

1

T
j Inf Eff L L T BL * T

j j j L j j M S j j MT S j j

dS
V ( ) Q.( S S ) Q ( S S ) K A ( S S ) K A ( S S )

dt
       

 

Eq (12) 

Attachment 

Detachment 

Substrate Diffusion 

Media Biofilm Influent liquid from the 

lower cell-tank (S
liquid

 j-1) 

Effluent liquid to the upper 

cell-tank (S
liquid

 j) 

  

Biological reaction 

#B1 #Bi #B5 

Attached 

liquid  

Media 

tankj 
Internal solids exchange 
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Where 

t Times day 

SA  Media surface area in the tank j m2 

Vj Working volume of reactor j m3 

Q Volumetric flow rate of influent/effluent m3/d 

QL Liquid flow rate to the liquid layer  m3/d 

T
jS  

Substrate concentration in the bulk liquid in the tank j g/m3 

Inf
jS  

Substrate concentration in the influent in the tank j g/m3 

Eff
jS  

Substrate concentration in the effluent in the tank j g/m3 

1
L
jS   

Substrate concentration in the liquid film in the tank (j-1) g/m3 

L
jS  

Substrate concentration in the liquid film in the tank j g/m3 

BL
jS  

Substrate concentration at biofilm-liquid interface in the tank j g/m3 

*
jS  

Saturated liquid substrate concentration for oxygen in the tank j g/m3 

KM Mass transfer coefficient from liquid to biofilm  m/d 

KMT Oxygen transfer coefficient from air to bulk liquid  m/d 

In GPS-X software, the mass transfer coefficient from liquid to biofilm (KM) was calculated 

as follows: 


 S diff _biofilm

M

L

D R
K


 Eq (13) 

Where 
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DS Diffusion constant m2/d 

Rdiff_biofilm Reduction in diffusion in biofilm   

δL Attached liquid film thickness m 

b. Liquid film equation: Mass balance of substrates in/out the attached liquid film 

Accumulation 

in liquid film 

Liquid film 

advection 

Diffusion into 

biofilm 

Air/liquid 

exchange 

*
1( ) ( ) ( ) ( )

L
j L L L BL L

S L L j j M S j j ML S j j

dS
A Q S S K A S S K A S S

dt
        Eq (14) 

where: 

KML Oxygen transfer coefficient from air to liquid film m/d 

c. Biofilm equation: Mass balance for a biofilm layer 

The biofilm equation governed the substrates in/out that biofilm layer and the substrates 

utilized by the biomass. The diffusion occurred in one direction from the bulk liquid to the 

attached liquid film, next to the adjacent biofilm layer, and then to the concerned biofilm 

layer. 

Accumulatio

n in biofilm 

Diffusion 

into 

biofilm 

Biofilm 

layer 

advection 

Microbial 

utilization 

2

12
( )B BB

S j j S

S B

S QS
D S S R

t y A  

 
    

 
 Eq (15) 

where: 
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B  
Thickness of biofilm layers m 

y Thickness of individual biofilm film layer m 

QB Liquid flow rate to the biofilm layer  m3/d 

B
jS  

Substrate concentration at biofilm layer in the tank j g/m3 

SR  
Substrate utilization rate g/m3.d 

 

Each biofilm layer was considered as a CSTR where the utilization rate occurred as in a 

suspended growth system, as expressed in the following equation: 

 

max 2

_ 2 2

. .
. .

. .


 
a S O

S

S B S S O O

X A SS
R

Y A K S K S




 Eq (16) 

 

where: 

RS Substrate utilization rate g/(m3
.d) 

S Substrate concentration in one biofilm layer g/m3 

SO2 Oxygen concentration in one biofilm layer gO2/m3 

KS Substrate half-saturation coefficient   g/m3 

KS,O2 Oxygen half-saturation coefficient   gO2/m3 

μmax Maximum specific growth rate  d-1 

Y Yield or coefficient of biomass production gCOD/gCOD 

Xa Surface concentration of microorganism in one layer g/m2 

3.3.2.2. For particulate components 

a. Attachment from liquid to biofilm 

The attachment phenomenon, described by a rate constant attachk , was defined as the 

entrapment of particulate matter from the bulk liquid to the biofilm layers [81]. 
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. .attach attach j SR k X A  Eq (17) 

where: 

Rattach Attachment rate g/d 

kattach Specific attachment rate of particulates from liquid to biofilm 

layer 

m/d 

Xj Particulates concentration in the liquid in the tank j   g/m3 

b. Detachment from biofilm to liquid 

The detachment phenomenon, described by the specific detachment rate detachk , was 

determined as the loss of solids components from the outermost biofilm layer to the bulk 

liquid. This kinetic parameter affected the biofilm thickness and the biomass concentration 

in the biofilm 1st layer [81]. 

,max

_ #1

,max

. . .( 1) 


B

detach detach j B S

B B

R k X A


 
 Eq (18) 

where: 

Rdetach Detachment rate g/d 

kdetach Specific detachment rate of particulates from the first 

biofilm layer to the liquid  

m/d 

Xj_B#1 Particulates concentration in the first biofilm layer   g/m3 

δB,max The maximum biofilm thickness, defined by users m 

In GPS-X software, the detachment was adjusted by adding a product to the right part of 

Eq (18). This allowed the growth of biomass in biofilm but not exceeding the maximum 

biofilm thickness defined by the users.   
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c. Internal solids exchange 

The internal solids exchange was designed to provide the means to circulate the particulates 

such as biomass, etc., among the biofilm layers. The process was calculated as follow [81]s: 

2
int _ _ # 1 _ # _ # 1

int _ 2

.( 2. ).  
 er exchange j B k j B k j B k S

er exchange

B

k X X X A
R


 Eq (19) 

where: 

Rinter-exchange Internal solids exchange rate g/d 

kinter_exchange Specific internal solids exchange rate of particulates 

among biofilm layers 

m/d 

Xj_B#k Particulates concentration in the biofilm layer #k g/m3 
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3.4. BIOLOGICAL MODEL WITH TWO-STEP-NITRIFICATION PROCESS 

3.4.1. Introduction of the biological model with a two-step-nitrification process on 

GPS-X software 

In this study, a biological model with a two-step-nitrification process was proposed based 

on the ASM1 cryptic growth model, including 12 biological reactions. Recently, the 

bacteriology studies revealed the growth of strictly NOO bacteria of Nitrospira genus on 

NO2-N as the sole substrate and nutrient source [82], [83]. In this study, a reaction (r6) was 

newly added to stimulate this process, although it was highly limited. 

The continuity of the proposed model was verified using a systematic approach of Hauduc 

et al. [47] to avoid the errors, such as typing, inconsistencies, gaps, or conceptual errors 

that occurred in generating such a numerical model. In this approach, all the state variables 

are expressed in terms of COD, nitrogenous element, and charge. A composition matrix 

was developed, in which the conversion for all the state variables was put in rows, and the 

observables (e.g. SNHx ) were placed in columns. The continuity checking was carried out 

by multiplying the stoichiometric matrix with the composition matrix, as illustrated in 

Figure 15. The results should be zeros or having accepting tolerance of 10-15. 
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Figure 15. Illustration of continuity checking approach [47] 

3.4.2. The Peterson matrix and reaction rates for a biological model with two-step-

nitrification 

Comparing to the original ASM1 model, some modifications were made to better describe 

the biological process that occurred in the reactor, as shown in Table 4. Accordingly, the 

Peterson matrix and reaction rates were developed in Table 5 and Table 6. 

 Table 4. Comparison of original ASM1 model and the proposed model 

Original ASM1 model Proposed model 

The aerobic growth of 

heterotrophs on readily 

biodegradable substrate 

(SB) with NH4-N as 

nutrient 

The direct growth of OHO on SB required nutrients. In case 

NH4-N was depleted, NOx could be used as a nutrient 

source [84]. Therefore the process was separated into three 

reactions (r1 to r3), in which the nutrient was NH4-N, NO2-

N and NO3-N, respectively  
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Original ASM1 model Proposed model 

The aerobic growth of 

autotrophs 

The autotrophs were separated into AOO and NOO. 

Accordingly, the process was divided into the growth of 

AOO (r4); and the growth of NOO with NH4-N as a 

nutrient (r5) and with NO2-N as a nutrient (r6)  

The decay of autotrophs The decay of autotrophs was separated into the decay of 

AOO (r8) and the decay of NOO (r9) 

 

 

 



CHAPTER 3. MATERIALS AND METHODS (PLATFORM OF BIOCHEMICAL MODEL) 

59 

Table 5. Peterson matrix on two-step-nitrification  

  

 
  SB XCB XU,E XOHO XAOO XNOO SO2 SNHx SNO2 SNO3 SB,N XCB,N SAlk 

1 

Aerobic growth of 

heterotrophs on Sb 

with SNHx (as N 

source) 

-1/YOHO     1     
-(1-

YOHO)/YOHO 
-iN_XBio         

-

iN_XBio*

iCharge_S

NHx 

2 

Aerobic growth of 

heterotrophs on Sb 

with SNO2 (as N 

source) 

-1/YOHO 

+iCOD_N

O2*iN_X

bio 

    1     
-(1-

YOHO)/YOHO 
  -iN_Xbio       

-

iN_Xbio*

iCharge_S

NOx 

3 

Aerobic growth of 

heterotrophs on Sb 

with SNO3 (as N 

source) 

-

1/YOHO

+iCOD_N

O3*iN_X

bio 

    1     
-(1-

YOHO)/YOHO 
    -iN_Xbio     

-

iN_Xbio*

iCharge_S

NOx 

4 

Aerobic growth of 

active ammonia-

oxidizing biomass 

        1   
-(-iCOD_NO2-

YAOO)/YAOO 

-

iN_XBio-

1/YAOO 

1/YAOO       

(-

iN_Xbio-

1/YAOO

)*iCharge

_SNHx+(



CHAPTER 3. MATERIALS AND METHODS (PLATFORM OF BIOCHEMICAL MODEL) 

60 

  

 
  SB XCB XU,E XOHO XAOO XNOO SO2 SNHx SNO2 SNO3 SB,N XCB,N SAlk 

1/YAOO)

*iCharge_

SNOx 

5 

Aerobic growth of 

active nitrite-

oxidizing biomass 

with SNHx (as N 

source) 

          1 

-(iCOD_NO2-

iCOD_NO3-

YNOO)/YNOO 

-iN_Xbio 
-

1/YNOO 
1/YNOO     

-

iN_XBio*

iCharge_S

NHx 

6 

Aerobic growth of 

active nitrite-

oxidizing biomass 

with SNO2 (as N 

source) 

          1 

(YNOO+iCOD_

NO3-

iCOD_NO2-

iCOD_NO2*iN_

Xbio*YNOO)/

YNOO 

  

-

iN_Xbio-

1/YNOO 

1/YNOO     

[-

iN_Xbio-

(1/YNOO

)]*iCharg

e_SNOx+
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)*iCharge
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7 
Decay of 

heterotrophs 
  

1-

fXU_Bio,l

ys 
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fXU_Bio,l
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Decay of active 

nitrite-oxidizing 

biomass 
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fXU_Bio,l
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ys*iN_X

bio 

  

1

0 

Ammonification of 

soluble organic 

Nitrogen 

              1     -1   
iCharge_S

NHx 

1

1 

Hydrolysis of slowly 

hydrolyzable 

substrate 

1 -1                       

1

2 

Hydrolysis of 

particulate 
                    1 -1   
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Table 6. Process rate in Peterson matrix for two-step-nitrification 

# Process rates 

1 
B

O2B NHx
OHO,Max OHO

S ,OHO B O2,OHO O2 NHx,nutrient NHx

SS S
. . . .X
K + S K + S K + S

   

2 .
B

NHx, nutrientO2 NO2B
OHO,Max OHO

S ,OHO B O2,OHO O2 NO2,nutrient NO2 NHx,nutrient NHx

KS SS
. . . .X
K + S K + S K + S K + S

  

3 .
B

NHx, nutrientO2 NO3B
OHO,Max OHO

S ,OHO B O2,OHO O2 NO3,nutrient NO3 NHx,nutrient NHx

KS SS
. . . .X
K + S K + S K + S K + S

  

4 
O2NHx NHx

AOO,Max AOO

NHx,AOO NHx O2,AOO O2 NHx,nutrient NHx

SS S
μ . . . .X

K + S K + S K + S
 

5 
NO2 O2 NHx

NOO,Max NOO

NO2,NOO NO2 O2,NOO O2 NHx,nutrient NHx

S S S
μ . . . .X

K + S K + S K + S
 

6 .NO2 O2 NO2 NHx
NOO,Max NOO

NO2,NOO NO2 O2,NOO O2 NO2,nutrient NO2 NHx,nutrient NHx

S S S K
μ . . . .X

K + S K + S K + S K + S
 

7 OHO OHOb .X   

8 AOO AOOb .X  

9 NOO NOOb .X  

10 am B,N OHOq .S X  

11 
B

B

OHO O2
XCB_Sb,hyd OHO

B O2,OHO O2
S,XC

OHO

XC

X S
q . . .X

XC K + SK +
X

 

12 11
B,N

B

XC
r .

XC
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3.4.3. The continuity checking of the proposed model 

By applying the stoichiometric parameters defined in section 5.3, the composition matrix 

of the proposed model was shown in Table 7.  

Table 7. Composition matrix of the proposed model 

 COD N Charge 

SU 1 0 0 

SB 1 0 0 

XCB 1 0 0 

XU,E 1 0.086 0 

XOHO 1 0.086 0 

XAOO 1 0.086 0 

XNOO 1 0.086 0 

SO2 -1 0 0 

SNHx 0 1 0.071 

SNO2 -3.43 1 -0.071 

SNO3 -4.57 1 -0.071 

SB,N 0 1 0 

XCB,N 0 1 0 

XU,N 0 1 0 

SAlk 0 0 -1 

By applying the calibrated stoichiometric parameters, the numerical stoichiometry of 

Peterson matrix for two-step nitrification was presented in Table 8.  
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Table 8. Numerical stoichiometry of the Petersen matrix for two-step nitrification 

  

 
  SB XCB XU,E XOHO XAOO XNOO SO2 S_NH S_NO2 S_NO3 SB,N XCB,N S_ALK 

1 
Aerobic growth of heterotrophs 

on Sb with SNHx (as N source) 
-1.49     1.00     -0.5 

-

0.086 
        

-

0.006 

2 
Aerobic growth of heterotrophs 

on Sb with SNO2 (as N source) 
-1.79     1.00     -0.5   

-

0.086 
      0.006 

3 
Aerobic growth of heterotrophs 

on Sb with SNO3 (as N source) 
-1.89     1.00     -0.5     

-

0.086 
    0.006 

4 
Aerobic growth of active 

ammonia-oxidizing biomass 
        1.00   -15.3 -4.85 4.76       -0.69 

5 

Aerobic growth of active nitrite-

oxidizing biomass with SNHx (as 

N source) 

          1.00 -11.7 
-

0.086 

-

11.11 
11.11     -0.01 

6 

Aerobic growth of active nitrite-

oxidizing biomass with SNO2 (as 

N source) 

          1.00 -11.4   
-

11.20 
11.11     0.01 

7 Decay of heterotrophs   0.92 0.08 -1.00               0.08   

8 
Decay of  active ammonia-

oxidizing biomass 
  0.92 0.08   -1.00             0.08   
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  SB XCB XU,E XOHO XAOO XNOO SO2 S_NH S_NO2 S_NO3 SB,N XCB,N S_ALK 

9 
Decay of active nitrite-oxidizing 

biomass 
  0.92 0.08     -1.00           0.08   

10 
Ammonification of soluble 

organic Nitrogen 
              1.00     -1.00   0.07 

11 
Hydrolysis of slowly 

hydrolyzable substrate 
1.00 -1.00                       

12 
Hydrolysis of particulate 

biodegradable organic nitrogen 
                    1.00 -1.00   
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The results of continuity checking was presented in Table 9. As indicated, the continuity 

of the proposed model was reserved, because all the terms of COD, N and charge were 

found to be zero or lower than the tolerance of 10-15 for each process.  

Table 9. Continuity checking of the Petersen matrix for two-step nitrification model 

 

    COD N Charge 

1 
Aerobic growth of heterotrophs 

on Sb with SNHx (as N source) 5.55E-17 0.00E+00 0.00E+00 

2 
Aerobic growth of heterotrophs 

on Sb with SNO2 (as N source) -5.55E-17 0.00E+00 0.00E+00 

3 
Aerobic growth of heterotrophs 

on Sb with SNO3 (as N source) 1.11E-16 0.00E+00 0.00E+00 

4 
Aerobic growth of active 

ammonia-oxidizing biomass 0.00E+00 0.00E+00 0.00E+00 

5 

Aerobic growth of active nitrite-

oxidizing biomass with SNHx (as 

N source) 0.00E+00 0.00E+00 2.52E-17 

6 

Aerobic growth of active nitrite-

oxidizing biomass with SNO2 (as 

N source) 0.00E+00 0.00E+00 0.00E+00 

7 Decay of heterotrophs 0.00E+00 0.00E+00 0.00E+00 

8 
Decay of  active ammonia-

oxidizing biomass 0.00E+00 0.00E+00 0.00E+00 

9 
Decay of active nitrite-oxidizing 

biomass 0.00E+00 0.00E+00 0.00E+00 

10 
Ammonification of soluble 

organic Nitrogen 0.00E+00 0.00E+00 0.00E+00 

11 
Hydrolysis of slowly 

hydrolyzable substrate 0.00E+00 0.00E+00 0.00E+00 

12 
Hydrolysis of particulate 

biodegradable organic nitrogen 0.00E+00 0.00E+00 0.00E+00 
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3.5. CONCLUSION 

In this chapter, a combined biofilm and biological model with two-step nitrification on 

IFAS object was introduced on GPS-X software. The main results were as follows: 

1. An illustration of the combined physical, biofilm and biological model for NHx-N and 

organics removals for a nitrifying expanded-bed reactor was presented. 

2. The biofilm model principles are presented, together with the mass transport processes 

and the mass balance equations for soluble and particulate components in the bulk liquid, 

attached liquid film, and biofilm layers, 

3. A biological model with Peterson matrix and reaction rates for two-step nitrification was 

built. The continuity checking of the proposed model was reserved. 
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4.1. INTRODUCTION AND OBJECTIVES 

The ultimate goal of this study is to develop a mathematical model of a nitrifying expanded-

bed reactor to remove NH4-N and micropollutants in drinking water treatment. The first 

step was to create a physical model that defined the physical boundaries in which the 

biological reactions took place.  

In the existing modeling studies with moving media, such as those of IFAS and Moving 

Bed Biofilm Reactor (MBBR) [51], [85], [86], the movement of carriers was isolated in 

separate compartments of the reactors. In this study, we first introduced the definitions of 

internal recycle flow with the media concentration factor, which simulated media 

movement between the compartments. CHAPTER 6 will present the detailed inputs and 

operation of the IFAS object on GPS-X. Here, we determined the basic physical parameters 

relating to the media and the reactor's hydraulic regime, which will be used in building up 

the physical model.  

The objectives of this chapter were: 

1. To estimate the media fraction of granular activated carbon media in packed-bed 

condition, 

2. To determine the specific surface area of the granular activated carbon media, 

3. To study the hydraulic regime in the reactor, including the number of tanks-in-series, the 

internal recycle flow with concentration factor,  

4. To evaluate the influences of internal recycle flow with a media concentration factor to 

the media and biomass distribution in the expanded-bed.   
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4.2. MEDIA FRACTION OF GRANULAR ACTIVATED CARBON IN THE 

PACKED-BED CONDITION 

The apparent volume fraction of media without micro-pores was determined in the packed-

bed condition. As shown in Figure 16, the wet granular activated carbon media was 

carefully placed on a paper to remove the attached water on the surface. Next, the material 

was placed on a measuring cylinder. Water with known volume was poured to the top of 

the cylinder, making the volume of the packed-bed increase. From the volume of added 

water and topwater beyond the packed-bed, the volume of water filled into the packed-bed 

was calculated. Triplicate tests were carried out, and their average value of 35.7% was used 

for the media fraction in the modeling (void fraction of the packed bed = 64.3%).  

 

Figure 16. Determination of media fraction in packed-bed condition 

 



CHAPTER 4 PHYSICAL MODEL OF AN EXPANDED-BED REACTOR WITH 

GRANULAR ACTIVATED CARBON MEDIA 

72 

4.3. SPECIFIC SURFACE AREA OF GRANULAR ACTIVATED CARBON 

MEDIA 

To estimate the media's specific surface area, the irregular shape of GAC particles was 

considered as spheres for simplification. This assumption was acceptable since most of the 

microorganisms were assumed to be distributed mainly at the GAC's outer surface area due 

to their larger sizes compared to the ones of GAC's intraparticle pores [75]. A series of 

photos of dried GAC particles were taken using a microscope and then analyzed using 

binary image processing software (Quick Grain, Inotech Inc., Japan), as shown in Figure 

17.  

 

Figure 17. Microscopic image of granular activated carbon media 

The equivalent circle area diameter dp, defined as the diameter of the circle having the same 

area as of the particle, was determined for each GAC granule. The particle size distribution 

for the GAC sample was evaluated, as shown in Figure 18.  
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Figure 18. The particle size distribution of the granular activated carbon media 

From the particle size distribution, the average dp was calculated to be 0.431 mm. 

The specific surface area of the carriers in the expanded-bed was calculated according to 

Eq (20) 

N

i p i

N

i p i

n d

Specific surface area

n d






2
,

1

3
,

1

. .( )

_ _
1

. . .( )
6





 Eq (20) 

Where ni: Number of GAC particles having the Ra,i, N: the group of a particle having dp,i 

(N = 19), 
1

3,778
N

in    

The packed-basis specific surface area was found to be 5,587 m2/m3. 
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4.4. HYDRAULIC REGIME OF THE REACTOR 

4.4.1. The tracer test 

To catch the hydraulic regime, a tanks-in-series model was applied over the 2-m of the 

expanded-bed height of the lab-scale reactor. The reactor was assumed to be composed of 

several identical completely stirred tanks (CSTR), which were connected in series 

(1…i…N) [87]. A pulse of NaCl liquid (30 g/L, 80 mL) was prepared as a tracer and injected 

into the reactor. A conductivity probe (CM-31P, DKK-TOA, Japan) was placed at 2 cm 

below the expanded bed surface. The conductivity of the effluent was recorded every 30 

seconds. Prior to the test, the calibration curve of conductivity of NaCl solution was 

obtained (y = 169.25x + 25.8, R2 = 0.998). Based on this, the tracer conductivity (mS /m) 

recorded in the effluent was converted into mass concentration (g/L). The experiment of 

the tracer test was presented in Figure 19.  

In total, six tracer tests were carried out under identical experimental conditions. The non-

dimensional mean residence time ( ) and non-dimensional time distribution functions (Eθ) 

curve in each test was calculated. The average Eθ curve was built and compared with the 

curves of several numbers of tanks-in-series. The curve of 11 tanks was closest to the 

average Eθ curve; therefore, the N equaled to 11 was selected for the hydraulic modeling. 

The measured and simulated Eθ curves of the tracer test was shown in Figure 20.  
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Figure 19. Tracer test experiment 

 

 

 

 

 



CHAPTER 4 PHYSICAL MODEL OF AN EXPANDED-BED REACTOR WITH 

GRANULAR ACTIVATED CARBON MEDIA 

76 

 

 

Figure 20. Measured and simulated non-dimensional time distribution functions (Eθ) 

curves of the tracer 

4.4.2. The internal recycle flow and concentration factor  

The physical model was incorporated into the combined biofilm and biological model, as 

illustrated in Figure 13. In the tanks-in-series, the biomass media circulated from the tank 

i to the tank i+1 where the biomass media again recycled back to the tank i with a very 

small portion of liquid. The biological reactions took place in each tank where the influent 

was defined from the bottom (1st tank) to the top (11th tank) of the reactor.  

Using the definitions of the internal recycle flow rate (qi_i-1) and the concentration factor 

(η), the material balance equations for the 1st tank, the tank i and the last tank were given 

respectively in Eq (21) as below: 
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In which   
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qQ C
S

V V C

_ 1

, , _ 1

0

; ;   

Where: In case of liquid: η = 1, in case of media and biomass: S0 = 0 and SFinal = 0; 

t: time (second); C0, Ci, CFinal: concentration at the influent, in the tank i and at the effluent 

(g/m3 or m3/ m3); Q and qi_i-1: mainstream flowrate and internal recycle flowrate from tank 

(i) to tank (i-1) (m3/s); Vi: cell tank volume i (m3); ηi_i-1: Concentration factor from tank (i) 

to tank (i-1). 

For simplification, the individual values of qi_i-1 and ηi_i-1 were assumed to be identical in 

all the cell tanks. The even distribution of media over the expanded-bed height would be 

ideally achieved following Eq (22):   

    
Q

F
q

1 1  Eq (22) 

Where F: the ratio of mainstream flowrate to internal recycle flowrate (dimensionless)  

The F and η were calibrated based on the simulation of the tracer test using a process 

simulator, GPS-X ver. 8. (Hydromantis Inc., Canada).   

The physical model was also applied to the pilot-scale reactor in Hoa Phu WTP, which of 

identical configuration, and to the full-scale reactor in Vinh Bao WTP, assuming the 

horizontally scale-up did not affect the vertical mixing.  
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4.5. MODELING MEDIA DISTRIBUTION IN THE EXPANDED-BED 

4.5.1. Calibration of internal recycle flow and media concentration factor 

A very high value of F was desirable to limit the effect of the internal recycle flow on the 

hydraulic retention time of the materials in the reactor. The calibration of F and η was based 

on the comparison of   in the tracer test. As shown in Figure 21, when the F was set at 5 

and η was estimated to be 6, the tracer exited the reactor earlier, expressed by the   of 

0.99989. At the doubled value of F and η equaled to 11, a shorter   of 0.99992 was still 

observed. When the F was increased to 1,000 and η increased to 1,001, the   was found 

to be 1, which was perfectly matched to the experimental data. The Eθ curve corresponding 

to F equaled to 1,000 was visually closest to the experimental curve. For the F higher than 

1,000, tiny improvement on the Eθ curve and   were observed.  

 

 

 

 

 

 

 

 

Figure 21. Non-dimensional residence time distribution curves of tracer test  

4.5.2. Media distribution in the expanded-bed 

By manipulating the η, the distribution of media over the expended-bed could be created. 
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However, due to the limited data, an even distribution of media was selected for modeling 

in this study. The permissive values of F and η were selected to be 1,000 and 1,001, 

respectively, which resulted in the media concentrations of 75% in all the cell CSTRs. In 

practice, because the media density is slightly higher than water density, the media 

concentrations at the bottom of the expanded column might be slightly higher than those in 

the top. To show the effect of η on media distribution, different simulations were carried 

out with various values of η. The influence of high or low values of concentration factor to 

the media distribution in the expanded-bed was illustrated in Figure 22.   

 

Figure 22. Illustration of the media distribution in the expanded-bed with different 

values of concentration factor  

As shown in Figure 23, when η was set at 1,051 that was 5% higher than the selected η, a 

stronger movement of media toward the bottom was observed, in which the media 

concentration in the first tank was found to be 93.4% and smoothly decreased to 59.0% in 

the top tank. The opposite trend was made when η was fixed at 951 which was 5% lower 

than the selected η.  
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Figure 23. Media volume fraction distribution in the expanded-bed  

4.5.3. The biomass distribution in the expanded-bed 

To investigate the attached biomass concentration that was influenced by the media 

concentration, the steady-state simulation of the full-scale reactor was carried out with the 

set of kinetic and stoichiometric parameters, as presented in CHAPTER 5.  

As shown in Figure 24, when the media was homogenized in the expanded-bed, the OHO 

biomass concentration in the biofilm was gradually decreased from 1,439 mgCOD/L in the 

first tank to 1,394 mgCOD/L in the final tank, which was aligned with the removal of 

pollutants along the reactor. When η was varied, a similar trend of decreased OHO biomass 

along the expanded-bed height was observed. In the case of higher η, increased media 

volume at the bottom resulted in a slightly elevated OHO biomass of around 1.5% in the 

cell tanks. In the case of lower η, the OHO biomass was reduced by around 1.1% in the cell 

tanks. 
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Figure 24. Ordinary heterotrophic biomass distribution in the expanded-bed  

Conversely, the variation of η created less impact on the distribution of AOO and NOO 

biomass because they were mostly even in the reactor. It was because the AOO and NOO 

biomass concentrations were calculated to be only 530 and 105 mgCOD/L, respectively, 

which were significantly lower than those of OHO. Further, the OHO was dominant in the 

outer biofilm layers for available DO and substrates. Although the media volume was 

changed, the available space in the deeper biofilm layers was unlikely to affect the growth 

of AOO and NOO. For further application of the hydraulic model in the attached growth 

process, the demonstration suggested that the media and biomass concentration in the cell 

CSTR could be differentiated by varying the individual ηi,i-1, to suit the evolution of 

pollutants along the reactor and meet the design criteria. 
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4.6. CONCLUSIONS 

In this chapter, a physical model was developed to express an expanded-bed reactor using 

granular activated carbon media. The obtained results were as follows: 

1. The media fraction of the packed-bed was estimated to be 35.7%, 

2. The specific surface area of the media in the packed-basis was found to be 5,587 m2/m3.  

3. From the tracer test, the number of tanks-in-series of the reactor (N) was estimated to be 

11. 

4. The homogenization of the media over the expanded-bed height was simulated. The 

evenest distribution of the media was found at the media concentration factor of 1,000 and 

the internal recycle flow equaled to 0.001Q. The influence of media distribution on the 

attached biomass was also evaluated.
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5.1. INTRODUCTION AND OBJECTIVES 

At present, due to the discharge of inadequately treated wastewater to water bodies, a large 

number of drinking water treatment plants (WTPs) in developing countries face with high 

concentrations of ammonium (NHx-N) at the supply sources. When chlorination 

disinfection is applied, a large amount of chlorine would be needed to remove the NHx-N. 

To reach the chlorination breakpoint and obtain the free chlorine residual, a dose of 8 – 10 

mgCl2/mgNHx-N is often recommended [19]. Therefore, high influent NHx-N is directly 

engaged to the increase in the operational costs. Additionally, in case that the influent 

dissolved oxygen (DO) is limited, the incomplete removal of NHx-N may result in the 

accumulation of nitrite (NO2-N) in the system. The high concentration of NO2-N in tap 

water can cause methemoglobinemia in infants [20]. Therefore, more chlorine should be 

dosed to oxidize the generated NO2-N. 

Among the available pretreatment technologies, biological nitrification is considered to be 

a promising and cost-effective option to remove NHx-N from water sources. In principle, 

nitrification is composed of a two-step microbiological process, in which ammonium- 

oxidizing organisms (AOO) and nitrite-oxidizing organisms (NOO) convert NHx-N to 

NO2-N and NO2-N to nitrate (NO3-N), respectively. In the drinking water sources where 

the substrates for microorganism growth are very limited, the oligotrophic bacteria with 

very low half-saturation coefficients (KS) [57], [58] are favored. In this regard rather than 

ordinary heterotrophic organisms (OHO), nitrifiers are known to be sensitive to various 

environmental factors, such as temperature, pH, available DO, and substrates [59]. Their 

growth on the carrier might provide a more hospitable environment [60], and nitrifying 

biomass concentration in the reactor could be significantly increased. However, unlike 

biological wastewater treatment systems, DO competition between nitrifiers and 

heterotrophs, and each reaction rate in low-strength influent have not been well formulated. 

Hence, at present, it is difficult to calculate the removable NHx-N and organic substrates 

and possible NO2-N accumulation in the pretreatment of WTPs. 
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Based on the above background, a mathematical model of two-stage oligotrophic 

nitrification and heterotrophic reactions was developed for an expended-bed reactor aiming 

to remove NHx-N from drinking water. The model was incorporated by physical, biofilm 

and biological models explained in CHAPTER 3 and CHAPTER 4 on the framework of 

Activated Sludge Models (ASMs) developed by IWA Task Group [46]. At present, 

different scales from 0-dimensional (0-D) to multi-dimensional (2-D and 3-D) resolutions 

could be used for biofilm modeling. In water and wastewater engineering, the application 

of the 0-D model might cause discrepancies in the simulation results due to 

oversimplifications. On the other hand, the 2-D and 3-D model could provide insights into 

the biofilm's heterogeneous morphology and inter-species microbial interactions; however, 

interdisciplinary expertise and a huge amount of experimental data are needed in building 

such a fine-resolution model. In the shortage of experimental data on how the species 

spatially existed in the biofilm, the 1-D model that still well captures the dominant biofilm 

process has become the most attractive option [45].    

In the nitrifying expanded-bed reactors, the granular activated carbon (GAC), which then 

transformed into biological activated carbon due to the biofilm coating, was used as the 

carrier for the biofilm. Rather than its adsorption capacity which was eventually expired 

during long-term operation, the diverse and stable bacterial culture developed on the 

biofilm was proven to remove NHx-N [88] and a wide range of biodegradable organic 

matters [39]. In the biofilm model, instead of considering the overall biofilm-detachment 

loss as previous research [60], [89], this study examined the dynamic attachment and 

detachment separately in their interrelation. The detachment was examined in the 

experiment with limited suspended solids, while the attachment was estimated from the 

capture of suspended solids in the field study. The reactive biofilm thickness and internal 

biomass exchange were calibrated to reproduce comparable effluent concentrations. Their 

implications to the biofilm performance were also investigated in initial biofilm 

development, steady-state operation, and backwash events. The model calibration was 
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carried out based on five different datasets of both synthetic and rivers water over the lab-, 

pilot- and full-scale reactors. It aimed at obtaining a single set of kinetic and stoichiometric 

parameters for the oligotrophic AOO/NOO/OHO, which might be considerably different 

from those applied in wastewater treatment. Once the single set was obtained, it could be 

used as a set of default parameters in future designing water treatment with low-strength 

NHx-N and organic substrates. 

The objectives of this chapter were: 

1. To investigate the attachment, detachment, and internal solids exchange of suspended 

solids to/from the biofilm layers, 

2. To obtain a single set of kinetic and stoichiometric parameters for the oligotrophic 

AOO/NOO/OHO from the calibrations of five different datasets, which reflected the 

biofilm performance in different circumstances, 

3. To create the graphical guidance on the reactor performance at variable influent 

conditions. 
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5.2. MATERIALS AND METHODS 

5.2.1. Monitoring campaigns for the lab-, pilot- and full-scale reactors 

The physical properties of the lab-, pilot- and full-scale reactors were previously presented 

in CHAPTER 4. 

As for the lab-scale reactor, the influent was made with NH4Cl solution of 2,200 mgN/L 

and dechlorinated tap water using metering and centrifugal pumps respectively (IWAKI, 

Japan). In the start-up period of 90 days, the reactor was fed with synthetic water containing 

1 mg NHx-N/L to stimulate nitrifiers' growth. The temperature of tap water was ranged 

from 10oC to 20oC in 3 months. In the subsequent continuous operation for 90 days, the 

NHx-N loading was varied from 1 to 2 mg NHx-N/L in a stepwise manner. During this 

period, the temperature was changed from 20oC to 30oC.  

The pilot-scale reactor in Hoa Phu WTP was located in the semi-diurnal tidal zone. The 

intake point of the plant was found at different depths from the water surface because of 

the tidal effect, resulting in the sinusoidal trends of DO and temperature of influent water 

in a day. Intensive monitoring was carried out for 4.5 days in January when the temperature 

was around 30oC. 

As for the full-scale reactor in Vinh Bao WTP, the influent was pumped from an irrigation 

channel that received the water from the main river. The water quality was said to be 

degraded in the rainy season, especially from July to August. In this period, the crops were 

harvested and their roots were still on the field. Due to the precipitations, part of the 

substances (fertilizer, etc.) remained in the field were washed-out to the channel, resulting 

in the polluted water source for both organics and nitrogen. To investigate the reactor 

performance, two intensive monitoring campaigns were carried out at different influent 

circumstances. The first survey for 3 days was carried out in dry season in January 

(hereinafter Vinh Bao WTP (D)). The water quality was fairly acceptable, and the reactor 
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was operated at the designed flow rate of 105 m3/h with the water temperature at around 

20oC. The second monitoring for 7 days was carried out in the rainy season in August 

(hereinafter Vinh Bao WTP (R)). In the first 3 days, because of the poor influent water 

quality, the reactor was run at 50 m3/h with a lowered linear velocity. From day 4, the 

influent quality was improved due to the release of the freshwater from the main river to 

the channel. The flow rate of the reactor was then increased to 70 m3/h. During the 

campaign, the water temperature was kept at around 30oC.  

The monitored parameters and their ranges of values were listed in Table 10. 



CHAPTER 5 COMBINED BIOFILM AND BIOLOGICAL MODEL OF A NITRIFYING EXPANDED-BED REACTOR FOR AMMONIA 

AND ORGANICS REMOVALS 

89 

Table 10. Summary of influent water quality and objectives of modeling 

No Dataset 
Objectives of 

modeling 

Temp. 

(oC) 

DO 

(mgO2/L) 

NHx-N 

(mgN/L) 

NO2-N 

(mgN/L) 

NO3-N 

(mgN/L) 

TSS 

(mg/L) 

VSS 

(mg/L) 

Total 

COD 

(mg/L) 

1 
Lab-scale start 

up  

Biofilm initial 

formation 

11.3 – 

20.2  
8 – 10  0.6 – 1.2 0 – 0.04  0 – 1.2 0 0 0 

2 

Lab-scale 

continuous 

operation 

NO2-N accumulation 

in low DO  

17.8 – 

29.7 
5.5 – 9.2 0.7 – 2.1 0 – 0.03 0.1 – 0.8 0 0 0 

3 
Pilot-scale Hoa 

Phu WTP 

Estimation of influent 

readily biodegradable 

substrate from DO 

consumption 

27.2 – 

34.3 
2.9 – 6.5 0 – 0.6 NA NA NA NA NA 

4 
Full-scale Vinh 

Bao WTP (D)♣ 
Same as above 

19.2 – 

21.2 
6.6 – 8.0 0 – 0.5 NA NA NA NA NA 

5 
Full-scale Vinh 

Bao WTP (R)♦ 

Biofilm in long-term 

operation 

Biofilm attachment 

and detachment 

28.3 – 

31.0  
4.4 – 7.9 0 – 6.5 0 – 0.4 0 – 1.9 22 – 120  

2.2 – 

17.7 

7.2 – 

36.6  

♣ in the dry season   ♦ in the rainy season NA: Not measured
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5.2.2. Analytical procedures 

For the lab-scale reactor, influent and effluent samples were collected daily for analysis. 

NHx-N concentrations were measured according to #4500-NH3 F in Standard Methods [90]. 

NO2-N and NO3-N were analyzed using Ion Chromatography (ICS-1500, Dionex, 

California, USA). The accuracy of NO3-N measurement at the concentration as low as 1 to 

2 mgN/L was rather limited. DO was monitored using the DO meter (TOX-999, TOKO, 

Tokyo, Japan). The temperature was recorded using a thermometer. The batch experiments 

on the oxygen uptake rates (OUR) were carried out using the media sampled from the 

reactor after the system reached a steady-state condition. The amounts of 20 g of wet media 

were taken from the lab-scale reactor and washed by the effluent water in which the NHx-

N and NO2-N concentrations were highly limited. The media were transferred into the 

Winkler bottles, which were then filled up with an air-saturated solution containing 2 

mgN/L of NHx-N concentration. Under the gently stirring, the DO decrement in the 

Winkler bottles was recorded using the DO meter until the DO reached to 0 mg O2/L. The 

batch experiments were controlled at the temperature of 20oC, 30oC, and 35oC using a water 

bath. Based on the results of OUR, the detachment of biofilm, the amount of biomass, and 

the temperature correction factor for AOO were obtained.  

As for the pilot reactor at Hoa Phu WTP, the DO and temperature at the influent and effluent 

chambers were automatically recorded at every 15 minutes using optical DO sensors (FDO 

925-P probes and Multimeter 3430, WTW, Germany). The accuracy of the DO and 

temperature probes in the field conditions were ± 0.2 mgO2/L and ± 0.2oC, respectively. 

The NHx-N concentration was also automatically measured using dual on-line portable 

meters LAQUAact-D73 (Horiba, Japan). The influent and effluent samples were mixed 

with sodium hydroxide solution 20% to increase the pH to more than 12. In this condition, 

ammonium ion in the water was converted into ammonia gas, which was then recorded 

using high polymer membrane ammonia electrodes 5002A (Holiba, Japan). Influent and 
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effluent electrodes were calibrated every day, showing acceptable linearity with R2 from 

0.977 to 0.998. The pH of the mixture solutions was checked periodically to ensure that the 

pH higher than 12 was maintained. 

For the full-scale reactor at Vinh Bao WTP, in the first and second monitoring campaigns, 

the water temperature, DO and NHx-N concentrations were automatically recorded using 

comparable materials to those used in Hoa Phu WTP. Particularly, during the second survey, 

the influent and effluent water samples were collected hourly with two units of autosampler 

(Avalanche, Teledyne ISCO, USA) for the lab analysis. The inorganic nitrogen was 

measured using reflectometric with test strips (RQflex 10, Merck, Germany). The 

measuring ranges were 0.16 – 5.4 mg NHx-N/L, 0.2 – 7.6 mg NO2-N/L and 0.7 – 20.3 mg 

NO3-N/L respectively. Prior to the analysis, the calibration curves were created with 

acceptable linearity for NHx-N. The measured NO2-N and NO3-N were closed to the low 

detection limits of the test papers, resulting in the poor linearities. The total chemical 

oxygen demand (COD) was measured using digestion vials of ultra-low range of 0.7 – 40 

mgO2/L (Hach, USA). The total and volatile suspended solids (TSS and VSS) were 

measured according to #2540 B and #2540 E respectively in the Standard Methods [90]. 



CHAPTER 5. COMBINED BIOFILM AND BIOLOGICAL MODEL OF A NITRIFYING 

EXPANDED-BED REACTOR FOR AMMONIA AND ORGANICS REMOVALS 

92 

 

5.3. RESULTS AND DISCUSSIONS 

5.3.1. Detachment and amount of biomass in the lab-scale experiment  

The dynamic simulations were carried out for the three OUR tests using the set of kinetic 

and stoichiometric parameters listed in Table 11. The biomass concentrations obtained 

from the dynamic simulation of the lab-scale reactor at the steady-state condition were used 

as the initial conditions for the design of the batch experiments. As shown in Figure 25, the 

DO decrements with time at different temperatures could be fairly reproduced. The biomass 

concentrations of AOO and NOO in the biofilm were estimated to be 1,373.5 mgCOD/L-

biofilm and 590 mgCOD/L-biofilm, respectively. Based on the slopes of DO decrement, the 

temperature correction factor for AOO was estimated to be 1.072. The batch OUR 

experiment might slightly overestimate the microbial activities compared to the continuous 

operation with limiting-substrate conditions.    

 

Figure 25. Measured and simulated oxygen uptake batch experiment at different 

temperature  

(Biofilm media: 20 g, NH4-N = 2 mgN/L, saturated DO) 

The detachment was examined based on the dataset of the lab-scale start-up period, in 

which the effects of attachment were highly limited. When the kdetach was set at 1·10-3 m/d, 

the biomass was washed-out from the biofilm, resulted in the NHx-rich effluents. When 
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kdetach was reduced to 1·10-5 m/d, complete removal of NO2-N was wrongly achieved earlier 

than the experimental observation. The value of kdetach of 1·10-4 m/d (biomass detach rate 

per area  10 g/(m2·d) could fairly reproduce the effluent NHx-N and NO2-N concentrations, 

as shown in Figure 26. Because the pilot- and full-scale reactors were also operated at a 

similar linear velocity, the same value of kdetach of 1·10-4 m/d was was used to simulate the 

detachment in the filtration runs. In the low substrate conditions, the biofilm thickness in 

the lab-scale reactor was estimated to be 0.002 mm. Such thin biofilm was calculated 

because the biofilm was modelled to evenly cover the large surface of the area. 

 

 

Figure 26. Ammonium removal and nitrite accumulation in the initial biofilm 

formation 

 

5.3.2. Attachment, detachment and internal solids exchange of the field reactors 

In the monitoring of Vinh Bao WTP (R), the TSS and VSS of influent and effluent samples 

were collected every 1 h during the filtration cycle. Especially in backwash events, four 

samples of influent and backwash water were collected. In the surveying for 6.7 days (161 

h), the backwash was conducted at day 2 (48th h) and day 5 (122th h). In the backwash of 1 
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hour, the strong water and air scouring (5.5 L/min) were applied to remove the excessive 

biofilm and repair the filter performance. 

The dynamic attachment of particulates in the biofilm would depend on the nature of 

influent suspended solids. Most of the previous research only focused on the attachment at 

the initial biofilm development rather than the steady-state operation [43], [91]. In Vinh 

Bao WTP (R), the influent inert inorganic suspended solids were observed to be 37.6 mg/L 

on average. Using the experimental data of the effluent inert inorganic suspended solids, 

the kattach was dynamically calibrated from 0.15 to 0.85 m/d as shown in Figure 27 (a). In 

the backwash events, a high value of 2.5·10-3 m/d (biomass detach rate per area  250 

g/(m2·d) was applied to simulate the strong release of solids from the biofilm. The 

experimental plots of effluent suspended solids were reasonably reproduced in both three 

filtration cycles and two backwash events, as shown in Figure 28.   

 

 

Figure 27. Influent inert inorganic suspended solids and specific attachment rates 

(a), Estimated amount of biofilm and specific detachment rates (b). 

As shown in Figure 27 (b), in the field reactor of Vinh Bao WTP (R), the OHO was 

dominant over the AOO and NOO in the biofilm at the concentration from 1,000 

mgCOD/L-biofilm to more than 2,500 mgCOD/L-biofilm. The OHO was distributed in the outer 
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biofilm layers, therefore their concentration was found to be decreased after the backwashes. 

Meanwhile, the AOO and NOO was located in the inner biofilm layers and less affected by 

the strong detachment. The concentrations of AOO and NOO were around 325 mgCOD/L-

biofilm and 90 mgCOD/L-biofilm, respectively. Due to the influent suspended solids, the major 

portion of the biofilm was inert solids. The biofilm thickness in the field reactor was 

estimated to be around 0.315 mm. The calculation was based on a maximum biofilm 

thickness of 0.5 mm, as further explained in section 6.4.2.2. Unfortunately, the OUR test 

was not conducted on the biofilm media in the full-scale reactor to experimentally check 

the appropriate biofilm thickness.  

 
 

 

Figure 28. Measured and simulated influent and effluent total suspended solids for 

attachment and detachment 

 

For the internal solid exchange, the kinter-exchange was found to be sensitive to the biofilm 

response when high concentrations of NHx-N, organics and suspended solids were present 

in the influent, as in Vinh Bao WTP (R). The implication of kinter-exchange in Vinh Bao WTP 

(R) was related to the spatial competition among AOO/NOO/OHO while a large portion of 

the biofilm layers was already occupied by the inert solids. When a high value of kinter-

          Influent Measured effluent Simulated effluent 
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exchange was applied, a uniform distribution of all biomass was created in the biofilm layers 

(0-D). In the case of the limiting substrates, the low-yield growers AOO/NOO could not 

compete with the high-yield grower OHO in the outer biofilm layers, leading to the lowered 

DO consumption of the system. In this study, the value of kinter-exchange of 2·10-5 m/d was 

able to simulate the effluent concentrations. 

In Hoa Phu WTP and Vinh Bao WTP (D), the influent water taken from the rivers that also 

contained the suspended solids. However, because these monitorings were mainly focused 

on the NHx-N removal efficiencies, the TSS parameter was not measured. Therefore, the 

TSS was treated as no-react material in the dynamic simulation. Even the  kattach was a 

site-specific parameter in most of the case, when the average value of 0.43 m/d obtaining 

from the Vinh Bao WTP (R) was applied, together with the above-mentioned values of 

kdetach and kinter-exchange, the effluent experimental plots in these datasets were also reproduced. 

A reactive biofilm thickness of around 0.004 mm was created in the two plants, similar to 

that of the lab-scale reactor. 

5.3.3. Biological kinetic parameters of the biofilm in the nitrifying expanded-bed 

reactor 

The calibration of the biological parameters was carried out on the five datasets of both 

synthetic and river waters. As shown in Table 11, a single set of kinetic and stoichiometric 

parameters of AOO, NOO, and OHO was elaborated, including the physical kinetics of 

attachment and detachment. Even a wide range of water qualities and water temperature, 

the set created comparable effluent concentrations to all the datasets, as shown from Figure 

S 1 to Figure S 8 in the ANNEX, in which the concentrations of influent and effluent for 

the five datasets were summarized together with each dynamic simulation. 
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Table 11. Kinetic and stoichiometric parameters and mass transport for oligotrophic 

biofilm 

Characterization Symbol 
This 
study 

Reference Unit 

Active Ammonia Oxidizing 
Biomass 

    

Active ammonia oxidizing biomass 
maximum specific growth rate 

AOO,Maxμ  0.40 0.46 – 2.2 
[48], [59], 

[60] 

d-1 

Ammonia (as substrate) half 
saturation coefficient 

NHx,AOOK  0.10 0.06 – 5.6 
[48] 

gN/m3 

Oxygen half-saturation coefficient 
for active ammonia-oxidizing 
biomass 

O2,AOOK  0.25 [92] mgO2/L 

Active ammonia oxidizing biomass 
organism decay rate 

AOOb  0.08 0.03 – 0.15 
[48], [60] 

d-1 

Active Nitrite Oxidizing Biomass     

Active nitrite oxidizing biomass 
maximum specific growth rate 

NOO,Maxμ  0.65 0.28 – 3 [48], 
[60] 

d-1 

Nitrite half saturation coefficient NO2,NOOK  0.10 0.05 – 3 [48] gN/m3 

Oxygen half-saturation coefficient 
for active nitrite-oxidizing biomass 

O2,NOOK  0.40 [92] mgO2/L 

Active nitrite oxidizing biomass 
organism decay rate 

NOOb  0.08 0.03 – 0.15 
[48], [60] 

d-1 

Active Heterotrophic Biomass     

Heterotrophic maximum specific 
growth rate 

OHO,Maxμ   3.00 1 – 6 [93]   d-1 

Readily biodegradable substrate 
half saturation coefficient 

BS ,OHOK  0.10 < 1 [93] gCOD/m3 

Aerobic oxygen half-saturation 
coefficient  for heterotrophs 

O2,OHOK  0.20 [92] gO2/m3 
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Characterization Symbol 
This 
study 

Reference Unit 

Heterotrophic decay rate OHOb  0.50 [92] d-1 

General Half-Saturation 
Coefficients 

    

Ammonia (as nutrient) half 
saturation coefficient 

NHx,nutrientK

 

0.005 [92] gN/m3 

Nitrite (as nutrient) half saturation 
coefficient 

NO2,nutrientK

 

0.05 [92] gN/m3 

Nitrate (as nutrient) half saturation 
coefficient 

NO3,nutrientK

 

0.05 [92] gN/m3 

Hydrolysis     

Slowly biodegradable substrate 
maximum specific hydrolysis rate 

BXC _Sb,hydq

 

3 

 

[92] d-1 

Slowly biodegradable substrate half 
saturation coefficient 

,BXC hydK  0.10 [92] gCOD/gC
OD 

Ammonification Ammonification 
rate 

qam 0.08 [92] m3/gCOD/
d 

Temperature coefficient (θ)     

θ for AOO,Maxμ , OHO,Maxμ , amq    1.072 [92]  

θ for NOO,Maxμ   1.058 [92]  

θ for AOOb , NOOb , OHOb   1.029 [92]  

θ for 
BXC ,hydK   1.116 [92]  

Stoichiometry     

Active ammonia oxidizing biomass 
yield 

AOOY  0.21 0.03 – 0.33 
[48], [59], 

[60] 

gCOD/gN 

Active nitrite oxidizing biomass 
yield 

NOOY  0.09 0.02 – 0.09 
[48], [59], 

gCOD/gN 
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Characterization Symbol 
This 
study 

Reference Unit 

[60] 

Active Heterotrophic Biomass yield OHOY  0.67 0.46 – 0.69 
[48] 

gCOD/gC
OD 

Heterotrophic endogenous fraction fXU_Bio,ly

s 

0.08 [92] gCOD/gC
OD 

Nitrogen content of active biomass iN_XBio 0.086 [92] gN/gCOD 

Conversion factor for NO2 in COD iCOD_NO

2 
-3.43  gCOD/gN 

Conversion factor for NO3  in 
COD 

iCOD_NO

3 
-4.57  gCOD/gN 

Conversion factor for NHx in charge iCharge_S

NHx 
0.071  Charge/gN 

Conversion factor for NO3 in charge iCharge_S

NOx 
-0.071  Charge/gN 

Mass transport of biofilm     

Specific attachment rate  kattach 0.43 average in 
this study 

m/d 

Specific detachment rate kdetach 1·10-4  m/d 

Specific exchange rate kinter-

exchange 
2·10-5  m/d 

Maximum biofilm thickness δB,max    

Lab-scale reactor (start-up, 
continuous operation) 

 0.3  mm 

Pilot-scale reactor of Hoa Phu WTP  0.3  mm 

Full-scale reactor of Vinh Bao WTP 
(Dry, rainy season) 

 0.5  mm 
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Each attached microorganism in AOO/NOO/OHO groups was modelled as a single state 

variable or species having fixed kinetics and stoichiometry. This approximation might be 

supported in the literature [94], in which a single genus of Pseudomonas was found to be 

dominant in the oligotrophic biofilm for the degradation of different carbonaceous 

substrates. As the kinetic and stoichiometric parameters obtained in this study were 

supposed to be globally applicable, this set was expected to be as default in designing water 

treatment with low-strength NHx-N and organic substrates. 

During the simulations, KS was found to be more sensitive than the maximum specific 

growth rate (μmax).  In the oligotrophic conditions where the substrate concentrations were 

limited, the KS was a crucial factor for microbial substrate utilization [58]. The KS of AOO 

and NOO for N-substrate were calibrated to be both 0.1 mgN/L, whilst their μmax were 

estimated to be 0.40 and 0.65 d-1 respectively, which were at the lower ranges that found in 

wastewater treatment systems [48]. Dissolved oxygen was also the rate-limiting factor and 

highly affected the response of the nitrification process. Previous studies presented that the 

activity of NOO was considerably lowered at low DO concentration compared to the one 

of AOO [59]. Based on this, the half-saturation coefficients of oxygen (KO2) for NOO and 

AOO were calibrated to be 0.4 and 0.25 mgO2/L respectively. Because of the inferiority of 

NOO to AOO in the competition for oxygen and substrates, the specific decay rate (b) 

became also influential in determining their appropriate concentrations in the biofilm. In 

the simulation, this kinetic parameter was assumed to be 0.08 d-1 for both NOO and AOO. 

With respect to the OHO, the KS was calibrated to be 0.1 mgCOD/L, whereas its μmax was 

found to be 3.0 d-1 which was considerably lower than the ordinary OHO in wastewater 

treatment systems [48], [58]. Furthermore, the KO2 for OHO was known to be relatively 

low, leading to their competitive growth to AOO and NOO in presence of organic substrate 

[59]. In this study, the KO2 for OHO was estimated to be 0.2 mgO2/L, which was comparable 

to those in wastewater treatment systems. 
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5.3.3.1. Measured versus predicted data over all the datasets 

When the set of kinetic and stoichiometric parameters listed in Table 11 was applied to the 

dynamic simulation of five datasets, the predicted data were in a good agreement with the 

measured data, as shown in Figure 29. The effluent DO ranged from 0 to 8 mgO2/L was 

reasonably simulated in the model with a coefficient of determination (R2) of 0.86 with 937 

data plots in all the five datasets. NH4-N was also predicted at a high R2 of 0.97 with 937 

of data plots. A moderate prediction was obtained for NO2-N with a R2 of 0.55 with 323 

data plots, which might be due to the challenges in producing intermediate product in the 

model. The predicted NO3-N was highly scattering with a low R2 of 0.154 at the similar 

data plots as those of NO2-N. This might be attributed by the poor calibration curve of the 

test papers for NO3-N in the field study, in addition to the low precision of NO3-N 

measurement in the lab analysis. Nevertheless, because the production of NO3-N directly 

engaged in the removal of NH4-N that was well simulated, the model output for NO3-N 

was thought to be reasonable. For the TSS, an acceptable R2 of 0.73 was obtained over the 

147 data plots.  
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Figure 29. Measured versus simulated outputs in the five datasets 

5.3.3.2. Nitrifying biofilm formation in the start-up period 

In the lab-scale reactor, during the start-up period of 90 days with ranging temperature 

between 11 and 20oC, high influent DO concentration from 8 to 10 mgO2/L and influent 

NHx-N concentration of around 1 mgN/L, the AOO and NOO were found to be gradually 

developed on the media. As shown in Figure 26, during the first 20 days of operation, NHx-

N concentration in the effluent was consistently reduced whilst NO2-N was accumulated in 

the system due to the imbalance growth rate of AOO and NOO in the biofilm. At the starting 

time, a small amount of NHx-N was converted into NO3-N indicating that a small amount 

of active AOO and NOO were already present in the media taken from the WTP. In the 

dynamic simulation, the initial biomass concentrations in the biofilm layers of AOO and 

NOO were determined to reproduce the initial effluent concentration. After day 20, NHx-

N was totally converted into NO3-N. The high removal efficiency of 96% was obtained 

during the remaining period of 70 days. The biomass concentrations of AOO and NOO in 
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the biofilm layers at the end of the start-up period were used for the dynamic simulation in 

the next analysis of the continuous operation. 

5.3.3.3. Nitrite accumulation due to low dissolved oxygen  

Once the activities of AOO and NOO were stably developed on the media in the lab-scale 

reactor, in the next 90 days, the NHx-N loading was intentionally varied from 1 to 2 mgN/L 

and from 2 to 1 mgN/L in a stepwise manner, as shown in the top of figures of Figure 30. 

Because of temperature change of the influent for the long-term operation, the DO in the 

influent was around 6 mgO2/L in the first 15 days and gradually increased from 7 to 9 

mgO2/L in the next 75 days. When the influent NHx-N was maintained at around 1 – 1.5 

mgN/L, NHx-N was entirely converted into NO3-N. During this period, the NHx-N removal 

was obtained at around 95%. However, when the NHx-N reached 2 mgN/L, which required 

a stoichiometric DO of about 9 mgO2/L, the limited DO of below 0.1 mgO2/L in the effluent 

resulted in the NO2-N accumulation in the system. Even at the high loading rate of NHx-N, 

the reactor was proved to remove NHx-N with the utilization rate of 4,118 gN/m3/d. Due to 

NOO’s higher KO2 than that of AOO, NOO could not outcompete with AOO. The dynamic 

simulation could fairly reproduce the NO2-N accumulation. A slight gap between 

experimental data of the effluent (around 0.25 mgN/L) and simulated data (around 0.13 

mgN/L) was observed. To match the experimental data, the NOO biomass in the biofilm 

should be slightly reduced. For instance, the specific decay rate of NOO was especially 

needed to adjust to 0.12 d-1 from the global calibration of 0.08 d-1 (data not shown). 

However, since the mismatch of the effluent nitrite concentration was only 0.12 mgN/L, it 

was decided that the global parameter was applied to the simulation without modification. 
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Figure 30. Ammonium removal and nitrite accumulation due to low dissolved 

oxygen (Top: Lab-scale reactor in continuous operation, Bottom: Full-scale reactor 

in Vinh Bao (R)) 

 

5.3.3.4. Overall biofilm responses in the field reactors 

In the pilot- and full-scale reactors, the initial biomass concentrations in the reactor were 

estimated under each steady-state simulation to reproduce the effluent concentrations at the 

starting time.  

For the dataset of Vinh Bao WTP (R), during the first 3 days, the surface water quality was 

seen to be poor and turbid, in which the influent DO, NHx-N and COD were detected to be 

around 5.3 mgO2/L, 4.4 mgN/L and 18.4 mgCOD/L respectively, as shown in bottom 

figures of Figure 30 and top figures of Figure 31. Because of this low DO, only around 1 

             Influent Measured effluent Simulated effluent 

Temperature 
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mg NHx-N/L could be stoichiometrically removed from the influent, and NO2-N 

accumulation was also recognized. After day 4 when the surface water quality was 

improved, the influent NHx-N was significantly decreased to around 0.75 mgN/L. During 

this measurement, it appeared that around 5 mgO2/L of DO was still consumed, indicating 

the presence of the organic substrate in the influent. Again, when the effluent DO decrease 

to almost zero between days 5 and 6, the accumulation of NO2-N was observed. As the 

biodegradable organic substance concentration was not experimentally measured, the 

organic substrate in the first 3 days was speculated to be varied from 1 to 5 mgCOD/L in 

the dynamic simulation. High organic substrate input to the reactor showed a comparable 

effect on reducing the effluent DO, which built an unrealistically high biomass 

concentration of OHO in the system. Under such simulation, the activity of NOO in the 

following days was suppressed, resulting in the overestimated concentration of effluent 

NO2-N. From day 4, the organic substrate was speculated to be varied from 0.1 to 9 

mgCOD/L to match the effluent DO.   
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Figure 31. Estimation of the influent readily biodegradable substrate from dissolved 

oxygen consumption (Top: Full-scale reactor in Vinh Bao (R); Bottom: Pilot-scale 

reactor in Hoa Phu WTP)  

 

The datasets in Hoa Phu WTP and in Vinh Bao WTP (D) were comparable to those in the 

lab-scale reactor, in which the influent NHx-N was relatively low and almost completely 

removed from the effluent. Even the organic substrate was not measured, its presence in 

the influent could be estimated from the DO consumption in the system as described above. 

However, the growth of OHO required not only the organic substrate but also nitrogen as 

the nutrient. Because of limited NHx-N in the influent, it was obligated to assume the 

presence of soluble biodegradable organic nitrogen to provide the required additional NHx-
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N source through the ammonification. In this way, in Hoa Phu WTP, the organic substrate 

was calculated to be varied from 0.05 to 3 mgCOD/L, as shown in Figure 31. 

5.3.3.5. The biomass fraction in the steady-state operation 

The short period of the intensive monitoring could only provide the snapshots of biofilm 

response in the dynamic operations. To catch the biofilm performance in the long-term 

operation, steady-state simulations were carried out using averaged influent concentrations 

listed in Table 12. As shown in Figure 32, it appeared that biomass fraction of each reactor 

was distinct and dependent on influent characteristics (e.g. high and low influent DO, NHx-

N, organic substrate, suspended solids).   

Table 12. Influent concentrations for steady-state simulations 

No Dataset 
Temp. 

(oC) 

DO 

(mgO2/
L) 

NHx-N 

(mgN/L) 

Organic 
substrate 

(mgCOD/L) 

TSS 

(mg/L) 

1 Lab-scale start up 14.7  8.9 0.87 0 0 

2 Pilot-scale Hoa Phu WTP 28.9 4.6 0.2 2 0 

3 Full-scale Vinh Bao WTP (D) 20.6 7.2 0.1 6.8 0 

4 Full-scale Vinh Bao WTP (R) 30.0 5.3 4.4 7.1 35.7  

In the lab-scale reactor, because of no organic substrate in the influent, the OHO biomass 

was very limited in the biofilm. When the influent NHx-N and DO were fixed to be 0.87 

and 8.9 mg/L respectively, the NHx-N was totally removed without accumulation of NO2-

N in the effluent. The active biomass of AOO and NOO were found to be 23.3 and 9.6%  

respectively in the biofilm. The slowly biodegradable substrate (XCB) which was produced 

from endogenous decay of AOO and NOO was the major component in the biofilm, 

occupied more than 60% of the total biomass. Although XCB was supposed to be degraded 

by OHO and became a source of its cryptic growth, due to competition of DO between 



CHAPTER 5. COMBINED BIOFILM AND BIOLOGICAL MODEL OF A NITRIFYING 

EXPANDED-BED REACTOR FOR AMMONIA AND ORGANICS REMOVALS 

108 

 

OHO and nitrifiers, OHO seemed not to grow much in the system. 

 

 

 

 

 

 

 

 

 

 

Figure 32. Biomass fraction in steady-state operation 

For Hoa Phu WTP and Vinh Bao WTP (D), the biomass fractions were found to be 

comparable. The influent organic substrate was present at the concentration of 2 mgCOD/L 

and 6.8 mgCOD/L respectively, whilst NHx-N was very low. Due to enough influent DO, 

both of organic substrate and NHx-N were almost removed in the effluent. The OHO was 

found to be dominant over the AOO and NOO. The OHO biomass fractions were calculated 

to be 36.6 and 44.3% in both plants respectively, whilst the growth of AOO and NOO were 

very limited. The unbiodegradable particulates from the decay of OHO (XU) occupied the 

largest portion in the biofilm with more than 50%.  

A totally different biofilm was created in Vinh Bao WTP (R). The moderate influent DO 

of 5.3 mgO2/L was insufficient to oxidize the high influent concentrations of NHx-N and 

organic substrate which were fixed at 4.4 mgN/L and 7.1 mgCOD/L respectively. As a 

result, the removal efficiencies of NHx-N and organic substrates were only 72.7% and 
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32.7% respectively. Further, due to the influent inert inorganic suspended solids 

concentration of 35.7 mg/L, more than 98 % of the biofilm was occupied by the inert 

inorganic suspended solids (XU,inf). Consequently, the active biomass of AOO, NOO and 

OHO accounted for only 0.6% of the total biomass. It suggested that the occupation of 

influent suspended solids in the biofilm could limit the growth of active biomass. The 

frequent backwash was therefore required to repair filter-bed performance. Additionally, 

the particulates, such as sand and silt, should be carefully removed before the influent 

entering the biofilter to improve the treatment efficiency of the reactor. 

5.3.4. Graphical guidance on the reactor performance at variable influent and 

temperature  

Based on the set of global kinetic and stoichiometric parameters obtained in this study, 

graphical guidance was developed to estimate the reactor performance under different 

influent concentrations and water temperature, which aimed at providing simple and quick 

tools for the designers and practitioners of nitrifying expanded-bed reactors.  

As shown in Figure 33, the influence of water temperature to the biological NHx-N removal 

was examined, according to the steady-state simulations under the temperature ranged from 

10 to 35oC, varied influent NHx-N from 2 to 10 mgN/L with fixed influent DO at 8 mgO2/L 

and organic substrate at 0 and 5 mgCOD/L. Without the presence of organic substrate, 

when the influent NHx-N was fixed at 2 mgN/L, the NHx-N removal was almost constant 

at 1.9 mgN/L within the temperature range. However, a slightly higher nitrification rate 

was observed along with the temperature increase when the influent NHx-N was from 3 to 

10 mgN/L. When the temperature beyond 30 – 35 oC, the highest and lowest values of NHx-

N influent created the NHx-N decrement of 2.1 and 1.9 mgN/L respectively. When the 

organic substrate was fixed at 5 mgCOD/L, the NHx-N removal was dropped to a constant 

value of 1.5 mgN/L over the temperature range. The highest removal of NHx-N was found 

to be 1.68 mgN/L when both influent NHx-N and temperature were at the maximum values. 
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Overall, the insignificant improvement on nitrification rate suggested that the process was 

not considerably influenced by the hydraulic retention time and the specific surface area of 

the media in the experimental condition, in case the influent DO concentration was almost 

saturated in air 

 

 

 

 

 

 

 

 

 

Figure 33. Impact of temperature on ammonium removal (Influent DO = 8 mgO2/L 

and influent organic substrate = 0 and 5 mgCOD/L). 

Considering the simulation result, the permissive influent DO to totally remove NHx-N and 

organic substrate, and suppression of NO2-N accumulation was estimated, where the water 

temperature was fixed at 20oC and 35oC respectively, and the influent NHx-N was ranged 

0 to 3 mgN/L whilst the influent organic substrate was ranged from 0 to 5 mgCOD/L. As 

shown in Figure 34, at the temperature of 20oC and influent DO of 8 mgO2/L, it appeared 

that the range of NHx-N at which the reactor could entirely remove was from 1.20 to 1.92 

mgN/L when the influent organic substrate was ranged between 0 to 5 mgCOD/L. The 

similar applicable range for NHx-N was used in the empirical equation at the temperature 

of 35oC, which could be found in a graphical manner in Figure 35. 
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NHx-N and organic substrate was made as shown in Eq (23).  

Required DO (mgO2/L) = a x influent NHx-N (mgN/L) + b x influent organic 

substrate (mgCOD/L) 

Where a = 4.16 gO2/gN; b = 0.60 gO2/gCOD at the temperature 20oC;  

           a = 4.17 gO2/gN; b = 0.82 gO2/gCOD at the temperature 35oC. 

Eq (23) 

In the empirical equation, the lines were not perfectly matched to the data plots, resulting 

in the overestimations of required DO in some operating conditions. Nevertheless, the 

overestimations were mostly less than 10%, which can be treated as a safety margin in the 

designing procedure. The empirical equation was applicable at NHx-N higher than 0.25 

mgN/L without the presence of organic substrate, at NHx-N higher than 0.5 mgN/L whilst 

organic substrate was from 1 to 2 mgCOD/L and at NHx-N higher than 1.0 mgN/L whilst 

organic substrate was from 3 to 5 mgCOD/L.  

 

 

 

 

 

 

 

 

 

Figure 34. Dissolved oxygen requirement for variable influent ammonium and 

organic substrate at temperature 200C (line: empirical required dissolved oxygen, 

markers = simulated required dissolved oxygen). 
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Figure 35. Dissolved oxygen requirement for variable influent ammonium and 

organic substrate at temperature 350C (line: empirical required dissolved oxygen, 

markers = simulated required dissolved oxygen). 

Based on the above guidance, the required influent DO could be estimated if field 

information for NHx-N and organic substrate was obtained. In case that the influent DO 

was not enough to meet the biological oxygenation of the influent materials, the 

configuration of the expanded-bed reactor might be needed to modify into a multi-series 

reactor where aeration was conducted at the effluent of the reactor to maintain DO for the 

subsequent reactor.  
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5.4. CONCLUSIONS 

A combined biofilm and biological model of biological NHx-N removal for the nitrifying 

expanded-bed reactor was developed. The findings obtained from the study were:  

1. The detachment of the biofilm was estimated in the experiment with limited 

suspended solids, while the attachment was estimated based on the capture of 

suspended solids of the field reactor. The detachment rate was found to be 1·10-4 

m/d at the normal operation of filtration and 2.5·10-3 m/d at the backwash events. 

The attachment rate was varied from 0.15 to 0.85 m/d depending on the influent 

suspended solids. The internal solid exchange rate of particulate among the biofilm 

layers was estimated to be 2·10-5 m/d.  

2. A single set of kinetic and stoichiometric parameters for AOO/NOO/OHO was 

elaborated to reproduce the five distinct datasets obtained from synthetic and rivers 

influent water, respectively. Due to the oligotrophic environment in the drinking 

water sources, most of the calibrated parameters were found at the lower range of 

those collected from wastewater treatment systems. The set could be used as default 

in the designing of nitrifying expanded-bed reactor in the treatment of low-strength 

NHx-N and organics. 

3. A graphical guidance was provided with an empirical equation to estimate the 

required dissolved oxygen to totally remove influent NHx-N (from 0 – 3 mgN/L) 

and organic substrate (from 0 – 5 mgCOD/L) at the temperature of 20oC and 35oC, 

respectively. The impact of temperature from 10 to 35oC to the nitrification rate was 

also examined. 
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CHAPTER 6. SENSITIVITY ANALYSIS OF NUMERICAL CALCULATION 

AND OPERATIONAL PARAMETERS ON THE CALCULATION RESULTS  
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6.1. INTRODUCTION AND OBJECTIVES 

In this study, the Integrated Fixed-Film Activated Sludge (IFAS) object was used to model 

the nitrifying expanded-bed reactor. Although there was a section dedicated to IFAS object 

in Hydromantis' Technical Reference, it could not cover all its operational aspects. As 

shown in 4.4.2., novelty functions of internal recycle flow, and media's concentration factor 

were added in which needed to be explained. In this regards, a list of optimized parameters 

to reach the reasonable calculation results could be helpful.  

The simulation with the IFAS object appeared to be one of the most complicated works on 

GPS-X due to the combination of biofilm and biological model and the high number of 

tanks-in-series in the physical model. Additionally, not all the terminologies in the models 

were well defined and explained in the technical documents. Therefore, a thoughtful 

understanding of the physical, biofilm and biological inputs was a prerequisite for building 

a proper model layout. During the simulations, the calculation outputs from GPS-X should 

be checked and evaluated to ensure the same expectations between the users and 

programmers. In this section, the tips to avoid unexpected calculation results or lessons 

learned were summarized based on the personal experience in dealing with the issues from 

GPS-X. 

The model calibration was carried out based on the datasets obtained from the experimental 

model. A complete set of influent and effluent compositions was desirable; however, 

multiple analytical and experimental tasks were required which were both expensive, labor-

intensive and time-consuming. In this section, a list of key parameters to be monitored in 

the experimental model was proposed. Such a list was sufficient to provide adequate 

answers to the model input. The remaining parameters could be hypothetically estimated 

based on the collected data.    

The objectives of this section were: 
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1. To provide a list of key parameters to be monitored in the experimental model, 

2. To provide a list of optimized parameters to reach a reasonable calculation results,  

3. To carry out the sensitivity analysis of numerical calculations on the calculation results.    

The model layout developed in this study with application of the IFAS object was shown 

in Figure 36 as follows: 

 

Figure 36. The model layout of an IFAS object on GPS-X software 
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6.2. CHARACTERIZATION OF THE INFLUENT COMPOSITION 

Due to the configuration complexity, the IFAS object was simulated in the simplest Carbon 

– Nitrogen Library (CNLIB) of GPS-X software, which consists of sixteen state variables, 

as shown in Figure 37. The influent composition of IFAS object was divided into four main 

components, which were the inorganic suspended solids, organic matters, dissolved oxygen 

and nitrogenous matters. These state variables are the fundamental components that are 

acted upon by the processes described in the model, as shown in Table 5 and Table 6. 

 

Figure 37. Influent composition input and their cryptic names for IFAS object in 

CNLIB library 
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However, it should be noted that the state variables were not always easily measurable or 

interpretable in the field conditions. Therefore, they could be obtained indirectly from the 

composite variables, such as TSS, VSS, COD, BOD, and Total Kjeldahl Nitrogen (TKN), 

by adding some conversion factors. The relationship between the state and composite 

variables in CNLIB was presented as below [95].   

 

Figure 38. Relationship between composite and state variables in CNLIB [95] 

In this study, the simulations of IFAS object were carried out based on five different 

datasets, as indicated in Table 10. Based on the knowledge of the influent sources, as well 

as the specific monitoring purposes, the datasets were differentiated from the simplest ones 

in Hoa Phu WTP and Vinh Bao (D) WTP, which included the temperature, DO and NHx-

N, to a more complete set in Vinh Bao (R) WTP, which covered the above-mentioned 

parameters as well as NO2-N, NO3-N, TSS, VSS, and total COD. 
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Based on the experience acquired in the simulation process, some lessons learned on the 

necessary monitored parameters were presented as below: 

 Temperature, DO, and NHx-N are the primary parameters that allowed to estimate 

the ammonium removal efficiency of the IFAS object in one-stage nitrification, 

 As experienced in Hoa Phu WTP and Vinh Bao (D) WTP, the low NHx-N in the 

water influent might not be sufficient for the biomass activities when compared to 

the DO consumption. In this case, the supplementary source of NHx-N might be 

derived from the organic nitrogen present in water influent through the 

ammonification process. Therefore, the knowledge of the organic nitrogen 

concentration, which could be obtained indirectly from the TKN measurement, 

could be beneficial, 

 As related to organic matters, soluble COD was preferable to the total COD. The 

soluble COD was engaged directly to the readily biodegradable substrate, which 

supported the growth of the heterotrophs as indicated in r1, r2, and r3 of Table 5. 

The difference between total and soluble COD allowed estimating the particulate 

organic components, which could also be double-checked with the VSS parameter. 

The measurement of both soluble and total COD would reduce the assumptions; 

therefore, more realistic simulation results could be provided. Further, it was 

necessary to note that the presence of heterotrophs and autotrophs biomass in the 

water influent should be neglected because they could not corporate into the existing 

biomass of the reactor due to the competition and differences in species. 

 The measurement of TSS and VSS allowed simulating the particulate components 

in the biofilm. The difference between TSS and VSS was defined as the inert 

inorganic suspended solids (xii) variable in the input menu. When the TSS and VSS 

data were available, the kinetic parameters related to the biofilm mass transport, 

such as attachment, detachment and internal solid exchange rates, become sensitive 
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parameters in the simulation because they were related to the spatial competition 

among the different biomass, 

 As shown in Figure 38, the ratio of XCOD and VSS was denoted as “icv factor”. 

The “icv factor” should be calibrated to match the measured VSS and XCOD. For 

example, the value of “icv factor” was calibrated to be 1.0 from its default value of 

1.8. 

The list of the monitored parameters depending on the simulation purposes was 

summarized as below: 
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Table 13. List of monitored parameters and objectives of modeling 

Objectives of modeling 
Temp. 

(oC) 
DO 

(mgO2/L) 
NHx-N 

(mgN/L) 
NO2-N 

(mgN/L) 
NO3-N 

(mgN/L) 
TKN 

(mgN/L) 
TSS 

(mg/L) 
VSS 

(mg/L) 

Soluble 
COD 

(mg/L) 

Total 
COD 

(mg/L) 
Ammonium removal in one-
step nitrification 

○ ○ ○   
 

  
 

 

Ammonium removal in one-
step nitrification with 
possible organic nitrogen 
uptake 

○ ○ ○   ○   

 

 

Ammonium removal in two-
step nitrification 

○ ○ ○ ○ ○ 
 

  
 

 

Ammonium removal in two-
step nitrification and organics 
removal 

○ ○ ○ ○ ○ 
 

  ○ ○ 

Ammonium removal in two-
step nitrification and organics 
removal, with biofilm 
attachment and detachment 

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ 
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6.3. OPTIMIZED PARAMETERS FOR REASONABLE CALCULATION 
RESULTS 

The Input Parameters for IFAS objects composed of the following items: 

 Physical 

 Operational 

 Mass Transport 

 Composite variable Stoichiometry 

 Model Stoichiometry 

 Kinetic 

 High concentration inhibition 

 Consistency 

 Operating cost 

Among these items, the Physical, Operational, Mass Transport, and Kinetic were required 

to be customized according to the studied reactor. The following paragraphs will focus on 

the parameters to be optimized in the simulation process.      

6.3.1. Physical menu  

This menu subjected to the physical properties of the reactor, as well as the media 

characteristics. The appropriate data for physical menu was critical to the simulation results, 

because it defined the surface area based on which the biofilm layers and biomass were 

attached.  
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Item Definition/Discussion How to obtain data 

Dimension 

Tanks in series The number (N) of tanks-
in-series  

Conduct the tracer test 

Volume 

Tank depth Tank depth with media in 
working condition 

Measure the bed-height in working 
condition 

Maximum 
volume 

Tank volume in working 
condition 

Calculate the tank volume in working 
condition 

Media initial volume 

Reator portion 
filled by media 

The volume of media in the 
reactor in empty-bed 
condition 

Calculate the volume of media in the 
reactor in empty-bed condition 

Biofilm related parameters 

Specific surface 
of media 

The specific surface area of 
the media 

From media manufacturer, 
measurement, etc. 

Water displaced 
by media 

Media fraction in packed-
bed condition 

Measurement  

Specific density 
of media 

 From media manufacturer, 
measurement, etc. 

Attached liquid 
film thickness 

 Literature [45] 

Maximum 
biofilm 
thickness 

A user input which is 
related to the detachment 
and biomass concentration 
in the first biofilm layer.   

 From literature [45] 
 By estimating from the VSS of 

attached biomass in the reactor, 
the media surface area, and 
biofilm density, then adding a 
safety margin of 10 to 20%    

Speed 

Soluble 
integration 
period 

How long the soluble state 
variables are integrated. 

In short-term monitoring, such as in 
batch experiments, the soluble 
integration period should be equaled to 
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Item Definition/Discussion How to obtain data 

Soluble 
integration 
length 

How long the soluble state 
variables are integrated.    

the soluble integration length and be 
the same as the data recorded interval 
for the accuracy of the output results.  

It was suggested that the practitioners should check the simulation results of IFAS object 

in the output menu to avoid any misleading input data. The concerned parameters and their 

calculation formula in each cell tank were presented as below: 

Table 14. Some physical properties of the reactors and their calculation formula 

Parameter Unit Formula 

Media Surface Area m2 (Vtotal/Ntank) x (Reactor media fill) x (Specific 
surface area) 

Reactor media fill % (Vmedia_packed /Vreactor) 

Media displaced volume m3 
(Vtotal/Ntank) x (Reactor media fill) x (water 
displaced by media) 

Liquid volume m3 (Vtotal/Ntank) – (Media displaced volume) 

Additionally, some notifications should be mentioned on the soluble integration length and 

period. As explained in the Technical Reference [95], these parameters were designed to 

adjust the frequency of the integration for soluble components in diffusing into the biofilm, 

as shown from Eq (12) to Eq (16), without loss of accuracy. The illustration of soluble 

integration length and period was presented as below: 
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Figure 39. Illustration of soluble integration length and period over the simulation 

period 

When the duration of integration was shorter or equaled to the period of integration, the 

continuous integration was conducted, resulting in a more accurate simulation results. 

However, the speed of the calculation would be relatively low. The continuous integration 

is suitable for short-term simulation when the data logging is more frequently (in seconds, 

minutes, etc.). 

When the duration of integration was shorter than the period of integration, the soluble 

components in Eq (12) to Eq (16) would be integrated during the duration of integration, 

and the derivations were kept at constant in the remaining period of the integration. The 

discrete integration is suitable for long-term simulation when the data logging is less 

frequently (in hour, day, etc.). 
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Figure 40. Influence of soluble integration length and period parameters to 

simulation results  

For illustration, different paired values of the duration and period of integration were 

applied for the OUR test at 20oC explained previously in section 5.3.1. As shown in Figure 

40, the data was logged every 1 minute in the total period of 26 minutes of the experiment. 

When both the paired values were fixed at 0.5 or 1 minute, the simulation results fairly 

reproduced the experimental data for DO. However, when the period of integration was 

increased to 2 minutes and the duration of integration was kept at 1 minute, a high 

discrepancy was observed between simulation and measured data.   

6.3.2. Operational Menu  

This section will mainly focus on the Internal Flow Distribution sub-menu, which was 

related to the Internal Recycle Flow, and was not defined in existing technical support 

documents. The labels of IFAS object and different sub-menu in Internal Flow Distribution 

were presented as follows: 
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Figure 41. The labels of IFAS object 

Figure 42. Internal Flow Distribution menu 

Due to the missing definition of labels of IFAS object in the technical documents, the 

following figures explained how they were transferred to the reactor. 
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Figure 43. Definition of labels of Internal Flow Distribution sub-menu on the reactor 

As shown in Figure 42, in the sub-menu of Internal Flow Distribution, the “Influent 

fractions”, “Influent fractions #2” and “Recycle fractions” required the totals of input 

fractions equaled to 1. In the model, their values were distributed as below: 

 “Influent fractions” related to the internal flow recycle. Because the internal flows 

were split evenly among the cell tanks, the value equaled to 1/N (equaled to 1/11 in 

this study) were distributed to each fraction, 

 “Influent fractions #2” related to the main flow rate, which was connected to the 1st 

cell tank. Therefore, the value of 1 was distributed to the 1st cell tank, and the zero 

was distributed to the remaining cell tanks, 
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 “Recycle fractions” was not considered in the model because there was no recycle 

from other boundaries to the reactor. 

For the remaining items, their values were defined as follows: 

 “Internal recycle”: the internal flow rate qi_i-1 (m3/d) should be filled in from the 

cell-tank i to the cell-tank (i-1). As explained in section 4.5.1, the value qi_i-1 equaled 

to Q/1000 was selected in this study,  

 “Internal recycle contains media?”: because the media was recycled, the value of 1 

was selected from the cell-tank i to the cell-tank (i-1),    

 “Internal recycle media concentration factor (CF)”, as explained in section 4.5.1, 

the value equaled to (Q/q+1) was selected from the cell-tank i to the cell-tank (i-1)    

in this study,  

 “Flow from tanks contain media”: as shown in Figure 43, the media flow from the 

tank i to the tank i+1 and then recycled back to the tank i together with a small 

portion of liquid. Therefore the value of 1 (Yes) was selected for the flows from the 

cell tank 1 to (N-1), and zero for the one from cell tank N. If the value of the cell 

tank N was wrongly selected to be 1, the media will be withdrawn and gradually 

emptied from the reactor,  

 “Flow from tank media concentration factor”: as explained in Eq (21), when 

targeting the liquid, the concentration factor should be 1 for all the flows. 

6.3.3. Mass Transport Menu  

This menu is dedicated to the mass transfer of soluble and particulate materials from/to and 

between biofilm layers to the bulk liquid, as shown in Figure 44. In this study, the 

calibration of “Attachment rate”, “Detachment rate” and “Internal solids exchange rate” 

was explained in sections 5.3.1 and 5.3.2.  



CHAPTER 6. SENSITIVITY ANALYSIS OF NUMERICAL CALCULATION AND 

OPERATIONAL PARAMETERS ON THE CALCULATION RESULTS 

130 

 

 

 

Figure 44. Mass transport menu  
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6.3.4. Kinetic Menu  

The kinetic menu is related to the growth of OHO/AOO/NOO and other biological 

processes defined in the Peterson matrix. As mentioned in the 5.3.3, the following kinetics 

and stoichiometric parameters were applicable to five different datasets over the lab-, pilot- 

and full-scale reactors.   

 

Figure 45. Kinetic menu 
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6.4. SENSITIVITY ANALYSIS OF NUMERICAL CALCULATIONS TO THE 
CALCULATION RESULTS 

6.4.1. Unstable convergence of steady-state simulation 

In the dynamic simulation for short periods, such as in hours, days, and weeks, the initial 

biomass concentrations were critical, which induced the effluent concentrations at the 

starting point of the simulation. If the initial biomass concentrations were unknown, they 

might be calculated in steady-state simulation with an assumption on the influent 

concentrations. This trial-error process was time-consuming until acceptable effluent 

concentrations at t=0 were obtained.  

In the case of a complicated model, the steady-state convergence might be slow or diverged. 

The following steps could be used to avoid such problems: 

In the Layout > General Data > System > Input Parameters > Steady-State Solver 

Settings: 

 Adjusting the iteration termination criteria: As stated in GPS-X’s Technical 

Reference, the steady-state convergence is triggered when the solver achieves a 

sum of state variable derivatives below the iteration termination criteria. 

Therefore, the iteration termination criteria might be increased to a higher value, 

e.g. 100 or 50, compared to the default value of 10, in the condition that the 

convergence was stable in each simulation.   

 Adjusting the maximum number of iterations: increase this value will set up 

higher loop counters for the steady-state solver until the convergence is solved.  

 Adjusting the maximum number of unsuccessful iterations: increase this value 

will prolong the termination of the steady-state solver.  
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6.4.2. Sensitivity analysis of the maximum biofilm thickness  

6.4.2.1. Calculation approach of simulated biofilm thickness 

The biofilm attachment, detachment, and corresponding biofilm thickness could 

significantly influence the biofilm reactor performance under some conditions. The 

detachment has a substantial impact on the biofilm thickness and the activities of low-

growing bacterial within the biofilm, such as AOO and NOO. Meanwhile, the attachment 

of particulates from the bulk liquid to the biofilm layers influences to the availability of the 

organic substrate within the biofilm and the seeding of the biofilm by the suspended 

biomass. Unfortunately, up to date, such issues were not well-understood and explained    

[45].  

In GPS-X software, the simulated biofilm thickness was modeled not to exceed the 

“maximum biofilm thickness” value, as explained in the Eq (18). In this way, both the 

simulated biofilm thickness, attachment, and detachment were controlled by the “maximum 

biofilm thickness” value, which is user input. Therefore, in some cases, appropriate data of 

the “maximum biofilm thickness” is critical to the simulation results. Ideally, the data could 

be obtained directly by measuring the attached biofilm on the media in the full-scale reactor, 

then adding 10 to 20% to the value for the marginal. Sometimes, the separation of biomass 

from the media might be unfeasible. In this study, the measurement of VSS for the attached 

biomass was impractical because the BAC media would be destroyed during the ignition 

process. In such a case, the “maximum biofilm thickness” could only be retrieved from the 

literature [45]. However, the uncertainty of the simulated biofilm thickness, attachment, 

and detachment was unavoidable.    

In GPS-X software, the biofilm was constructed in five biofilm layers and one attached 

liquid layer as default, as indicated in Figure 46. The particulate components “filled” into 

the biofilm from the most outer biofilm layer (B#1) to the inner biofilm layers (to B#5). 

From the “maximum biofilm thickness” data (δB,max), the “maximum biofilm thickness per 
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layer” (δB,max,layer) was calculated, based on which the “maximum biofilm volume per layer” 

(VB,max,layer) was estimated. When the particulate concentration in the biofilm layer B#1 

reached the “dry material content of biofilm”, which was fixed at 102 g/L [95], the 

simulated biofilm thickness and volume also reached to their maximum value. Due to the 

internal solids exchange, the particulate components were transferred to the adjacent 

biofilm layers (B#2 to B#5). The simulated biofilm thickness (δB,layer) in layer B#i was 

estimated based on the following equation: 

B#i B,max_ layer

B#i,layer

(total _ particulates )x

dried _ material _ content _ of _ biofilm


   Eq (24) 

It should be noted that the above equation was resulted from our manual checking on the 

calculation of GPS-X. In fact, neither the δB,layer nor the “total particlulatesB#i” was 

displayed at the output of the simulation. The “total particlulatesB#i” was manually 

determined by summing the particulate components (inert inorganic suspended solids, 

particulate inert organic material, slowly biodegradable substrate, active AOO, active NOO, 

active OHO, unbiodegradable particulates from cell decay) in the biofilm B#i in the (Output 

Variables > 2-D state variables) in the reported files.  

In this way, the sum of five δB,layer was calculated, which was also the simulated biofilm 

thickness provided in GPS-X output display. In this calculation approach, the biofilm 

thickness in each layer was not even, in which the thicker biofilm layers were found in the 

outer while thinner biofilm layers were placed in the inner of the biofilm.   
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Figure 46. Biofilm thickness calculation  

6.4.2.2. Sensitivity analysis of the maximum biofilm thickness to simulated biofilm 

performance 

To investigate the influence of the δB,max to the simulation results of the full-scale reactor 

in Vinh Bao (R) WTP, the simulations were carried out at different values of δB,max, while 

the set of attachment and detachment rates were similar as described in section 5.3.1 and 

5.3.2. In section 5.3, the value of δB,max was kept at 0.5 mm, which resulted in the simulated 

δB of 0.315 mm and reproduced acceptable predicted data at reasonable simulation time. 

When the δB,max was reduced to 0.2 mm, the simulated δB was found to be 0.126 mm. The 

simulation speed becomes very low, due to the impact of the small value of δB,max,layer to the 

integration process. When the value of δB,max was increased to 0.7 mm, the simulated δB 

was estimated to be 0.443 mm, and the simulation speed was faster. The δB,layer in each 

scenario was presented in Figure 47 (a). The influence of δB,max to the total particulate and 

active biomass concentration in the biofilm was also investigated. As shown in Figure 47 

(a), the total particulate concentrations in the biofilm were found at 320 g/L, which were 

manually calculated from the particulates components in the biofilm B#i (Eq (24)), were 

not significantly different over the three simulations. It was because the parameters 
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determined the total particulate concentrations in the biofilm layers, which were the growth 

and decay of the biomass, the attachment, detachment, and internal solid exchanges 

between the biofilm layers and the bulk liquids, were fixed. Additionally, due to the 

different simulated δB, the biomass per surface area were varied at 40.72, 100.08, and 

142.67 g/m2, when the δB,max were increased from 0.2 to 0.7 mm. It indicated that the 

simulated biomass per surface area would again depend on the δB,max, leading to the 

uncertainty of the results.  

In another viewpoints, the impacts of δB,max on the δB,layer and the total particulates in each 

layers could be displayed in Figure 47 (b). It was clearly shown that in the most outer layer, 

both the δB,layer  and the total particulates reached their maximum values, and gradually 

decreased in the inner biofilm layer, given the “dry material content of biofilm” was always 

fixed at 102 g/L.   

The composition and concentration of active biomass AOO/NOO/OHO were rather 

fluctuated. When the biofilm thickness was reduced, the volume of biofilm per layer was 

also decreased, leading to an increase in the active biomass concentrations. However, more 

active biomass was washed-out from the biofilm layers, leading to a decrease of the active 

biofilm mass. Consequently, the effluent DO in the case of δB,max equaled to 0.2 mm was 

slightly increased compared to the other scenarios, as indicated in Figure 49. Interestingly, 

the variation of δB,max from 0.2 to 0.5 mm was not influenced the NO2-N effluent. However, 

as the biofilm layer become thicker, it was likely that the NOO could not compete with the 

dominant OHO, leading to the deterioration of NO2-N effluent quality.  
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Figure 47 (a) Impacts of max. biofilm thickness values to the particulates and active biomass concentration and calculated biofilm thickness 
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Figure 48 (b) Impacts of max. biofilm thickness values to the calculated biofilm thickness and total particulates 
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Figure 49. Impact of maximum biofilm thickness to the effluent dissolved oxygen 

and nitrite concentration  

Therefore, the experimental evidence were absolutely needed to validate the reliability of 

the δB,max. The simple OUR test for the biofilm media, such as those indicated in Figure 25, 

could provide some useful information. Given the short duration of the OUR test, the 

calibrated biofilm thickness could reproduce the reasonable volumetric reaction rate to 

meet the experimental data. It should be noted that this OUR test was carried out on the 

biofilm media sampled from the lab-scale reactor where the presence of influent suspended 

solids were rather limited. Here, the impact of difference δB,max to the volumetric reaction 

rate was investigated, as shown in Figure 50. When a small value of 0.2 mm was applied, 

the limited volumetric reaction rate resulted in the elevated effluent DO. On the contrary, 

when the δB,max was increased to 0.5 or 0.7 mm, the simulated volumetric reaction rates 

were higher than expected. The value of δB,max equaled to 0.3 mm reproduced the 

experimental volumetric reaction rate, and was applied to the simulations of the lab-scale 

reactors.   
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Figure 50. Impact of maximum biofilm thickness to the volumetric reaction rate 

6.4.2.3. State-of-the-art in biofilm thickness simulation 

As the results of simulated biofilm thickness in this study were considered with caution, 

we have investigated how this data was solved in other existing simulators. 

To the best of our knowledge, the relationship between attachment, detachment and 

corresponding biofilm thickness are still not well understood in the research; therefore, their 

mathematical transformations hold some uncertainties. Based on the simulator 

programming, the modeler must either fix a certain biofilm thickness (e.g., based on 

measurements in the full-scale reactor) or have the model predict biofilm thickness (e.g., 

by fixing the value of the detachment and attachment rate coefficients [45].  

From literature review, a summary of simulator functions for biofilm attachment, 

detachment and biofilm thickness was provided as follows [49]: 
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where: 
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The above expressions failed to explain each steps involved in the attachment and 

detachment. Further basic research on these complex phenomenon is needed to pave the 

way for their mathematical description. Until then, the mechanical components of the 

biofilm reactors could be developed or optimized to control the process [49].  

6.4.2.4. Conclusion 

In this section, the calculation approach of δB in GPS-X software was explained. The 

implications of the δB,max, which is user input, to the simulated δB and biofilm performance 

were also investigated. Ideally, the data could be obtained directly by measuring the 

attached biofilm on the media in the full-scale reactor. Otherwise, the information could be 

referred in the literature. The δB,max was selected based on acceptable biofilm response 

within reasonable simulation time. Due to the uncertainty of the δB,max and its implications, 

the simulated results of δB, attachment, and detachment should be carefully considered. 

Experimental evidence, such as the OUR test of the biofilm media, were absolutely needed 

to validate the calibrated δB. It was expected that future research would enlighten the 

attachment and detachment process in the biofilm, and such understanding could be well 

transferred into the modeling language.   
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CHAPTER 7. REMOVAL MECHANISMS OF PESTICIDES IN THE 

NITRIFYING EXPANDED-BED REACTOR 
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7.1. INTRODUCTION 

In Vietnam and worldwide, intensive cultivation and increasing application rates of 

fertilizers, pesticides, herbicides, and other related crop protection products are being 

practiced to meet the growing food demand and assure food security. Accordingly, 

numerous studies have been focused on the degradation at the surface, groundwater, soil, 

and air quality due to the release of surplus pesticides and herbicides to the environment. 

A survey by Duong H.T. et al. in four big cities in Vietnam including Hanoi, Hai Phong, 

Da Nang, and Ho Chi Minh Cities in 2011 detected the occurrence of 38 pesticides in river 

waters and 14 pesticides in groundwater, some of which have been banned from use since 

the 1990s [34]. An investigation by Chau et al. from 2011 to 2013 also revealed the 

widespread of pesticide pollutions in both private and public drinking water sources in the 

Mekong Delta in Vietnam [96]. Regulations and guidelines take effect at national and 

international levels to monitor and control the occurrence and thresholds of emerging 

chemicals in drinking water. In 2017, the World Health Organization (WHO) had provided 

the guideline values for 31 pesticides presented in drinking water, which were of health 

significance [16]. In Europe, a proposal for a revised drinking water directive has been 

adopted since 2018, in which a maximum concentration of 0.1 μg/L for individual pesticide 

and 0.5 μg/L for total pesticides were regulated [36]. In the United States, the 

Environmental Protection Agency has identified 18 types of pesticides and herbicides with 

their maximum contaminant levels and potential health effects from long-term exposure in 

the National Primary Drinking Water Regulations [37]. In Japan, pesticides were not listed 

in the Drinking Water Standards but referred to the category of “Complimentary Items to 

Set the Target for Water Quality Management” [38]. In Vietnam, the Ministry of Health 

has recently listed 27 pesticides with their maximum limits in the National Technical 

Regulation on Drinking Water Quality (QCVN01-1:2018/BTY) [17].  

The conventional drinking water treatment process alone, which includes 
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coagulation/flocculation, sedimentation, and filtration, could partly remove the pesticides 

[97]. At present, available technologies to remove such persistent chemicals from drinking 

water sources are chemical oxidation, chemical precipitation, membrane, activated carbon 

adsorption and/or biofilter. Traditionally, granular activated carbon (GAC) was effectively 

used to adsorb the pesticides and other organic pollutants due to its irregular crevices and 

porous particle shape that bind those specific contaminants [43]. Thuy et al. (2013) 

demonstrated that pesticides (Chlorpyrifos, Diazinon, and Carbofuran) could be adsorbed 

on the low-cost GAC generated from local products (bamboo and coconut shell) at the 

pilot-scale upgraded from a typical drinking water treatment plant (WTP) in Vietnam [97]. 

However, a major set-back pertains to GAC saturation overtime when all of its available 

adsorption sites could not bound with either organic matters and/or microorganisms [43]. 

Consequently, frequent regeneration or continuous dosing of GAC are needed to renew the 

adsorption capacity [75], [98], leading to high operational costs. To overcome such 

limitation, the biological activated carbon (BAC) process, which is transformed from GAC 

after a long operation period, has received much attention [39], [43], [75], [99]. This 

process uses GAC as filtration media to physically remove undesired matters. As the GAC 

media is gradually exhausted, microbial colonization is developed on the surface of the 

media [43]. This naturally occurring biofilm can biodegrade a wide variety of contaminants 

such as organic carbon, organic/inorganic substances, and disinfection by-products 

precursors [39], [43], [44]. In this way, the service life of the BAC bed could be extended 

from 6-12 months to several years [43], [79]. The pesticide removals using the BAC process 

were reported in [75], [70], [76], [77], in which the removal mechanism was thought to be 

simultaneous adsorption and biodegradation. The biotransformation of persistent 

compounds such as pesticides at trace level is possibly due to the co-metabolism, in which 

pesticides might be biodegraded by non-specific enzymes generated by the primary 

substrate metabolism [67]. Some parameters such as the type of activated carbon, hydraulic 

retention time, and backwashing regime on the performance of BAC process [29]; however, 
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a critical role of ammonia-oxidizing organism (AOO) in the enhancement of 

micropollutants removal in nitrifying activated sludge of wastewater treatment [71]–[74]  

was focused in this study. However, there is still questionable if the nitrifying biofilms 

could remove the pesticides in drinking water treatment.   

Nitrifying expanded-bed filter using BAC media is widely used at the pretreatment of 

drinking water in Japan and recently installed at the pilot and full-scale in several WTPs in 

Vietnam to remove NHx-N, dissolved manganese, and organic substances [62]. Because 

the process focuses on the biological activities rather than the adsorption of media, the spent 

GAC could be used without regeneration or frequent adding of virgin adsorbent, making 

this process a very cost-effective option. In addition to the treatment efficiency for NHx-N 

and organics that were previously demonstrated [44], this study aimed to investigate the 

possibility of degrading the pesticides of the reactor. Based on the prominent results in the 

full-scale reactor receiving river water, the reactor was implemented in the laboratory to 

study the pesticide removal mechanism and the contribution of nitrifying bacteria to the 

removal efficiency.  
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7.2. MATERIALS AND METHODS 

7.2.1. Monitoring campaigns for the full-scale and lab-scale reactor 

As for the full-scale reactor, the monitoring of pesticide removals was carried out in the 

rainy season for 7 days. Eighteen pairs of influent and effluent water samples were taken 

at AM 8:00, AM 12:00, and PM 16:00 every day, aiming to investigate the representative 

samples in different moments of a day for pesticide analysis. The organic and nitrogenous 

pollutions were also monitored, and the results were shown in section 5.3.3. 

In the lab-scale reactor, the reactor was continuously fed with synthetic influent water 

composed of 1 mgN/L as ammonium nitrogen, 0.5 mgP/L as phosphate, 3-5 mg DOC/L 

mixed from acetone and ethanol, pesticides solution at the range of ng/L, and dechlorinated 

tap water in 2 months. The pesticide stock solution was prepared in acetone and kept in an 

amber glass bottle at room temperature. The influent and effluent samples were collected 

every 2 to 3 days for pesticide analysis. Similarly, DO, and NHx-N were also monitored to 

check the biomass activity in the reactor. When the biomass was stably developed on the 

BAC granules, a series of batch experiments were carried out to examine the pesticide 

removal mechanisms. The first batch experiment aimed to estimate the contribution of 

microbial activity to the pesticide removal using a microbial inhibitor. A series of 

Erlenmeyer flasks of 500 mL were filled with solution similar to the influent in the 

continuous experiment. Fresh BAC was taken from the lab-scale reactor and washed by 

deionized tap water several times to remove the remaining substrates. The wet BAC was 

placed on a paper to remove the water attached to the surface, then weighted 10 g before 

putting it in each mesh bag. In the first group, where the microbial activity was promoted, 

the BAC bags were placed into the flasks, and oxygen gas was continuously injected. In 

the second group, which inhibited the biomass, together with the BAG bags, 500 mg/L of 

sodium azide was added in, and nitrogen gas was continuously purged. The third group of 

control flasks was designed as the inhibited flasks without the presence of BAC. For better 
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contact between the biomass and substrates, all the flasks were operated under gentle 

stirring. The samples were taken for pesticides and NHx-N analysis at the starting time in 

the controlled flasks, and after 1, 2, 3 and 4 hours of the experiment for the other flasks. 

The first batch experiment was carried out in triplicate. The second batch experiment aimed 

at investigating the association of the nitrification reaction rate to the pesticide removals. 

While the controlled flasks were designed exactly as mentioned above, in two groups of 

experimental flasks the NHx-N concentrations were varied at 1 and 5 mgN/L and oxygen 

gas was continuously injected. Rather than changing the NHx-N as above, the third batch 

experiment aimed at estimating the impact of biomass concentration on the pesticide 

removals by using different BAC amounts of 10 g and 30 g. The statistical analysis was 

carried out for the data obtained from the triplicated batch experiments using a 

programming language R developed by the R Core team (CRAN project) [100]. 

7.2.2. Studied pesticides 

In this research, eight pesticides from different classes that are frequently used in a wide 

range of crops in Vietnam were selected for monitoring. The occurrence of these pesticides 

was reported in [34] in Chanh Duong River in 2011. Among them, two pesticides Atrazine 

and Chlorpyrifos are listed in the Vietnamese National technical regulation on Domestic 

Water Quality (QCVN 01-1:2018/BYT) for allowable concentrations of 100 and 30 μg/L, 

respectively. The list of targeted pesticides and some of their physical properties were 

presented in Table 15. 
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Table 15. Some physical characteristics of targeted pesticides and maximum allowable limits in drinking water regulations 

No Pesticide Class Chemical formula 

 

Molecular 
weight 
(g/mol) 

Octanol-
Water 

Partition 
Coefficient 
log Kow

♣ 

Maximum 
allowable limit 

(μg/L) 

1 Atrazine 1,3,5-triazine C8H14ClN5 215.69 2.5 1001,2, 33, 0.14 

2 Fenobucard Carbamate C12H17NO2 207.27 2.79 0.14 

3 Flutolanil Carboxamide  C17H16F3NO2 323.31 3.7 0.14 

4 Isoprothiolane Dithiolane C12H18O4S2 290.39 3.3 0.14 

5 Chlorpyrifos Organophosphate C9H11Cl3NO3PS 350.57 4.7 301,2, 0.14 

6 Fipronil Fiprole C12H4Cl2F6N4OS 437.14 4 0.14 

7 Fenbuconazole  Triazole C19H17ClN4 336.82 3.23 0.14 

8 Buprofezin  Unclassified C16H23N3SO 305.44 4.3 0.14 

♣:  The Pesticide Manual: a world compendium [101] 

1:  National technical regulation on Domestic Water Quality (QCVN01-1:2018/BTY), Ministry of Health, Vietnam.  

2:  Guidelines for Drinking-water Quality, WHO (2017).  

3:  National Primary Drinking Water Regulation, EPA (2009) 

4:  Proposal for a revised drinking water directive, European Commission (2018): maximum concentration of 0.1 μg/L for individual 
pesticide and of 0.5 μg/L for total pesticides
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7.2.3. Analytical procedures 

As for the pesticides, the glass sampling bottles were prewashed by acetone, purified water, 

and the water samples. After collecting, 500 mL of water sample was filtered by glass-fiber 

filters (Whatman, 47 mm, Grade GF/F, prewashed with purified water, and dried at 105 C 

in 3 hours). The filtrate was passed through a PS-2 Sep-Pak cartridge (Waters Associates, 

USA, preconditioned with acetone, methanol, and purified water) at the flow rate of 10 

mL/min, then finished by adding 20 mL of purified water. The cartridges were stored at 4 

C and delivered to the laboratory for further analysis. The cartridges were dried by air for 

1 hour. They were eluted by 5 mL of acetone, then concentrated to 1 mL under a gentle 

nitrogen stream. Next, 5 mL of hexane was added, and the concentration continued until 

the eluate volume was reduced to 0.9 mL. Finally, the eluates were spiked with 100 μL of 

internal standards solution (10 μg/mL, Sigma-Aldrich, Japan) before being analyzed using 

the Gas Chromatography-Mass Spectrometry (GC-MS, QP-2100 Plus, Shimadzu, Japan). 

The measurement conditions of GC-MS can be referred to in [102]. As for the continuous 

and batch experiments of the lab-scale reactor, the pesticide analysis was carried out with 

the same procedure as mentioned above. Duplicated samples were taken and the average 

values were reported for data analysis. 
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7.3. RESULTS AND DISCUSSION 

7.3.1. Pesticide removals in the full-scale reactor 

As mentioned in section 5.3.3, the water quality was degraded during the first 3 days and 

then significantly improved in the last 4 days due to the release of freshwater from Luoc 

River. As shown in Figure 51 , the average influent DO was found to be 5.50 (SD=0.56) 

mgO2/L, while the NHx-N concentration was relatively high at around 4.27 (SD=0.94) 

mgN/L between day 0 and day 3, and then dropped to about 1.58 (SD=1.28) mgN/L in the 

remaining day. The biological activities of the BAC bed was described in 5.3.3, in which 

about 0.76 (SD=0.38) mgN/L and 2.81 (SD=1.51) mgCOD/L were removed in the first 3 

days due to limited influent DO and almost removed in the last 4 days when DO was 

sufficient [44]. The nitrifying expanded-bed filter could remove some pesticides to a certain 

extent, as indicated in Figure 52. Four pesticides, which were Flutolanil, Buprofezin, 

Chlorpyrifos and Fenobucard were removed at 82% (SD=6.03), 55% (SD=14.50), 54% 

(SD=18.31), and 52% (SD=12.77), respectively. The other pesticides were not 

considerably removed at removal rates lower than 50%. Comparing to those regulated in 

Vietnamese drinking water standard, the concentrations of Atrazine and Chlorpyrifos were 

lower than the threshold values. However, the pesticides Atrazine, Fenbuconazole and 

Isoprothiolane were found at elevated concentrations of 1,000 ng/L, 6,000 and 400 ng/L 

respectively, which were far higher than their reported values in Chanh Duong River in 

2011 [34].   
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Figure 51. Influent and effluent dissolved oxygen (a) and ammonium (b) in the full-

scale reactor 
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Figure 52. Influent and effluent pesticides and removal efficiencies in the full-scale reactor in the rainy season in Vinh Bao WTP (red circle 

= influent, white triangle = effluent, bar = removal efficiency)  
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In this full-scale, it was unclear if the pesticides were removed due to adsorption or 

biodegradation. As adsorption is principally an exchange process, it is largely influenced 

by the physicochemical characteristics of both adsorbent which was BAC and the 

adsorbates, which were the pesticides. As for the BAC bed, there were opposing viewpoints 

related to its adsorption capacity over time. Some researchers believed that the physical 

adsorption capacity of BAC would be exhausted after 2 to 3 months [79], or after six months 

of operation [43]. However, others proved that adsorption in BAC was still partly 

responsible for micro-pollutants removal after four years of filtration [75]. In this study, the 

life-service of the BAC bed reached to more than 6 years at the time of the experiment, and 

it was unable to tell if there were still available adsorption sites on the BAC surface. For 

the pesticides, it was reported that the adsorption capacity could be enhanced in case (i) the 

small molecular size or low molecular weight, (ii) hydrophobic molecule, expressed by 

high Octanol-water distribution coefficient (log Kow) and (iii) the electrostatic interactions 

with the GAC surface [41]. As shown in Table 1, all the pesticides could be considered as 

hydrophobic (log Kow > 2). However, there was no correlation between the removals of the 

pesticides and the log Kow. A similar lack of correlation between the physicochemical 

properties of the pesticides and their adsorption onto GAC was previously reported at a 

very diluted concentration (ng/L) [75]. Therefore, it was difficult to evaluate the adsorption 

of those pesticides based on the obtained results in this study. 

In the dynamic simulation of the biological activities in the reactor, the available DO was 

recognized as a critical factor controlling the activities of nitrifiers and heterotrophs in the 

biofilm. However, no correlation could be drawn from the pesticide removals and DO 

consumption. As related to the micropollutants, previous studies have observed their higher 

removals when the nitrifying activated sludge system working at higher nitrogen loading 

rate (> 1 gNHx-N/gVSS.d) [71], [72]. Because the micropollutants often presented at trace 

level which were insufficient to sustain the biomass growth, their removals were probably 



CHAPTER 7. REMOVAL MECHANISMS OF PESTICIDES IN THE NITRIFYING 

EXPANDED-BED REACTOR 

155 

 

due to the action of ammonium monooxygenase enzyme through the cometabolism of the 

main substrates [72]. In this study, no correlation was found between the pesticide removals 

and the influent NHx-N. Even though the role of nitrifiers could not be confirmed, it should 

be noted that the reactor was operated at much lowered nitrogen rate comparing to those 

reported in wastewater treatment. Furthermore, as indicated in the simulation, the actitivity 

of nitrifiers were rather limited due to the dominance of the heterotrophs in the biofilm at 

limited DO condition. Therefore, further studies and experimental evidence should be 

conducted under laboratory-controlled conditions to reveal the degradation pathway of 

pesticides in the nitrifying expanded-bed filter. 

Another factor might explain the pesticide removals in the field study. As demonstrated in 

[103], the pesticides might adsorb on the suspended solids (e.g. clay particles) and colloids 

presented in the river water. Additionally, a good correlation between removals of 

micropollutants by adsorption to the kaolin particles and their logKow values were 

demonstrated in laboratory-condition, indicating the contribution of water turbidity to the 

micropollutants removal efficiencies [63]. In this study, the total suspended solids 

concentration was found around 54.0 (SD=13.22) mg/L during the monitoring campaign 

[44]. All the four pesticides with removal rates higher than 50% also have high values of 

log Kow, highlighting the possibility of adsorption onto the surface of suspended solids 

while no more accessible adsorption sites could be offered from the BAC bed.  

7.3.2. Pesticide removals in the lab-scale reactor 

7.3.2.1. Continuous experiment 

As mentioned above, there was biomass developed on the used BAC at the start-up period 

in the lab-scale experiment. As shown in the bottom of Figure 53, there was about 5 

mgO2/L consumed at day 0 and a small amount of NHx-N was removed. After 10 days of 

acclimation, the influent NHx-N of 1.11 (SD=0.13) mgN/L was removed entirely, and about 

7.81 (SD=0.26) mgO2/L was stably consumed. Because the DO consumption for 
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nitrification was stoichiometrically 4.57 mgO2/L for 1 mgN, it was believed that both 

nitrifiers and heterotrophs bacteria were stably settled onto the BAC media.  

 

  

 

Figure 53. Influent and effluent dissolved oxygen (a) and ammonium (b) in the lab-

scale reactor for pesticide removal monitoring  

Regarding the pesticides, a very high removal was observed during the first several days. 

However, as shown in Figure 54, the removal efficiencies were gradually decreased. After 

66 days of the experiment, most of the pesticide could not be removed or having removal 

rates lower than 20%. In the same period, better removal rates of around 40% were observed 

for Fenbuconazole and Buprofezin. Regarding the increasing trend of the effluent pesticides, 

it was speculated that the pesticide removals of Fenbuconazole and Buprofezin would 

reduce further as the experiment continued. While the activities of microorganisms were 

confirmed, the decreasing removal of the pesticides suggested that their removals might 

due to adsorption rather than biodegradation. It was likely that there were very limited 

adsorption sites on the BAC media after 2 months of the continuous experiment. To study 

the pesticide removal mechanisms, a series of batch experiments was carried out to evaluate 

the contribution of biomass to pesticide degradation.
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 Figure 54. Influent and effluent pesticides and removal efficiencies in the lab-scale reactor (red circle = influent, white triangle = 

effluent, bar = removal efficiency) 

 



CHAPTER 7. REMOVAL MECHANISMS OF PESTICIDES IN THE NITRIFYING 

EXPANDED-BED REACTOR 

158 

 

7.3.2.2. Batch experiments: Contribution of biomass to pesticide removals  

In the first batch experiment, the use of 500 mg/L NaN3 successfully inhibited the biomass 

activities, as shown in Figure 55 (a), where the influent NHx-N was kept almost constant 

during 4 hours of the experiment in control and inhibited flasks. In the non-inhibited flasks, 

as the DO was continuously purged in, the influent of 1 mg/L of NHx-N was completely 

removed at the end of the batch experiment. As indicated in Figure 56, most of the 

pesticides showed no significant difference (p-value < 0.05) between the control, inhibited, 

and non-inhibited flasks in triplicated batch tests (Table 16). Further, the variation of 

pesticide concentrations in time were minor, except for Chlorpyrifos and Buprofezin. The 

results were consistent with those observed in the continuous experiment, confirming that 

the bacteria can not degrade the targeted pesticides and the removals would stop when the 

BAC media were saturated. As for Chlorpyrifos and Buprofezin, their concentrations were 

decreased in time, as proven by the highlighted p-values. However, higher degree of decline 

was observed when BAC media were present. It was noticeable that the log Kow were 4.7 

and 4.3 for Chlorpyrifos and Buprofezin, which are the highest values among those of 

targeted pesticides, suggesting the possibility of their adsorption onto the BAC media. 

 

Figure 55. Ammonia concentrations in the batch experiments 
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Table 16 Statistical analysis for pesticide concentrations in triplicated batch 

experiment.  

  P value  

No Pesticide  1h 2h 3h 4h 

1 Atrazine 0.11 0.59 0.89 0.45 

2 Fenobucard 0.19 0.22 0.82 0.62 

3 Flutolanil 0.19 0.67 0.09 0.17 

4 Isoprothiolane 0.14 0.70 0.10 0.11 

5 Chlorpyrifos 0.09 0.16 0.06 0.02 

6 Fipronil 0.13 0.51 0.49 0.32 

7 Fenbuconazole 0.11 0.63 0.48 0.01 

8 Buprofezin 0.12 0.07 0.01 0.001 
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Figure 56. Influent and effluent pesticides and removal efficiencies in the lab-scale reactor (reported data = average value of triplicate 

measurements) 

 



 

161 

 

In the second and the third batch experiments, the nitrifiers activities were improved when 

the influent NHx-N was increased from 1 to 5 mgN/L, or the weight of BAC media was 

increased from 10 to 30 g BAC, as seen in Figure 55 (b) and Figure 55 (c). However, neither 

changing the nitrification rates nor the biomass concentration induced any considerable 

influence on the pesticide removals. As shown in Figure 57, after 4 hours of the batch 

experiments, the pesticide concentrations were not significantly different in the control and 

experimental flasks. The observed maximum differences were around 20% for Flutolanil, 

Isoprothiolane, and Fenbuconazole.  While the role of nitrifiers in improving the removals 

of micropollutants including pesticides in nitrifying activated sludge system [71]–[74], 

their insignificant contribution to the pesticide removals observed in this study might due 

to the different biomass composition in oligotrophic biofilm compared to those in 

wastewater treatment. Again, only Chlorpyrifos and Buprofezin showed a consistent 

decrease of concentrations in time. As for the others, the slight variations of concentration 

might be due to the analytical errors and instrument sensitivity, which were acceptable at 

these ranges of concentration.  

From the results obtained in the batch experiments, the pesticide removals in the nitrifying 

expanded-bed reactor using BAC media was revealed. The adsorption was thought to be 

the main removal pathway of the pesticides. The used BAC media showed good pesticide 

removal efficiencies at the first beginning; however, most of the removals were gradually 

decreased to lower than 20% after two months of continuous operation. Although the 

nitrifiers were effective in removing the NHx-N, their contribution to pesticide removals 

was rather limited. Therefore, the removals of some pesticides observed in the field reactor 

might result from the adsorption on the suspended solids in the influent water or the biofilm 

media in the reactor.  
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Figure 57. Pesticide ratios after 4 hours of batch experiment with variations of 

ammonia and biological activated carbon weight (Ct and C0: concentrations of 

experimental and control flasks at 4h) 
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7.4. CONCLUSIONS 

In this study, the pesticide occurrence and removals were monitored in a full-scale 

nitrifying expanded-bed reactor using BAC media. Although the recorded concentrations 

were relatively low comparing to regulated thresholds, detailed monitoring programs on 

pesticides is required at water utility taking water from pesticides related water sources. 

The full-scale reactor receiving river water could remove four pesticides, which were 

Flutolanil, Buprofezin, Chlorpyrifos, and Fenobucard at removal rates of 82%, 55%, 54%, 

and 52%, respectively. 

While previous studies have reported the critical role of nitrifiers on the pesticide removals 

in wastewater treatment, this research successfully demonstrated that the nitrifying 

expanded-bed reactor using BAC media was not effective in removing the pesticides in 

drinking water treatment. In the controlled laboratory conditions, the batch experiments 

using microbial inhibitors or changing the nitrification rates and biomass concentrations 

showed insignificant differences in the removals of trace pesticides. Consequently, the 

adsorption onto BAC media was the main removal pathway for pesticides, which was 

quickly saturated after two months of operation. The obtained results highlighted the need 

to apply a more efficient and cost-effective technology targeting pesticide removals in 

drinking water treatment. 
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 
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8.1. MAIN FINDINGS OF THE RESEARCH 

This study investigated the pretreatment of NHx-N and micropollutants in drinking water 

plants using the nitrifying expanded-bed reactor with biological activated carbon media. 

The key findings of the research were as follows: 

1. Among existing technologies to remove NHx-N and micropollutants from drinking water, 

an up-flow biologically activated filter using activated carbon media appeared to be a 

suitable option regarding the treatment efficiency, cost-effectiveness, and simple operation. 

2. A combined biofilm and biological model with Peterson matrix and reaction rates for 

two-step nitrification was developed on IFAS object in GPS-X software. The continuity of 

the proposed model was systematically checked and reserved 

3. A physical model was developed to express an expanded-bed reactor using granular 

activated carbon media. A tanks-in-series model composed of 11 cell tanks, incorporated 

with an internal recycle flow of media, successfully demonstrated the physical and 

hydraulic properties of the reactor. The homogenization of the media over the expanded-

bed height was achieved at the media concentration factor of 1,000 and the internal recycle 

flow equaled to 0.001Q. The influence of media distribution on the attached biomass was 

also evaluated.  

4. The combined biofilm and biological model was applied for NHx-N and organic removal 

in the pretreatment of drinking water. Based on the calibration of five datasets of both rivers 

and synthetic water, a single set of kinetic and stoichiometric parameters for 

AOO/NOO/OHO was elaborated that successfully demonstrated the biofilm performance, 

which could be used as default in designing water treatment with low-strength NHx-N and 

organics. The specific rates of biofilm attachment, detachment, and internal solids 

exchange between biofilm layers were also examined in both filtration and backwashed 

cycles. A graphical guidance was provided with an empirical equation to estimate the 
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required dissolved oxygen to totally remove influent NHx-N at different concentration and 

temperature ranges. The nitrifying expanded-bed reactor was able to remove NHx-N and 

organics to some extent, depending on the influent concentration of the pollutants and DO. 

5. The sensitivity analysis of numerical calculations and operational parameters on the 

calculation results was carried out. 

6. The pesticide removal mechanisms in the nitrifying expanded-bed reactor were revealed. 

Adsorption appeared to be the main removal pathway, while the limited contribution of 

microorganisms to the pesticide degradation was observed. The pesticide removals 

observed in the full-scale reactor were possibly due to the adsorption onto the suspended 

solids particles in the influent water or to the biofilm media in the reactor.  
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8.2. RECOMMENDATIONS FOR FUTURE STUDIES 

Based on these findings, the following topics could be develop in the future: 

1. In this study, the media was simulated to be distributed evenly in the expanded-bed 

reactor. In the other circumstances, the media distribution in each compartment could be 

differentiated following the evolution of pollutants along the stream, or other specific 

design purposes. Using the proposed physical model with internal recycle flow with media, 

the equations which allows to calculate the media concentration in each compartment in 

their interrelation will be of beneficial for the designers.   

2. The current configuration of the nitrifying expanded-bed reactor was not designed for 

dealing with high concentrations of NHx-N and organics, or low concentration of DO in the 

water influent. As observed in the field monitoring in Vinh Bao WTP in rainy season, the 

intake water quality might be relatively poor and significant varied in a short period of time. 

More design options could be proposed to provide better reactor performance in the case 

of shock loading. For instance, the reactor could be designed into a multi-series reactor 

where aeration was conducted at the effluent of the reactor to maintain DO for the 

subsequent reactor. Simulations of the new configuration would help to visualize the 

reactor response under shock loading situations.  

3. The sensitivity analysis in the modeling aims at validating the model results and 

identifying the parameters that have the greatest impact on the model prediction. Based on 

the results of the sensitivity analysis, useful guidelines could be provided to determine new 

experiments or data collection, or to explore operational strategies to optimize the reactor 

performance. At present, the IFAS object was not equipped with the sensitivity analysis 

function in the GPS-X software, possibly due to the complexity of the object and the 

function itself. In the future update of GPS-X, the sensitivity analysis could be carried out. 

4. In the future, further studies should demonstrate the possibility of the nitrifying 

expanded-bed reactor to remove the THMs precursors (see Annex). In addition to the 



CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 

168 

 

natural dissolved organic compounds, the NHx-N and organic nitrogenous substances 

removal in the influent water was also be uptake, resulted in the reduction of N-DBPs 

formation. However, the knowledge of the dominant microbial species involved in the 

biodegradation of DBPs, or the microorganisms involved in the cycling of nitrogen in the 

expanded-bed reactor is still limited. A greater understanding on how the operating 

conditions, such as filter media, empty bed contact time, backwashing and chemical 

addition could be beneficial on improving the DBPs removals in the nitrifying expanded-

bed reactor [104].   
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1. POSSIBILITY OF TRIHALOMETHANE PRECURSORS REMOVAL IN THE 

NITRIFYING EXPANDED-BED REACTOR 

1.1. INTRODUCTION 

Chlorination is a well-developed and widely applied process in water disinfection because 

of its cost-effectiveness, broad spectrum germicidal capacity, and simple practice [105]. 

However, chlorine oxidants also react with natural dissolved organic matters (DOM), such 

as humic and fulvic acids, leading to the formation of harmful and carcinogenic disinfection 

byproducts (DBPs). The chlorination DBPs include a wide range of halogenated and 

nonhalogenated organic compounds. Trihalomethane (THMs), a group of halogenated 

compounds, were the first class of DBPs identified in chlorinated drinking water in the 

1970s [104], [106]. THMs are volatile and halogenated organic compounds, including four 

main compounds of chloroform (CHCl3), dibromochloromethane (CHBr2Cl), 

bromodichloromethane (CHBrCl2), and bromoform (CHBr3). The THMs comprise the 

major portion of the mass of halogenated DBPs and have been regulated in both 

international and national drinking water standards. In the Guidelines for drinking water 

quality, the WHO proposed separate values of 0.3, 0.1, 0.06, and 0.1 mg/L for CHCl3, 

CHBr2Cl, CHBrCl2, and CHBr3, respectively [16]. Those values were adopted in the 

Vietnamese drinking water standard [17]. In Japan and the EU, the regulation for THMs 

established the maximum permissible combined concentration of 0.1 mg/L [107], [108].   

Recently, the interest in nitrogenous disinfection byproducts (N-DBPs) has been increased 

due to several reasons. First, the drinking water sources in many regions worldwide are 

gradually degraded with nitrogenous contaminants, which served as the sources for N-

DBPs. Second, even present at lower concentrations, N-DBPs are significantly more toxic 

and have several hundred times higher cancer potency than regulated THMs [109].  

However, most of these N-DBPs are not yet regulated, and the health significance of these 

occurrences requires further investigation. While there were no clear relationships between 

N-DBPs formation and organic nitrogen in the pre-disinfection water, N-DBP 
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concentrations were significantly correlated with dissolved organic carbon (DOC) and 

NHx-N [110]. 

Biologically activated filters were designed to remove DOM, NHx-N, and other 

contaminants in the water. Therefore, it is also possible to eliminate a fraction of 

biodegradable organic matters, thus preventing a reaction with chlorine to form DBPs. In 

the literature, the performance of biofiltration for DBP precursor removal depends on the 

concentration of attached biomass and precursor adsorption to filter media. The high 

concentration of biomass attached to the GAC media, as well as its rough and porous 

surface structure, offered a better reduction of trihalomethane formation potential 

(THMFP) compared to sand and anthracite materials. For example, biofiltration can 

decrease the THMFP from 80 mg/L to 71 or 68 mg/L for anthracite/sand or GAC/sand dual 

media fitler at the empty bed contact time of 4.5 minutes, respectively [104]. In another 

study, it was found that 30 % of the THM precursors were removed on BAC biofilter 

through long-term biodegradation. In general, the removal of THM precursors by 

biologically active GAC parallels the removal of DOC [106].  

As shown in CHAPTER 5, the nitrifying expanded-bed reactor could remove the organic 

matter and NH4-N to a certain extent, leading to possible reductions of the formation of 

THMs and N-DBPs. However, due to limited experimental conditions in the field study, a 

primary assessment on the reduction of chlorine dosage was carried out in the laboratory 

of Vinh Bao WTP on freshwater samples. Next, the same set of samples were stored and 

delivered to Japan for THMFP measurement. The production of N-DBPs was not yet 

analyzed in this monitoring campaign.   

Rather than the DOC, previous studies suggested that UV absorbance is a good predictor 

of a water’s tendency to form THMs [106]. Therefore, the analysis at UV absorbance of 

260 nm (E260) was also conducted on the fresh samples and stored samples to estimate the 

loss of THM precursors during the storage and delivery process.  
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1.2. MATERIALS AND METHODS 

In Vinh Bao WTP, five representative paired samples were taken in a day with 2 hours of 

an interval, at 8h, 10h, 12h, 14h, and 16h. Different doses of chlorine in the form of NaOCl 

solution were added to 100 mL of water samples. Using the digital residual chlorine tester 

(Tacmina, Japan) and the free chlorine N,N-diethyl-p-phenylenediamine (DPD) sachet 

reagents, the residual free chlorine (R-Cl2) was measured at the time of addition, after 1 

hour, and after 24 hours. The amount which resulted in 1 mg/L of free chlorine after 24 

hours was used for the evaluation. 

The analysis followed a Japanese protocol carried out at Water Quality Research 

Laboratory, Kitakyushu Water and Sewerage Bureau. The method was summarized as 

follows: 

Table 17. Analysis protocol for THMFPs 

Step Content 

Step 1 Adjust the water pH from 6.8 to 7.2 

Step 2 Add NaOCl solution  

Step 3 Incubate samples at 20oC in 1 hour, measure the R-Cl2 

Step 4 Add more NaOCl if needed 

Step 5 Incubate samples at 20oC in 24 hours 

Step 6 Measure the R-Cl2, assuring the obtained value is from 1 to 2 mgCl2/L 

Step 7 Add ascorbic acid to remove R-Cl2  

Step 8 Measure THMs by the Purge and Trap GC-MS 

Two groups of samples were designed to evaluate the loss of THMFP during storage and 
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delivery. In the first group, freshwater samples were treated from step 1 to step 6 to estimate 

the dose of chlorine to create 1 mgCl2/L. The analysis of THMFPs was not carried out for 

those samples. In the second group, the fresh samples were stored for seven days, and the 

analysis from step 1 to step 8 was carried out at Anou WTP. 

The on-site E260 analysis was carried out using a spectrophotometer in Vinh Bao WTP. 

The analysis on 7-day stored samples was conducted in the laboratory of the University of 

Kitakyushu using a spectrophotometer (Hitachi, U-5100, Japan).   

1.3. RESULTS AND DISCUSSION 

As shown in Figure 58, good linearity was obtained for the R-Cl2 concentrations in five 

paired fresh samples. Based on this, the doses of applied NaOCl to obtain 1 mgR-Cl2/L 

after 24 hours of quenching were interpolated. As indicated in Table 18, different reduction 

rates were observed on five paired samples. On average, it was estimated that about 40% 

of chlorine dosing could be saved as raw water passed through the nitrifying expanded-bed 

reactor. Correspondingly, the THMs precursors were also removed to some extent in the 

reactor.  

Table 18. The dose of NaOCl applied on fresh samples to obtain 1 mgR-Cl2 after 24h 

of quenching in Vinh Bao WTP 

 Dose NaOCl (mg/L)  

Time (hour) 8 10 12 14 16 Average 

Influent 0.10 0.11 0.13 0.11 0.11 0.11 

Effluent 0.08 0.06 0.06 0.07 0.06 0.07 

Reduction rate 17.7% 39.7% 54.5% 41.0% 46.5% 39.9% 

In contrast, poor linearity was obtained for the R-Cl2 concentrations in 7-day stored samples, 
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as shown in Figure 59. Therefore, the interpolated values to obtain 1 mgR-Cl2/L after 24 

hours of quenching were unreliable and could not be used to estimate the chlorine saving. 

The THMFP analysis of the 7-day stored samples was shown in Table 19. Comparing to 

the Japanese water quality standard of 0.1 mg/L for THMs, the THMFP concentrations in 

all water samples were lower than the thresholds. On average, about 37.4% of THMs were 

removed by the nitrifying expanded-bed reactor.  

Table 19. Trihalomethane formation potential analysis for 7-day stored sample in 

Vinh Bao WTP 

 Time (hour) 8 10 12 14 16 

Influent (mg/L) 

THMs 0.059 0.051 0.052 0.051 0.047 

CHCL3 0.052 0.043 0.043 0.043 0.04 

CHBrCL2 0.006 0.007 0.008 0.007 0.006 

CHBr2CL 0.001 0.001 0.001 0.001 0.001 

CHBr3 <0.001 <0.001 <0.001 <0.001 <0.001 

Effluent (mg/L) 

THMs 0.032 0.03 0.036 0.032 0.032 

CHCL3 0.026 0.024 0.029 0.025 0.025 

CHBrCL2 0.005 0.005 0.006 0.006 0.006 

CHBr2CL 0.001 0.001 0.001 0.001 0.001 

CHBr3 <0.001 <0.001 <0.001 <0.001 <0.001 

Reduction rate (%) T-THM  45.8  41.2  30.8  37.3  31.9  

* Detection limits: 0.001 mg/L 

However, regarding the poor linearity obtained in their R-Cl2, it was speculated that the 

quality of water samples deteriorated to some extent during the seven days of storage. 

Additionally, during the delivery, the THMs precursors might also escape from the 

collected bottles. 

A similar situation was observed for the E260 analysis. On average, the removal 

efficiencies among the five samples was found to be 16 %, as indicated in the following 
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table: 

Table 20: The E260 analytical results on fresh samples in Vinh Bao WTP 

Time (hour) 8 10 12 14 16 Average 

Influent (ABS/cm) 0.051 0.044 0.04 0.041 0.038 0.043 

Effluent (ABS/cm) 0.037 0.041 0.033 0.032 0.035 0.036 

Reduction rate 27% 7% 18% 22% 8% 16% 

However, after 7-day of storage, the removal efficiencies of E260 in all samples were 

negative, which suggested deterioration of water quality.  

Unfortunately, there was no collected information regarding the N-DBPs production in this 

study. Future studies focusing on the removal efficiency and degradation mechanisms of 

THMs and N-DBPs precursors might enlighten their fates in the nitrifying expanded-bed 

reactor.     
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Figure 58. Free residual chlorine of fresh influent and effluent samples after 0, 1 and 24 hours of quenching in Vinh Bao WTP (rhombus = 

0h, square = 1h, triangle = 24h)  
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Figure 59. Free residual chlorine of 7-day stored influent and effluent samples after 0, 1 and 24 hours of quenching in laboratory 

(rhombus = 0h, square = 1h, triangle = 24h) 
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1.4. CONCLUSIONS 

In this chapter, a preliminary assessment was carried out to evaluate the THMFP reduction 

by the nitrifying expanded-bed reactor. The analysis indicated that there was an average 

reduction of 37.4% of applied chlorine dosages to obtain 1 mg/L of R-Cl2 in the influent 

and effluent samples. The concentrations of humic and fulvic acids which served as THMs 

precursors in the influent water were also decreased by 16%. Therefore it was speculated 

that the THMFP could be removed to some extent in the reactor. It should be noted that the 

sample storage and delivery could affect the sample quality. The THMFP analysis should 

be carried out as soon as possible to provide accurate results.   

Regarding the nitrogenous pollutions in water sources, the chlorination disinfection may 

also produce N-DBPs together with THMs. Future studies focusing on the removal 

efficiency and degradation mechanisms of THMs and N-DBPs precursors might enlighten 

their fates in the nitrifying expanded-bed reactor.     

 

 

 

 

  



0. ANNEX 

188 

 

2. COMPLETE INFORMATION FOR GPS-X SIMULATION 

In total, five distinct simulation were carried out corresponding to five different datasets of: 

(1). Lab-scale start-up period 

(2). Lab-scale continuous operation 

(3). Pilot-scale Hoa Phu WTP 

(4). Full-scale Vinh Bao WTP (D) 

(5). Full-scale Vinh Bao WTP (R) 

The reactors from (1) to (3) have the same physical properties, while the reactors from (4) 

to (5) are identical. 

2.1. MODEL LAYOUT 

The simulations used a similar model layout as follows:  

 

 

 

 

Figure 60. Model layout for five simulations  

2.2. INPUT MENU 

2.2.1. INFLUENT COMPOSITION 

The influent composition defined in the input menu was critical, because they defined the 

initial biomass concentration at the time t = 0. The following data was obtained through the 

trials-errors approach
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Content Lab-scale start-up 

period 

Lab-scale 

continuous 

operation 

Pilot-scale Hoa 

Phu WTP 

Full-scale Vinh 

Bao WTP (D) 

Full-scale Vinh 

Bao WTP (R) 

  

 

  

 

 Figure 61. Influent composition menu for five simulations
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2.2.2. PHYSICAL MENU 

 

Figure 62. Physical menu for five simulations 

2.2.3. OPERATIONAL MENU 

 

Figure 63. Operational menu for five simulations 
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2.2.4. MASS TRANSPORT MENU 

 

Figure 64. Mass transport menu for five simulations 

2.2.5. KINETIC MENU 
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Figure 65. Kinetic menu for five simulations 
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2.3. SIMULATON SCENARIOS 

2.3.1. DATASET FOR LAB-SCALE START-UP PERIOD 

 

t snhcon1 sno1 snn1 so1 snh4 sno4 snn4 so4 snh1 temp

d mgN/L mgN/L mgN/L mgO2/L mgN/L mgN/L mgN/L mgO2/L mgN/L C

0 0.75 0.00 0.68 8.87 0.62 0.00 0.82 7.85 0.75 14.20

0.98 0.80 0.01 0.28 8.70 0.63 0.01 0.45 7.59 0.80 15.00

1.95 0.79 0.00 0.86 8.80 0.62 0.01 0.92 7.20 0.79 14.30

3 0.78 0.01 0.74 9.19 0.61 0.01 0.94 7.23 0.78 13.00

3.85 0.82 0.00 0.86 9.85 0.66 0.01 1.02 7.35 0.82 13.20

6 0.81 0.00 0.87 9.67 0.66 0.06 0.97 7.09 0.81 13.10

7.9 0.76 0.00 0.07 9.34 0.41 0.15 0.12 7.34 0.76 11.30

8.73 0.77 0.00 0.92 9.73 0.53 0.10 1.05 7.66 0.77 11.30

11.87 0.76 0.01 0.88 9.65 0.38 0.10 1.16 7.24 0.76 11.30

12.97 0.68 0.02 1.15 9.38 0.58 0.06 1.20 7.20 0.68 11.60

13.89 0.73 0.00 0.19 9.41 0.53 0.06 0.34 7.45 0.73 11.70

14.75 0.82 0.02 0.97 9.95 0.58 0.05 1.18 7.25 0.82 11.80

15.92 0.83 0.00 1.01 9.91 0.35 0.27 1.23 6.91 0.83 12.60

16.72 0.96 0.00 0.89 9.36 0.36 0.16 1.33 7.18 0.96 12.40

17.81 0.88 0.00 0.16 9.53 0.39 0.14 0.19 6.49 0.88 12.40

18.88 0.83 0.00 0.57 9.22 0.04 0.03 0.20 5.91 0.83 11.80

19.95 0.71 0.00 0.16 9.17 0.08 0.32 0.16 6.23 0.71 11.60

20.76 0.84 0.00 1.06 9.72 0.15 0.21 1.55 6.28 0.84 11.50

22 0.75 0.00 0.99 9.74 0.00 0.21 1.54 5.17 0.75 12.70

22.89 0.88 0.00 0.88 9.58 0.03 0.17 1.56 5.24 0.88 12.30

23.98 0.82 0.00 0.70 9.80 0.00 0.07 1.46 5.95 0.82 12.80

24.49 0.94 0.01 0.81 9.03 0.00 0.02 1.73 4.91 0.94 13.70

25.99 0.89 0.00 1.14 9.40 0.15 0.17 1.72 5.01 0.89 12.90

27.41 1.09 0.00 0.61 9.21 0.00 0.07 1.63 5.17 1.09 13.00

29.01 0.98 0.00 0.59 8.37 0.06 0.04 0.29 5.22 0.98 12.70

29.79 0.93 0.00 0.50 9.24 0.04 0.00 0.39 4.65 0.93 13.70

30.98 0.72 0.00 0.45 9.04 0.04 0.00 0.63 5.32 0.72 13.90

31.56 0.82 0.01 0.02 8.39 0.00 0.00 0.91 5.62 0.82 15.70

32.98 0.65 0.00 0.84 8.36 0.00 0.00 1.49 4.78 0.65 15.70

33.89 0.92 0.00 0.74 9.05 0.02 0.00 0.16 4.91 0.92 13.50

34.41 0.94 0.00 0.60 8.76 0.06 0.01 0.85 4.60 0.94 13.20

35.99 0.92 0.00 0.67 8.91 0.02 0.00 0.23 5.10 0.92 14.50

36.43 0.90 0.00 0.44 9.00 0.05 0.00 1.30 6.22 0.90 14.30

37.72 0.88 0.01 0.49 8.87 0.11 0.00 0.29 5.63 0.88 14.70

38.45 1.00 0.01 0.91 8.85 0.03 0.00 0.07 5.58 1.00 14.70

39.97 0.76 0.00 0.34 8.70 0.00 0.00 0.47 5.65 0.76 14.90

42.02 0.92 0.04 0.63 9.00 0.00 0.00 1.58 5.82 0.92 13.70

43 0.94 0.00 0.21 9.10 0.00 0.00 0.74 5.58 0.94 13.50

43.43 0.92 0.00 0.24 9.15 0.00 0.01 1.16 5.72 0.92 13.50

44.92 0.63 0.00 0.75 9.00 0.00 0.00 1.38 5.76 0.63 13.80

45.47 0.73 0.00 0.51 8.90 0.05 0.01 1.18 6.05 0.73 14.60

47.01 0.67 0.00 0.30 8.82 0.05 0.03 0.90 5.92 0.67 14.90

47.64 1.20 0.00 0.22 8.70 0.01 0.00 1.40 4.88 1.20 13.20

48.67 0.82 0.00 0.58 9.01 0.06 0.00 1.35 5.29 0.82 12.90

49.42 0.92 0.00 0.13 8.80 0.02 0.00 1.03 4.77 0.92 13.80

51.91 0.93 0.00 0.12 9.03 0.01 0.00 0.87 4.96 0.93 14.90

52.52 0.94 0.00 0.74 8.33 0.05 0.00 0.16 4.66 0.94 16.60

53.95 0.92 0.02 0.35 8.73 0.02 0.00 1.27 5.35 0.92 16.20

54.43 0.73 0.00 0.46 8.79 0.00 0.01 0.35 4.78 0.73 16.10

55.94 0.87 0.00 0.50 8.39 0.00 0.01 1.36 4.71 0.87 16.80

57.9 0.73 0.00 0.42 8.82 0.04 0.00 0.28 4.49 0.73 14.80

58.92 0.97 0.00 0.55 8.84 0.04 0.00 1.48 4.73 0.97 14.80

59.49 1.04 0.01 0.12 8.90 0.06 0.00 1.11 5.25 1.04 15.20

60.43 0.98 0.00 0.57 8.91 0.09 0.00 1.46 4.61 0.98 15.20

61.66 1.09 0.01 0.80 8.58 0.01 0.01 0.28 5.00 1.09 15.20

62.44 0.77 0.00 0.14 8.76 0.02 0.00 0.89 4.89 0.77 15.10

63.42 0.66 0.00 0.66 8.86 0.01 0.00 1.31 4.50 0.66 14.60

64.75 0.92 0.00 0.46 8.30 0.02 0.00 1.36 4.70 0.92 15.80

66.77 0.92 0.00 0.81 8.78 0.05 0.00 0.06 4.60 0.92 16.70

67.75 0.84 0.00 0.54 8.52 0.08 0.00 0.21 4.50 0.84 16.60

68.72 1.04 0.00 0.71 8.51 0.00 0.00 0.33 4.61 1.04 16.50

69.43 0.92 0.00 0.55 8.26 0.04 0.01 0.32 4.59 0.92 16.40

70.69 1.11 0.00 0.54 8.20 0.08 0.00 0.50 4.28 1.11 17.10

71.77 1.09 0.00 0.35 8.61 0.06 0.00 0.69 4.22 1.09 16.10

73.37 0.92 0.00 0.25 8.50 0.02 0.00 1.15 4.73 0.92 16.80

74.98 0.87 0.00 0.42 8.97 0.07 0.00 1.23 4.44 0.87 17.10

75.8 1.01 0.00 0.66 8.90 0.09 0.00 0.26 4.48 1.01 17.30

76.47 0.94 0.00 0.39 8.70 0.09 0.01 1.24 4.72 0.94 18.70

78.77 0.84 0.00 0.45 8.80 0.03 0.00 1.26 4.96 0.84 18.40

79.9 0.88 0.02 0.42 8.10 0.00 0.01 0.48 4.76 0.88 17.50

80.36 0.81 0.01 0.28 8.85 0.01 0.01 0.53 4.47 0.81 17.40

81.93 0.79 0.01 0.67 8.60 0.02 0.01 1.45 4.53 0.79 18.30

82.85 1.07 0.00 0.22 8.40 0.02 0.00 1.27 4.81 1.07 18.50

84.96 0.76 0.00 1.21 8.85 0.08 0.00 1.88 4.69 0.76 18.40

92.83 0.81 0.00 0.12 8.70 0.00 0.00 0.93 5.97 0.81 18.30

95.96 0.90 0.00 0.44 8.50 0.00 0.00 1.34 4.59 0.90 20.20
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2.3.2. DATASET FOR LAB-SCALE CONTINOUS OPERATION 
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2.3.3. DATASET FOR PILOT-SCALE HOA PHU WTP 
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0.809 4.94 1.89 0.46 0.46 0.01 0.05 0.20 0.20 27.5

0.820 4.98 2.01 0.40 0.40 0.01 0.05 0.20 0.20 27.5

0.830 5.09 2.23 0.35 0.35 0.01 0.05 0.20 0.20 27.5

0.840 5.09 2.35 0.27 0.27 0.01 0.05 0.20 0.20 27.7

0.851 5.15 2.47 0.22 0.22 0.01 0.05 0.20 0.20 28.0

0.861 5.17 2.61 0.19 0.19 0.01 0.05 0.20 0.20 28.3

0.872 5.22 2.73 0.17 0.17 0.01 0.05 0.20 0.20 28.5

0.882 5.32 2.87 0.16 0.16 0.01 0.05 0.20 0.20 28.5

0.893 5.34 2.99 0.15 0.15 0.01 0.05 0.20 0.20 28.7

0.905 5.44 3.01 0.14 0.14 0.01 0.05 0.20 0.20 28.9

0.910 5.56 3.05 0.14 0.14 0.01 0.05 0.20 0.20 29.0

0.915 5.67 3.08 0.14 0.14 0.01 0.05 0.20 0.20 29.1

0.921 5.66 3.19 0.14 0.14 0.01 0.05 0.20 0.20 29.2

0.926 5.64 3.29 0.14 0.14 0.01 0.05 0.20 0.20 29.3

0.931 5.75 3.28 0.14 0.14 0.01 0.05 0.20 0.20 29.4

0.936 5.85 3.26 0.18 0.18 0.01 0.05 0.20 0.20 29.4

0.942 5.81 3.29 0.24 0.24 0.01 0.05 0.20 0.20 29.5

0.947 5.76 3.31 0.25 0.25 0.01 0.05 0.20 0.20 29.5

0.952 5.79 3.36 0.25 0.25 0.01 0.05 0.20 0.20 29.6

0.957 5.81 3.41 0.29 0.29 0.01 0.05 0.20 0.20 29.6

0.963 5.82 3.36 0.34 0.34 0.01 0.05 0.20 0.20 29.7

0.967 5.83 3.31 0.31 0.31 0.01 0.05 0.20 0.20 29.7

0.973 5.84 3.31 0.28 0.28 0.01 0.05 0.20 0.20 29.7

0.978 5.84 3.31 0.22 0.22 0.01 0.05 0.20 0.20 29.7

0.983 5.79 3.30 0.18 0.18 0.01 0.05 0.20 0.20 29.8

0.988 5.73 3.29 0.17 0.17 0.01 0.05 0.20 0.20 29.8

0.994 5.67 3.22 0.15 0.15 0.01 0.05 0.20 0.20 29.9

0.999 5.60 3.14 0.16 0.16 0.01 0.25 3.00 3.00 29.9

1.004 5.57 3.17 0.06 0.06 0.01 0.25 3.00 3.00 30.0

1.009 5.53 3.20 0.07 0.07 0.01 0.25 3.00 3.00 30.0

1.015 5.50 3.08 0.07 0.07 0.01 0.25 3.00 3.00 30.1

1.020 5.47 2.95 0.07 0.07 0.01 0.25 3.00 3.00 30.1

1.025 5.38 2.92 0.08 0.08 0.01 0.25 3.00 3.00 30.1

1.030 5.28 2.88 0.08 0.08 0.01 0.25 3.00 3.00 30.1

1.035 5.22 2.80 0.09 0.09 0.01 0.25 3.00 3.00 30.1

1.040 5.16 2.71 0.09 0.09 0.01 0.25 3.00 3.00 30.1

1.046 5.12 2.61 0.08 0.08 0.01 0.25 3.00 3.00 30.1

1.051 5.08 2.50 0.08 0.08 0.01 0.25 3.00 3.00 30.0

1.056 5.06 2.49 0.08 0.08 0.01 0.25 3.00 3.00 30.1

1.061 5.04 2.48 0.07 0.07 0.01 0.25 3.00 3.00 30.2

1.067 5.02 2.46 0.07 0.07 0.01 0.25 3.00 3.00 30.2

1.072 4.99 2.43 0.07 0.07 0.01 0.25 3.00 3.00 30.2

1.077 4.94 2.37 0.07 0.07 0.01 0.25 3.00 3.00 30.2

1.082 4.88 2.30 0.07 0.07 0.01 0.25 3.00 3.00 30.2

1.088 4.83 2.31 0.07 0.07 0.01 0.25 3.00 3.00 30.3

1.092 4.78 2.32 0.07 0.07 0.01 0.25 3.00 3.00 30.3

1.098 4.76 2.25 0.07 0.07 0.01 0.25 3.00 3.00 30.4

1.103 4.73 2.17 0.06 0.06 0.01 0.25 3.00 3.00 30.4

1.108 4.71 2.11 0.06 0.06 0.01 0.25 3.00 3.00 30.4

1.113 4.68 2.05 0.06 0.06 0.01 0.25 3.00 3.00 30.3

1.119 4.64 2.09 0.06 0.06 0.01 0.25 3.00 3.00 30.3

1.124 4.60 2.12 0.06 0.06 0.01 0.25 3.00 3.00 30.3

1.129 4.57 2.08 0.06 0.06 0.01 0.25 3.00 3.00 30.2

1.134 4.54 2.04 0.06 0.06 0.01 0.25 3.00 3.00 30.0

1.140 4.54 2.00 0.07 0.07 0.01 0.25 3.00 3.00 29.8

1.145 4.53 1.96 0.07 0.07 0.01 0.25 3.00 3.00 29.5

1.155 4.50 2.17 0.07 0.07 0.01 0.25 3.00 3.00 29.2

1.165 4.52 2.07 0.07 0.07 0.01 0.25 3.00 3.00 29.4

1.176 4.48 2.05 0.06 0.06 0.02 0.25 3.00 3.00 29.0

1.197 4.43 2.03 0.07 0.07 0.02 0.25 3.00 3.00 29.1

1.218 4.38 2.05 0.09 0.09 0.02 0.25 3.00 3.00 28.9

1.239 4.35 2.17 0.07 0.07 0.02 0.25 3.00 3.00 28.7

1.259 4.36 2.23 0.09 0.09 0.02 0.25 3.00 3.00 28.6

1.280 4.31 2.13 0.17 0.17 0.02 0.25 3.00 3.00 28.4

1.301 4.28 1.68 0.25 0.25 0.02 0.25 3.00 3.00 28.4

1.322 4.33 1.66 0.27 0.27 0.02 0.25 3.00 3.00 28.3

1.343 4.34 1.54 0.30 0.30 0.01 0.25 3.00 3.00 28.2

1.364 4.35 1.53 0.32 0.32 0.01 0.25 3.00 3.00 28.2

1.384 4.50 1.58 0.33 0.33 0.01 0.18 1.00 1.00 28.1

1.405 4.53 1.72 0.31 0.31 0.01 0.18 1.00 1.00 28.0

1.426 4.61 1.90 0.28 0.28 0.01 0.18 1.00 1.00 28.0

1.447 4.71 2.12 0.22 0.22 0.01 0.18 1.00 1.00 28.0

1.468 4.78 2.39 0.18 0.18 0.02 0.18 1.00 1.00 27.9

1.489 4.74 2.44 0.15 0.15 0.02 0.18 1.00 1.00 27.8

1.509 4.66 2.48 0.14 0.14 0.02 0.18 1.00 1.00 27.8

1.530 4.51 2.38 0.14 0.14 0.02 0.18 1.00 1.00 27.8

1.551 4.45 2.29 0.14 0.14 0.02 0.18 1.00 1.00 27.7

1.572 4.35 2.19 0.14 0.14 0.02 0.18 3.00 3.00 27.8

1.593 4.26 2.12 0.15 0.15 0.02 0.18 3.00 3.00 27.8

1.614 4.26 2.18 0.15 0.15 0.02 0.18 3.00 3.00 27.7

1.634 4.25 2.09 0.16 0.16 0.02 0.18 3.00 3.00 27.7

1.655 4.24 2.03 0.17 0.17 0.02 0.20 3.00 3.00 27.7

1.676 4.13 1.88 0.21 0.21 0.02 0.20 3.00 3.00 27.6

1.697 4.10 1.66 0.26 0.26 0.02 0.20 3.00 3.00 27.6

1.718 4.04 1.52 0.30 0.30 0.02 0.20 3.00 3.00 27.6

1.739 4.06 1.36 0.36 0.36 0.02 0.20 3.00 3.00 27.6

1.759 4.11 1.29 0.42 0.42 0.02 0.20 3.00 3.00 27.5

1.780 4.17 1.29 0.43 0.43 0.02 0.20 3.00 3.00 27.5

1.801 4.23 1.25 0.45 0.45 0.02 0.20 2.00 2.00 27.5

1.822 4.32 1.32 0.29 0.29 0.02 0.20 2.00 2.00 27.6

1.843 4.43 1.55 0.19 0.19 0.02 0.20 2.00 2.00 27.7

1.864 4.48 1.81 0.10 0.10 0.02 0.20 2.00 2.00 28.0

1.884 4.66 2.03 0.07 0.07 0.02 0.20 2.00 2.00 28.5

1.905 3.99 7.53 0.01 0.01 0.04 0.20 2.00 2.00 27.8

1.926 3.96 4.28 0.03 0.03 0.06 0.20 2.00 2.00 28.4

1.947 3.77 2.36 0.05 0.05 0.03 0.20 2.00 2.00 28.5

1.968 3.50 2.07 0.07 0.07 0.03 0.20 2.00 2.00 29.1

1.989 3.40 1.89 0.08 0.08 0.03 0.20 2.00 2.00 29.5

2.009 3.39 1.77 0.10 0.10 0.02 0.20 0.10 0.10 29.4

2.030 3.33 1.79 0.18 0.18 0.02 0.15 0.10 0.10 29.6
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2.051 3.28 1.71 0.13 0.13 0.02 0.15 0.10 0.10 29.9

2.072 3.30 1.66 0.16 0.16 0.02 0.15 0.10 0.10 30.1

2.093 3.57 2.03 0.10 0.10 0.02 0.15 0.10 0.10 30.2

2.114 3.74 2.16 0.11 0.11 0.02 0.15 0.10 0.10 30.4

2.134 4.57 2.69 0.14 0.14 0.02 0.15 0.10 0.10 30.0

2.155 4.89 2.65 0.09 0.09 0.02 0.15 0.10 0.10 30.2

2.176 5.03 2.77 0.04 0.04 0.02 0.15 0.10 0.10 30.4

2.197 5.09 3.08 0.05 0.05 0.02 0.15 0.10 0.10 30.1

2.218 5.01 3.18 0.06 0.06 0.02 0.15 0.10 0.10 29.8

2.239 5.11 3.27 0.05 0.05 0.02 0.15 0.10 0.10 29.6

2.259 5.11 3.34 0.04 0.04 0.02 0.25 2.00 2.00 29.5

2.280 4.89 3.07 0.04 0.04 0.02 0.25 2.00 2.00 29.3

2.301 4.45 2.84 0.03 0.03 0.02 0.25 2.00 2.00 29.0

2.322 4.45 2.31 0.03 0.03 0.02 0.25 2.00 2.00 28.8

2.343 3.90 2.43 0.04 0.04 0.02 0.25 2.00 2.00 28.6

2.364 3.86 2.05 0.07 0.07 0.02 0.25 2.00 2.00 28.4

2.384 3.90 2.24 0.05 0.05 0.02 0.25 2.00 2.00 28.3

2.405 3.86 2.16 0.04 0.04 0.02 0.25 2.00 2.00 28.2

2.426 3.93 2.14 0.07 0.07 0.02 0.25 2.00 2.00 28.2

2.447 3.98 2.23 0.06 0.06 0.02 0.25 2.00 2.00 28.2

2.468 3.90 2.21 0.08 0.08 0.02 0.25 2.00 2.00 28.2

2.489 3.83 2.12 0.07 0.07 0.02 0.25 2.00 2.00 28.2

2.509 3.61 2.06 0.09 0.09 0.02 0.25 2.00 2.00 28.2

2.530 3.45 1.87 0.12 0.12 0.02 0.25 2.00 2.00 28.2

2.551 3.15 1.70 0.13 0.13 0.02 0.25 2.00 2.00 28.1

2.572 3.00 1.50 0.14 0.14 0.02 0.25 2.00 2.00 28.1

2.593 2.97 1.37 0.10 0.10 0.02 0.25 2.00 2.00 28.0

2.614 2.89 1.33 0.08 0.08 0.02 0.25 2.00 2.00 27.9

2.634 2.85 1.23 0.10 0.10 0.02 0.25 2.00 2.00 27.9

2.655 2.86 1.15 0.09 0.09 0.02 0.25 2.00 2.00 27.9

2.676 3.01 1.25 0.08 0.08 0.02 0.15 0.50 0.50 27.8

2.697 3.17 1.59 0.07 0.07 0.02 0.15 0.50 0.50 27.6

2.718 3.39 1.82 0.10 0.10 0.02 0.15 0.50 0.50 27.5

2.739 3.66 2.13 0.10 0.10 0.02 0.15 0.50 0.50 27.5

2.759 4.42 2.11 0.09 0.09 0.02 0.15 0.50 0.50 27.4

2.780 4.59 2.44 0.08 0.08 0.02 0.15 0.50 0.50 27.5

2.801 4.63 2.48 0.06 0.06 0.02 0.15 0.50 0.50 27.4

2.822 4.27 2.34 0.05 0.05 0.02 0.25 1.50 1.50 27.3

2.843 3.86 2.32 0.04 0.04 0.02 0.25 1.50 1.50 27.3

2.864 4.14 2.28 0.05 0.05 0.02 0.25 1.50 1.50 27.2

2.884 4.16 2.42 0.07 0.07 0.02 0.25 1.50 1.50 27.2

2.905 4.14 2.37 0.06 0.06 0.02 0.25 1.50 1.50 27.8

2.926 4.25 2.42 0.07 0.07 0.02 0.25 1.50 1.50 28.0

2.947 4.28 2.41 0.04 0.04 0.02 0.25 1.50 1.50 28.3

2.968 4.26 2.31 0.12 0.12 0.03 0.25 1.50 1.50 28.3

2.989 4.23 2.36 0.11 0.11 0.03 0.25 1.50 1.50 28.6

3.009 4.19 2.26 0.09 0.09 0.03 0.25 1.50 1.50 29.3

3.030 4.11 2.18 0.08 0.08 0.03 0.25 1.50 1.50 29.9

3.051 4.13 2.18 0.16 0.16 0.03 0.25 1.50 1.50 29.9

3.072 4.09 2.19 0.13 0.13 0.03 0.25 1.50 1.50 30.0

3.093 4.18 2.19 0.11 0.11 0.03 0.25 1.50 1.50 30.3

3.114 4.65 7.03 0.08 0.08 0.03 0.25 1.50 1.50 34.3

3.134 4.92 4.53 0.07 0.07 0.03 0.25 1.50 1.50 30.6

3.155 4.86 3.27 0.07 0.07 0.03 0.25 1.50 1.50 30.7

3.176 4.97 3.04 0.08 0.08 0.03 0.25 1.50 1.50 30.7

3.197 5.11 3.01 0.09 0.09 0.03 0.25 1.50 1.50 30.6

3.218 5.04 2.99 0.10 0.10 0.03 0.25 1.50 1.50 30.7

3.239 5.06 2.99 0.08 0.08 0.03 0.25 1.50 1.50 30.6

3.259 5.01 2.96 0.09 0.09 0.03 0.25 1.50 1.50 30.5

3.280 5.01 2.99 0.12 0.12 0.03 0.25 1.50 1.50 30.1

3.301 4.74 2.97 0.14 0.14 0.03 0.25 3.00 3.00 29.8

3.322 4.49 2.77 0.15 0.15 0.03 0.25 3.00 3.00 29.4

3.343 4.20 2.63 0.17 0.17 0.03 0.25 3.00 3.00 29.1

3.364 3.89 2.23 0.17 0.17 0.03 0.25 3.00 3.00 28.9

3.384 3.68 1.93 0.18 0.18 0.03 0.25 3.00 3.00 28.8

3.405 3.57 1.95 0.19 0.19 0.03 0.25 3.00 3.00 28.7

3.426 3.56 1.73 0.22 0.22 0.03 0.25 3.00 3.00 28.6

3.447 3.62 1.89 0.20 0.20 0.03 0.25 1.50 1.50 28.5

3.468 3.68 1.87 0.19 0.19 0.03 0.25 1.50 1.50 28.4

3.489 3.68 1.91 0.18 0.18 0.03 0.25 1.50 1.50 28.3

3.509 3.69 1.92 0.17 0.17 0.03 0.25 1.50 1.50 28.3

3.530 3.61 1.87 0.18 0.18 0.03 0.15 1.50 1.50 28.2

3.551 3.38 1.72 0.22 0.22 0.03 0.15 1.50 1.50 28.2

3.572 3.29 1.66 0.20 0.20 0.03 0.15 1.50 1.50 28.2

3.593 3.16 1.54 0.21 0.21 0.03 0.15 1.50 1.50 28.2

3.614 3.17 1.52 0.22 0.22 0.03 0.15 1.50 1.50 28.1

3.634 3.14 1.52 0.17 0.17 0.03 0.15 1.50 1.50 28.0

3.655 2.95 1.38 0.18 0.18 0.03 0.15 1.50 1.50 27.9

3.676 3.15 1.40 0.20 0.20 0.03 0.15 0.05 0.05 27.8

3.697 3.32 1.55 0.20 0.20 0.03 0.15 0.05 0.05 27.7

3.718 3.67 1.72 0.19 0.19 0.03 0.15 0.05 0.05 27.6

3.739 4.24 2.01 0.23 0.23 0.03 0.05 0.05 0.05 27.6

3.759 4.08 2.32 0.25 0.25 0.04 0.05 0.05 0.05 27.5

3.780 4.20 2.45 0.38 0.38 0.03 0.05 0.05 0.05 27.5

3.801 4.18 2.54 0.37 0.37 0.03 0.05 0.05 0.05 27.5

3.822 5.22 2.55 0.36 0.36 0.03 0.05 0.05 0.05 27.5

3.843 4.66 2.49 0.32 0.32 0.03 0.05 0.05 0.05 27.5

3.864 4.66 2.71 0.28 0.28 0.03 0.05 0.05 0.05 27.4

3.884 4.38 2.55 0.26 0.26 0.03 0.05 0.05 0.05 27.5

3.905 4.78 2.48 0.24 0.24 0.03 0.05 0.05 0.05 27.6

3.926 4.15 2.41 0.22 0.22 0.03 0.05 0.05 0.05 28.4

3.947 4.17 2.20 0.15 0.15 0.03 0.05 0.05 0.05 28.8

3.968 4.11 2.06 0.14 0.14 0.03 0.05 0.05 0.05 29.6

3.989 4.11 2.17 0.13 0.13 0.02 0.05 0.05 0.05 29.3

4.009 4.11 2.05 0.13 0.13 0.02 0.05 0.05 0.05 29.4

4.030 4.16 7.39 0.15 0.15 0.02 0.20 0.05 0.05 31.2

4.051 4.09 3.08 0.12 0.12 0.02 0.20 0.05 0.05 30.0

4.072 4.20 2.66 0.09 0.09 0.02 0.20 0.05 0.05 30.1

4.093 4.19 2.74 0.09 0.09 0.02 0.20 0.05 0.05 30.1

4.114 4.17 2.89 0.08 0.08 0.02 0.20 0.05 0.05 30.2

4.134 4.23 2.89 0.07 0.07 0.02 0.20 0.05 0.05 30.3

4.155 5.02 2.86 0.06 0.06 0.02 0.20 0.05 0.05 30.8

4.176 4.35 2.92 0.05 0.05 0.02 0.20 0.05 0.05 31.0

4.197 4.93 2.85 0.06 0.06 0.02 0.20 0.05 0.05 30.4

4.218 5.05 3.48 0.06 0.06 0.02 0.20 0.05 0.05 30.0

4.239 5.13 3.58 0.06 0.06 0.02 0.20 0.05 0.05 29.8

4.259 5.05 3.32 0.06 0.06 0.02 0.20 3.00 3.00 29.6

4.280 5.01 3.39 0.08 0.08 0.02 0.25 3.00 3.00 29.4

4.301 4.88 3.43 0.09 0.09 0.02 0.25 3.00 3.00 29.3

4.322 4.74 3.05 0.10 0.10 0.02 0.25 3.00 3.00 29.1

4.343 4.46 2.97 0.12 0.12 0.02 0.25 3.00 3.00 28.9

4.364 4.38 2.86 0.13 0.13 0.03 0.25 3.00 3.00 28.8

4.384 4.76 2.66 0.15 0.15 0.03 0.25 3.00 3.00 28.7

4.405 3.94 2.19 0.20 0.20 0.03 0.25 3.00 3.00 28.7

4.426 4.54 2.23 0.26 0.26 0.03 0.25 3.00 3.00 28.6

4.447 3.80 2.34 0.24 0.24 0.03 0.25 3.00 3.00 28.6

4.468 3.84 2.37 0.17 0.17 0.03 0.25 3.00 3.00 28.6

4.489 3.84 2.33 0.17 0.17 0.03 0.25 3.00 3.00 28.6

4.509 3.86 2.28 0.18 0.18 0.03 0.25 3.00 3.00 28.6
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2.3.4. DATASET FOR FULL-SCALE VINH BAO WTP (D) 

 

t snhcon1 snh1 snd1 so1 sscon1 snh4 so4 temp

d mgN/L mgN/L mgN/L mgO2/L mgCOD/L mgN/L mgO2/L C

std 0.51 0.51 0.50 7.57 8.00 0.15 0.03 20.70

0.000 0.51 0.51 0.75 7.57 8.00 0.15 0.03 20.70

0.010 0.30 0.30 0.75 7.60 8.00 0.05 0.05 20.70

0.021 0.22 0.22 0.75 7.65 8.00 0.03 0.10 20.70

0.031 0.19 0.19 0.75 7.67 8.00 0.02 0.11 20.70

0.042 0.17 0.17 0.75 7.65 8.00 0.02 0.05 20.70

0.052 0.17 0.17 0.75 7.68 8.00 0.01 0.03 20.70

0.063 0.15 0.15 0.75 7.73 8.00 0.01 0.11 20.80

0.073 0.14 0.14 0.75 7.73 8.00 0.01 0.03 20.80

0.083 0.18 0.18 0.75 7.72 8.00 0.01 0.18 20.80

0.094 0.20 0.20 0.75 7.74 8.00 0.01 0.00 20.80

0.104 0.22 0.22 0.75 7.74 8.00 0.02 0.20 20.80

0.115 0.24 0.24 0.75 7.75 8.00 0.03 0.04 20.80

0.125 0.25 0.25 0.75 7.71 8.00 0.04 0.12 20.80

0.138 0.26 0.26 0.75 7.67 8.00 0.05 0.20 20.80

0.148 0.21 0.21 0.75 7.58 8.00 0.03 0.35 20.80

0.158 0.19 0.19 0.75 7.59 8.00 0.02 0.51 20.80

0.169 0.17 0.17 0.75 7.58 8.00 0.01 0.33 20.80

0.179 0.16 0.16 0.75 7.61 8.00 0.01 0.33 20.80

0.190 0.15 0.15 0.75 7.60 8.00 0.01 0.35 20.80

0.200 0.15 0.15 0.75 7.58 8.00 0.01 0.31 20.80

0.210 0.14 0.14 0.75 7.54 8.00 0.01 0.27 20.80

0.221 0.14 0.14 0.50 7.55 8.00 0.01 0.28 20.70

0.231 0.14 0.14 0.50 7.52 8.00 0.01 0.35 20.70

0.242 0.13 0.13 0.50 7.51 8.00 0.01 0.46 20.70

0.252 0.10 0.10 0.50 7.52 8.00 0.01 0.52 20.70

0.262 0.10 0.10 0.50 7.50 8.00 0.01 0.34 20.70

0.273 0.10 0.10 0.50 7.47 8.00 0.01 0.54 20.70

0.283 0.10 0.10 0.50 7.47 8.00 0.01 0.47 20.70

0.294 0.11 0.11 0.50 7.45 8.00 0.01 0.54 20.70

0.304 0.11 0.11 0.50 7.47 8.00 0.01 0.59 20.70

0.315 0.11 0.11 0.50 7.47 8.00 0.01 0.57 20.70

0.325 0.11 0.11 0.50 7.44 8.00 0.01 0.67 20.70

0.335 0.11 0.11 0.50 7.42 8.00 0.01 0.90 20.70

0.346 0.11 0.11 0.50 7.42 8.00 0.01 0.99 20.70

0.356 0.12 0.12 0.50 7.42 8.00 0.01 0.95 20.69

0.367 0.12 0.12 0.50 7.42 8.00 0.01 0.92 20.68

0.377 0.12 0.12 0.50 7.42 8.00 0.01 0.88 20.66

0.387 0.12 0.12 0.50 7.43 8.00 0.02 0.85 20.65

0.398 0.12 0.12 0.50 7.43 8.00 0.02 0.81 20.64

0.408 0.12 0.12 0.50 7.43 8.00 0.02 0.77 20.63

0.419 0.13 0.13 0.50 7.43 8.00 0.02 0.74 20.61

0.429 0.13 0.13 0.50 7.43 8.00 0.02 0.72 20.61

0.435 0.13 0.13 0.50 7.43 8.00 0.02 0.70 20.60

0.446 0.11 0.11 0.50 7.46 8.00 0.02 0.87 20.60

0.456 0.10 0.10 0.50 7.44 5.00 0.01 1.05 20.60

0.466 0.08 0.08 0.50 7.43 5.00 0.01 1.44 20.60

0.477 0.08 0.08 0.50 7.46 5.00 0.01 1.23 20.60

0.487 0.08 0.08 0.50 7.42 5.00 0.01 1.48 20.60

0.498 0.07 0.07 0.50 7.43 5.00 0.01 1.41 20.60

0.508 0.07 0.07 0.50 7.41 5.00 0.01 1.64 20.60

0.519 0.07 0.07 0.50 7.39 5.00 0.01 1.79 20.60

0.529 0.06 0.06 0.50 7.39 5.00 0.01 1.64 20.60

0.539 0.06 0.06 0.50 7.38 5.00 0.01 1.50 20.60

0.550 0.06 0.06 0.50 7.38 5.00 0.01 1.80 20.60

0.560 0.06 0.06 0.50 7.35 5.00 0.01 1.83 20.50

0.571 0.06 0.06 0.50 7.35 5.00 0.00 1.62 20.50

0.581 0.06 0.06 0.50 7.35 5.00 0.00 1.70 20.50

0.591 0.05 0.05 0.50 7.34 5.00 0.00 1.67 20.50

0.602 0.05 0.05 0.50 7.34 5.00 0.00 1.69 20.50

0.612 0.05 0.05 0.50 7.33 5.00 0.00 1.86 20.50

0.623 0.05 0.05 0.50 7.33 5.00 0.00 1.83 20.50

0.633 0.05 0.05 0.50 7.32 5.00 0.00 1.78 20.50

0.644 0.05 0.05 0.50 7.33 5.00 0.00 1.74 20.50

0.654 0.05 0.05 0.50 7.31 5.00 0.00 1.97 20.50

0.664 0.05 0.05 0.50 7.32 5.00 0.00 1.94 20.50

0.675 0.05 0.05 0.50 7.32 5.00 0.00 1.97 20.50

0.685 0.04 0.04 0.50 7.31 5.00 0.00 1.85 20.50

0.696 0.04 0.04 0.50 7.31 5.00 0.00 1.87 20.50

0.706 0.04 0.04 0.50 7.31 5.00 0.00 1.92 20.50

0.716 0.04 0.04 0.50 7.32 5.00 0.00 2.05 20.50

0.727 0.04 0.04 0.50 7.32 5.00 0.00 1.99 20.50

0.737 0.04 0.04 0.50 7.30 5.00 0.00 2.00 20.50

0.748 0.04 0.04 0.50 7.30 5.00 0.00 2.28 20.40

0.758 0.04 0.04 0.50 7.30 5.00 0.00 2.18 20.40

0.769 0.04 0.04 0.50 7.27 5.00 0.00 2.04 20.40

0.779 0.04 0.04 0.50 7.29 5.00 0.00 2.04 20.40

0.789 0.04 0.04 0.50 7.29 5.00 0.00 2.13 20.40

0.800 0.03 0.03 0.50 7.26 5.00 0.00 2.05 20.40

0.810 0.03 0.03 0.50 7.26 5.00 0.00 2.08 20.40

0.821 0.03 0.03 0.50 7.25 5.00 0.00 2.18 20.40

0.831 0.03 0.03 0.50 7.25 5.00 0.00 2.11 20.40

0.841 0.03 0.03 0.50 7.25 5.00 0.00 2.18 20.40

0.852 0.03 0.03 0.50 7.24 5.00 0.00 2.14 20.50

0.862 0.03 0.03 0.50 7.23 5.00 0.00 2.04 20.50

0.883 0.02 0.02 0.50 7.23 5.00 0.00 2.28 20.50

0.894 0.02 0.02 0.50 7.23 5.00 0.00 2.11 20.50

0.904 0.02 0.02 0.50 7.23 5.00 0.00 2.47 20.50

0.915 0.02 0.02 0.50 7.22 5.00 0.00 2.09 20.50

0.925 0.02 0.02 0.50 7.21 5.00 0.00 2.26 20.50

0.935 0.02 0.02 0.50 7.21 5.00 0.00 2.07 20.60

0.946 0.02 0.02 0.50 7.21 5.00 0.00 2.12 20.60

0.956 0.02 0.02 0.50 7.21 5.00 0.00 2.07 20.60

0.967 0.02 0.02 0.50 7.20 5.00 0.00 2.01 20.60

0.977 0.02 0.02 0.50 7.20 5.00 0.00 2.06 20.70

0.987 0.01 0.01 0.50 7.21 5.00 0.00 1.99 20.70

0.998 0.01 0.01 0.50 7.21 5.00 0.00 2.31 20.70

1.008 0.01 0.01 0.50 7.19 5.00 0.00 2.13 20.70
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1.019 0.01 0.01 0.50 7.19 5.00 0.00 2.07 20.70

1.029 0.01 0.01 0.50 7.20 5.00 0.00 2.37 20.80

1.040 0.02 0.02 0.50 7.20 5.00 0.00 2.08 20.80

1.050 0.02 0.02 0.50 7.21 5.00 0.00 2.09 20.80

1.060 0.02 0.02 0.50 7.21 5.00 0.01 2.05 20.90

1.071 0.02 0.02 0.50 7.22 5.00 0.01 2.09 20.90

1.081 0.02 0.02 0.50 7.21 5.00 0.01 2.10 20.90

1.092 0.02 0.02 0.50 7.24 5.00 0.01 2.14 20.90

1.102 0.03 0.03 0.50 7.24 5.00 0.02 2.25 20.90

1.112 0.03 0.03 0.50 7.24 5.00 0.02 2.01 20.90

1.121 0.03 0.03 0.50 7.23 5.00 0.02 2.08 20.90

1.132 0.02 0.02 0.50 7.23 5.00 0.01 2.05 21.00

1.142 0.02 0.02 0.50 7.25 5.00 0.01 2.06 21.00

1.152 0.02 0.02 0.50 7.26 5.00 0.01 2.13 21.00

1.163 0.01 0.01 0.50 7.26 5.00 0.01 2.19 21.00

1.173 0.01 0.01 0.50 7.27 5.00 0.00 2.37 21.00

1.184 0.01 0.01 0.50 7.27 5.00 0.00 2.19 21.00

1.194 0.01 0.01 0.50 7.28 5.00 0.00 2.20 21.00

1.204 0.01 0.01 0.50 7.27 5.00 0.00 2.36 21.00

1.215 0.01 0.01 0.50 7.27 5.00 0.00 2.30 21.00

1.225 0.01 0.01 0.50 7.30 5.00 0.00 1.94 21.00

1.236 0.01 0.01 0.50 7.28 5.00 0.00 2.00 21.00

1.246 0.01 0.01 0.50 7.29 5.00 0.00 2.17 21.00

1.257 0.01 0.01 0.50 7.30 5.00 0.00 2.41 21.00

1.267 0.01 0.01 0.50 7.30 5.00 0.00 2.25 21.00

1.277 0.01 0.01 0.50 7.29 5.00 0.00 1.91 21.00

1.288 0.01 0.01 0.50 7.29 5.00 0.00 2.16 21.00

1.298 0.01 0.01 0.50 7.28 5.00 0.00 2.13 21.00

1.309 0.02 0.02 0.50 7.27 5.00 0.00 2.06 21.00

1.325 0.03 0.03 0.50 7.26 5.00 0.00 2.00 21.00

1.335 0.04 0.04 0.50 7.28 5.00 0.00 2.25 21.00

1.345 0.05 0.05 0.50 7.27 5.00 0.00 2.09 21.00

1.356 0.11 0.11 0.50 7.23 5.00 0.00 2.05 21.00

1.366 0.12 0.12 0.50 7.23 5.00 0.00 2.02 21.00

1.377 0.12 0.12 0.50 7.24 5.00 0.00 2.07 21.00

1.387 0.12 0.12 0.50 7.22 5.00 0.00 2.12 21.00

1.397 0.12 0.12 0.50 7.21 5.00 0.00 1.86 21.00

1.408 0.12 0.12 0.50 7.30 5.00 0.00 1.74 21.00

1.418 0.12 0.12 0.50 7.24 5.00 0.00 1.69 21.00

1.429 0.13 0.13 0.50 7.22 5.00 0.00 1.75 21.00

1.439 0.13 0.13 0.50 7.23 5.00 0.00 1.84 21.00

1.450 0.13 0.13 0.50 7.23 5.00 0.00 1.79 21.00

1.460 0.11 0.11 0.50 7.22 5.00 0.00 1.80 21.00

1.470 0.10 0.10 0.50 7.22 5.00 0.00 1.77 21.00

1.481 0.08 0.08 0.50 7.21 5.00 0.00 1.79 21.00

1.491 0.08 0.08 0.50 7.22 5.00 0.00 1.75 21.00

1.502 0.08 0.08 0.50 7.20 5.00 0.00 1.84 21.00

1.512 0.07 0.07 0.50 7.20 5.00 0.00 2.01 21.00

1.522 0.07 0.07 0.50 7.17 5.00 0.00 1.71 21.00

1.533 0.07 0.07 0.50 7.17 5.00 0.00 1.73 21.00

1.543 0.06 0.06 0.50 7.16 5.00 0.00 1.81 21.00

1.554 0.06 0.06 0.50 7.16 5.00 0.00 1.93 21.00

1.564 0.06 0.06 0.50 7.14 5.00 0.00 2.05 21.00

1.575 0.06 0.06 0.50 7.15 5.00 0.00 1.96 20.90

1.585 0.06 0.06 0.50 7.13 5.00 0.00 1.68 20.90

1.595 0.06 0.06 0.50 7.11 5.00 0.00 1.83 20.90

1.606 0.05 0.05 0.50 7.10 5.00 0.00 1.87 20.90

1.616 0.05 0.05 0.50 7.10 5.00 0.00 1.72 20.90

1.627 0.05 0.05 0.50 7.07 5.00 0.00 2.02 20.90

1.637 0.05 0.05 0.50 7.08 5.00 0.00 1.74 20.90

1.647 0.05 0.05 0.50 7.08 5.00 0.00 1.70 20.90

1.658 0.05 0.05 0.50 7.05 5.00 0.00 1.81 20.90

1.668 0.05 0.05 0.50 7.05 5.00 0.00 1.67 20.90

1.679 0.05 0.05 0.50 7.09 5.00 0.00 1.60 20.90

1.689 0.05 0.05 0.50 7.11 5.00 0.00 1.53 20.90

1.700 0.04 0.04 0.50 6.87 5.00 0.00 1.53 20.9

1.710 0.04 0.04 0.50 6.82 5.00 0.00 1.54 20.9

1.720 0.04 0.04 0.50 6.77 5.00 0.00 1.01 20.9

1.731 0.04 0.04 0.50 6.77 5.00 0.00 0.99 20.9

1.741 0.04 0.04 0.50 6.75 5.00 0.00 1.59 20.9

1.752 0.04 0.04 0.50 6.75 5.00 0.00 1.54 20.9

1.762 0.04 0.04 0.50 6.77 5.00 0.00 1.20 20.9

1.772 0.04 0.04 0.50 6.74 5.00 0.00 1.22 20.9

1.783 0.04 0.04 0.50 6.72 5.00 0.00 1.13 20.9

1.793 0.04 0.04 0.50 6.71 5.00 0.00 1.45 20.9

1.804 0.04 0.04 0.50 6.71 5.00 0.00 0.96 20.9

1.814 0.03 0.03 0.50 6.66 5.00 0.00 1.24 20.9

1.825 0.03 0.03 0.50 6.66 5.00 0.00 1.44 20.9

1.835 0.03 0.03 0.50 6.66 5.00 0.00 1.05 20.9

1.845 0.03 0.03 0.50 6.68 5.00 0.00 1.30 20.9

1.856 0.03 0.03 0.50 6.62 5.00 0.00 1.25 20.9

1.866 0.03 0.03 0.50 6.62 5.00 0.00 1.50 21

1.877 0.03 0.03 0.50 6.61 5.00 0.00 1.28 21

1.887 0.01 0.01 0.50 6.64 7.00 0.00 1.51 21

1.897 0.01 0.01 0.50 6.66 7.00 0.00 1.23 21

1.908 0.01 0.01 0.50 6.64 7.00 0.00 1.39 21

1.918 0.01 0.01 0.50 6.66 7.00 0.00 1.06 21

1.929 0.01 0.01 0.50 6.64 7.00 0.00 1.26 21

1.939 0.01 0.01 0.50 6.64 7.00 0.00 1.56 21.1

1.950 0.01 0.01 0.50 6.64 7.00 0.00 1.70 21.1

1.960 0.01 0.01 0.50 6.63 7.00 0.00 1.59 21.1

1.970 0.01 0.01 0.50 6.65 7.00 0.00 1.46 21.1

1.981 0.01 0.01 0.50 6.68 7.00 0.00 1.43 21.1125

1.991 0.01 0.01 0.50 6.71 7.00 0.00 1.41 21.125

2.002 0.02 0.02 0.50 6.73 7.00 0.00 1.38 21.1375

2.012 0.02 0.02 0.50 6.76 7.00 0.00 1.35 21.15

2.022 0.02 0.02 0.50 6.79 7.00 0.01 1.32 21.1625

2.033 0.02 0.02 0.60 6.82 7.00 0.01 1.30 21.175

2.043 0.02 0.02 0.60 6.84 7.00 0.01 1.27 21.1875

2.054 0.02 0.02 0.60 6.87 7.00 0.01 1.24 21.2
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2.061 0.03 0.03 0.60 6.91 7.00 0.02 0.86 21.20

2.071 0.03 0.03 0.60 6.91 7.00 0.01 0.99 21.20

2.082 0.03 0.03 0.60 6.89 7.00 0.01 1.05 21.20

2.092 0.03 0.03 0.60 6.88 7.00 0.01 0.88 21.20

2.102 0.03 0.03 0.60 6.86 7.00 0.01 0.93 21.10

2.113 0.04 0.04 0.60 6.87 7.00 0.01 0.73 21.10

2.123 0.04 0.04 0.60 6.86 7.00 0.00 0.98 21.10

2.134 0.04 0.04 0.60 6.85 7.00 0.00 1.10 21.10

2.144 0.04 0.04 0.60 6.84 7.00 0.00 1.21 21.10

2.154 0.04 0.04 0.60 6.83 7.00 0.00 1.21 21.10

2.165 0.04 0.04 0.60 6.82 7.00 0.00 1.03 21.10

2.175 0.05 0.05 0.60 6.79 7.00 0.00 1.01 21.00

2.186 0.05 0.05 0.60 6.78 7.00 0.00 0.94 21.00

2.196 0.05 0.05 0.60 6.75 7.00 0.00 1.09 21.00

2.207 0.05 0.05 0.60 6.72 7.00 0.00 1.15 21.00

2.217 0.05 0.05 0.60 6.74 7.00 0.00 0.93 21.00

2.227 0.05 0.05 0.60 6.71 7.00 0.00 0.90 20.90

2.238 0.05 0.05 0.60 6.72 7.00 0.00 1.15 20.90

2.248 0.05 0.05 0.60 6.73 7.00 0.00 1.18 20.90

2.259 0.05 0.05 0.60 6.73 7.00 0.00 1.05 20.90

2.269 0.06 0.06 0.60 6.72 7.00 0.00 0.98 20.90

2.279 0.06 0.06 0.60 6.71 7.00 0.00 1.24 20.80

2.290 0.06 0.06 0.60 6.74 7.00 0.00 1.06 20.80

2.300 0.06 0.06 0.60 6.73 7.00 0.00 1.03 20.80

2.311 0.06 0.06 0.60 6.73 7.00 0.00 0.91 20.80

2.321 0.06 0.06 0.60 6.74 7.00 0.00 1.17 20.80

2.332 0.07 0.07 0.60 6.73 7.00 0.00 0.90 20.70

2.342 0.07 0.07 0.60 6.72 7.00 0.00 0.78 20.70

2.352 0.07 0.07 0.60 6.75 7.00 0.00 0.87 20.70

2.363 0.07 0.07 0.60 6.77 7.00 0.00 0.97 20.68

2.373 0.07 0.07 0.60 6.79 7.00 0.00 1.06 20.66

2.384 0.07 0.07 0.60 6.83 7.00 0.00 1.26 20.63

2.394 0.08 0.08 0.60 6.85 7.00 0.00 1.35 20.61

2.404 0.08 0.08 0.60 6.87 7.00 0.00 1.45 20.59

2.415 0.08 0.08 0.40 6.91 7.00 0.00 1.64 20.55

2.425 0.08 0.08 0.40 6.92 7.00 0.00 1.74 20.53

2.436 0.09 0.09 0.40 6.94 7.00 0.00 1.83 20.51

2.446 0.09 0.09 0.40 6.98 7.00 0.00 2.03 20.48

2.457 0.09 0.09 0.40 7.00 7.00 0.00 2.12 20.46

2.467 0.09 0.09 0.40 7.02 7.00 0.00 2.22 20.44

2.477 0.09 0.09 0.40 7.06 7.00 0.00 2.41 20.40

2.488 0.10 0.10 0.40 7.06 7.00 0.00 1.35 20.40

2.499 0.15 0.15 0.40 7.06 7.00 0.00 1.46 20.30

2.509 0.20 0.20 0.40 7.05 7.00 0.00 1.42 20.30

2.519 0.23 0.23 0.40 7.07 7.00 0.00 1.19 20.20

2.530 0.24 0.24 0.40 7.06 7.00 0.00 1.50 20.20

2.540 0.26 0.26 0.40 7.06 7.00 0.00 1.35 20.20

2.551 0.26 0.26 0.40 7.07 7.00 0.00 1.22 20.20

2.561 0.26 0.26 0.40 7.09 7.00 0.00 1.29 20.10

2.572 0.27 0.27 0.40 7.07 7.00 0.00 1.23 20.10

2.582 0.27 0.27 0.40 7.08 7.00 0.00 1.27 20.10

2.592 0.29 0.29 0.40 7.08 7.00 0.00 1.30 20.00

2.603 0.29 0.29 0.40 7.09 7.00 0.00 1.30 20.00

2.613 0.29 0.29 0.40 7.10 8.00 0.00 1.32 20.00

2.624 0.31 0.31 0.40 7.08 8.00 0.00 1.26 19.90

2.634 0.31 0.31 0.40 7.10 8.00 0.00 1.28 19.90

2.644 0.31 0.31 0.40 7.08 8.00 0.00 1.44 19.90

2.655 0.31 0.31 0.40 7.08 8.00 0.00 1.35 19.80

2.665 0.31 0.31 0.40 7.09 8.00 0.00 1.26 19.80

2.676 0.32 0.32 0.40 7.10 8.00 0.00 1.14 19.80

2.686 0.32 0.32 0.40 7.10 8.00 0.00 1.37 19.70

2.697 0.32 0.32 0.40 7.09 8.00 0.00 1.21 19.70

2.707 0.32 0.32 0.40 7.09 8.00 0.00 1.22 19.70

2.717 0.34 0.34 0.40 7.10 8.00 0.00 1.28 19.60

2.728 0.34 0.34 0.40 7.11 8.00 0.00 1.27 19.60

2.738 0.34 0.34 0.40 7.11 8.00 0.00 1.27 19.60

2.749 0.34 0.34 0.40 7.11 8.00 0.00 1.37 19.50

2.759 0.34 0.34 0.40 7.11 8.00 0.00 1.29 19.50

2.769 0.34 0.34 0.40 7.15 8.00 0.00 1.23 19.50

2.780 0.36 0.36 0.40 7.16 8.00 0.00 1.25 19.40

2.790 0.34 0.34 0.40 7.04 8.00 0.00 1.16 19.40

2.801 0.34 0.34 0.40 7.10 8.00 0.00 1.20 19.40

2.811 0.32 0.32 0.40 7.10 8.00 0.00 1.16 19.30

2.822 0.31 0.31 0.40 7.12 8.00 0.00 1.22 19.30

2.832 0.31 0.31 0.40 7.14 8.00 0.00 1.28 19.30

2.842 0.31 0.31 0.40 7.17 8.00 0.00 1.18 19.30

2.853 0.29 0.29 0.40 7.17 8.00 0.00 1.23 19.30

2.863 0.29 0.29 0.40 7.17 8.00 0.00 1.18 19.20

2.874 0.29 0.29 0.40 7.21 8.00 0.00 1.29 19.20

2.884 0.27 0.27 0.40 7.23 8.00 0.00 1.27 19.20

2.894 0.27 0.27 0.40 7.24 8.00 0.00 1.31 19.20

2.905 0.26 0.26 0.40 7.27 8.00 0.00 1.45 19.20

2.915 0.26 0.26 0.40 7.29 8.00 0.00 1.46 19.20

2.926 0.24 0.24 0.40 7.32 8.00 0.00 1.51 19.20

2.936 0.24 0.24 0.40 7.36 8.00 0.00 1.54 19.20

2.947 0.24 0.24 0.40 7.41 8.00 0.00 1.57 19.20

2.957 0.23 0.23 0.40 7.46 8.00 0.00 1.61 19.30

2.967 0.23 0.23 0.40 7.50 8.00 0.00 1.61 19.30

2.978 0.23 0.23 0.40 7.54 8.00 0.00 1.76 19.30

2.988 0.23 0.23 0.40 7.61 8.00 0.00 1.81 19.30

2.999 0.23 0.23 0.40 7.64 8.00 0.00 1.77 19.30

3.009 0.22 0.22 0.40 7.68 8.00 0.00 1.83 19.30

3.019 0.22 0.22 0.40 7.70 8.00 0.00 1.75 19.30

3.030 0.22 0.22 0.40 7.72 8.00 0.00 1.84 19.30

3.040 0.22 0.22 0.40 7.79 8.00 0.00 1.92 19.40

3.051 0.22 0.22 0.40 7.85 8.00 0.00 1.88 19.40

3.061 0.20 0.20 0.40 7.89 8.00 0.00 2.00 19.40

3.072 0.20 0.20 0.40 7.91 8.00 0.00 2.07 19.40

3.082 0.19 0.19 0.40 7.93 8.00 0.00 1.94 19.40

3.092 0.18 0.18 0.40 8.02 8.00 0.00 2.21 19.40

3.103 0.19 0.19 0.40 8.04 8.00 0.00 2.11 19.40
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72 1.80 1.80 0.00 1.07 6.12 36.56 22.56 5.00 9.04 1.50 0.00 2.83 0.23 0.00 36.56 5.00 30.30 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 10 10 10 10 10 10 10 10 10 10 10 45.6 9.04 36.6 -1 -1 35.5

73 1.36 1.36 0.00 1.27 6.37 39.08 19.08 5.00 8.92 0.78 0.27 1.58 0.26 22.24 39.08 5.00 30.40 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 10 10 10 10 10 10 10 10 10 10 10 48 8.92 33 26.4 4.16 35.5

74 1.66 1.66 0.00 1.07 6.46 42.08 11.68 5.00 8.72 1.00 0.29 1.44 0.14 27.08 42.08 5.00 30.30 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 10 10 10 10 10 10 10 10 10 10 10 50.8 8.72 25.4 33.6 6.52 23.1

75 1.36 1.36 0.00 1.07 6.49 41.60 12.10 5.00 8.80 0.71 0.27 1.46 0.14 28.48 41.60 5.00 30.10 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 10 10 10 10 10 10 10 10 10 10 10 50.4 8.8 25.9 35.2 6.72 24.7

76 1.44 1.44 0.00 1.07 6.43 45.00 0.00 0.50 8.32 0.56 0.27 1.68 0.12 32.72 45.00 0.50 29.90 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 10 10 10 10 10 10 10 10 10 10 10 53.32 8.32 10.9 39.84 7.12 9.1

77 1.14 1.14 0.00 1.27 6.12 40.88 0.00 0.50 7.72 0.56 0.27 1.58 0.15 33.28 40.88 0.50 29.70 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 10 10 10 10 10 10 10 10 10 10 10 48.6 7.72 12.7 40.72 7.44 9

78 1.14 1.14 0.00 1.27 6.01 55.84 0.00 0.50 9.52 0.27 0.00 2.14 0.09 32.60 55.84 0.50 29.50 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 10 10 10 10 10 10 10 10 10 10 10 65.36 9.52 10.7 39.28 6.68 10

79 1.22 1.22 0.00 0.68 5.92 38.12 0.00 0.50 7.00 0.19 0.00 1.71 0.11 40.32 38.12 0.50 29.40 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 10 10 10 10 10 10 10 10 10 10 10 45.12 7 9.1 48.4 8.08 13.4

80 1.14 1.14 0.00 1.07 5.87 40.24 0.00 0.50 7.20 0.05 0.00 2.17 0.14 41.60 40.24 0.50 29.30 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 10 10 10 10 10 10 10 10 10 10 10 47.44 7.2 10.8 49.6 8 9.6

81 0.85 0.85 0.00 1.07 6.00 41.40 0.00 5.00 7.20 0.05 0.00 1.88 0.36 48.60 41.40 5.00 29.20 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 10 10 10 10 10 10 10 10 10 10 10 48.6 7.2 11.5 57.24 8.64 9.7

82 0.92 0.92 0.00 1.27 6.02 46.96 0.00 5.00 6.68 0.05 0.00 2.14 0.41 41.52 46.96 5.00 29.10 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 10 10 10 10 10 10 10 10 10 10 10 53.64 6.68 8.3 47.2 5.68 11.2

83 0.93 0.93 0.00 1.46 5.99 40.80 0.00 5.00 7.24 0.05 0.00 2.41 0.64 45.12 40.80 5.00 29.10 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 10 10 10 10 10 10 10 10 10 10 10 48.04 7.24 7.8 52.56 7.44 9.5

84 0.92 0.92 0.00 0.88 6.02 41.64 0.00 5.00 7.52 0.30 0.00 2.12 0.62 39.84 41.64 5.00 29.00 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 10 10 10 10 10 10 10 10 10 10 10 49.16 7.52 11.4 47.4 7.56 9

85 0.95 0.95 0.00 1.46 6.01 44.04 0.00 5.00 7.20 0.30 0.00 2.70 0.81 43.44 44.04 5.00 28.90 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 10 10 10 10 10 10 10 10 10 10 10 51.24 7.2 9.9 51.32 7.88 7.8

86 0.97 0.97 0.00 1.27 6.00 44.52 0.00 5.00 8.08 0.35 0.00 2.51 0.86 39.12 44.52 5.00 28.80 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 10 10 10 10 10 10 10 10 10 10 10 52.6 8.08 7.2 46.92 7.8 9.1

87 0.94 0.94 0.00 1.07 5.93 49.16 0.00 5.00 8.72 0.25 0.00 2.17 0.87 46.32 49.16 5.00 28.80 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 10 10 10 10 10 10 10 10 10 10 10 57.88 8.72 7.5 55.12 8.8 7.6

88 0.92 0.92 0.00 1.07 5.91 53.56 0.00 5.00 8.36 0.24 0.00 1.95 0.86 45.76 53.56 5.00 28.70 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 10 10 10 10 10 10 10 10 10 10 10 61.92 8.36 9.8 53.6 7.84 7.5

89 0.85 0.85 0.00 1.27 5.88 54.16 0.00 5.00 9.96 0.05 0.00 2.07 0.79 45.28 54.16 5.00 28.70 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 10 10 10 10 10 10 10 10 10 10 10 64.12 9.96 12.1 53.48 8.2 6.8

90 1.07 1.07 0.00 1.07 5.86 50.76 0.00 5.00 8.64 0.05 0.00 2.10 0.62 50.24 50.76 5.00 29.00 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 10 10 10 10 10 10 10 10 10 10 10 59.4 8.64 8.9 59.48 9.24 8.4

91 0.71 0.71 0.00 1.27 5.91 49.92 0.00 5.00 8.72 0.05 0.00 1.93 0.74 52.56 49.92 5.00 29.10 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 10 10 10 10 10 10 10 10 10 10 10 58.64 8.72 11.6 62.12 9.56 9.7

92 0.78 0.78 0.00 1.07 5.87 57.04 2.18 5.00 10.24 0.05 0.00 1.80 0.84 56.84 57.04 5.00 29.10 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 10 10 10 10 10 10 10 10 10 10 10 67.28 10.24 17.42 67.24 10.4 8.5

93 0.34 0.34 0.00 1.27 5.86 47.48 0.00 9.00 8.72 0.05 0.00 1.56 0.64 36.92 47.48 9.00 29.50 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 10 10 10 10 10 10 10 10 10 10 10 56.2 8.72 13 44.2 7.28 8.3

94 0.63 0.63 0.00 1.27 6.07 53.88 0.00 9.00 8.88 0.05 0.00 1.85 0.60 31.28 53.88 9.00 29.80 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 10 10 10 10 10 10 10 10 10 10 10 62.76 8.88 13 37.08 5.8 8.8

95 0.56 0.56 0.00 1.27 6.12 51.84 1.00 9.00 9.00 0.05 0.00 1.78 0.81 35.04 51.84 9.00 29.80 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 10 10 10 10 10 10 10 10 10 10 10 60.84 9 19 41.44 6.4 7.8

96 0.71 0.71 0.00 1.27 6.05 49.12 2.10 9.00 9.20 0.05 0.00 1.93 0.76 41.96 49.12 9.00 29.60 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 10 10 10 10 10 10 10 10 10 10 10 58.32 9.2 20.3 49.4 7.44 7.6

97 0.71 0.71 0.00 1.27 6.18 51.84 1.00 9.00 9.88 0.05 0.00 1.93 0.62 35.84 51.84 9.00 29.80 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 10 10 10 10 10 10 10 10 10 10 10 61.72 9.88 19.88 43.76 7.92 8.5

98 0.63 0.63 0.00 1.27 6.06 66.64 1.00 9.00 11.68 0.05 0.00 1.85 0.63 63.04 66.64 9.00 29.80 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 10 10 10 10 10 10 10 10 10 10 10 78.32 11.68 21.68 73.64 10.6 9.5

99 0.63 0.63 0.00 1.27 6.10 46.84 1.00 9.00 9.44 0.05 0.00 1.85 0.69 40.28 46.84 9.00 29.60 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 10 10 10 10 10 10 10 10 10 10 10 56.28 9.44 19.44 49.64 9.36 7.1

100 0.63 0.63 0.00 1.27 5.79 50.36 1.00 9.00 8.96 0.05 0.00 1.85 0.55 45.56 50.36 9.00 29.50 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 10 10 10 10 10 10 10 10 10 10 10 59.32 8.96 18.96 53.48 7.92 8.3

101 0.71 0.71 0.00 1.07 5.78 49.32 1.00 9.00 9.56 0.05 0.00 1.73 0.67 46.92 49.32 9.00 29.50 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 10 10 10 10 10 10 10 10 10 10 10 58.88 9.56 19.56 55.8 8.88 6.4

102 0.78 0.78 0.00 1.27 5.80 43.28 0.00 9.00 8.08 0.05 0.00 2.00 1.03 46.00 43.28 9.00 29.40 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 10 10 10 10 10 10 10 10 10 10 10 51.36 8.08 16.38 54.24 8.24 10.5

103 0.56 0.56 0.00 1.27 5.74 48.28 0.00 9.00 2.20 0.05 0.00 1.78 1.03 74.92 48.28 9.00 29.40 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 10 10 10 10 10 10 10 10 10 10 10 50.48 2.2 10.2 89.4 14.48 8.6

104 0.56 0.56 0.00 1.27 5.74 41.52 5.42 0.10 9.12 0.05 0.00 1.78 1.29 42.48 41.52 0.10 29.40 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 10 10 10 10 10 10 10 10 10 10 10 50.64 9.12 14.64 53.6 11.12 8.4

105 0.56 0.56 0.00 1.27 5.73 45.36 4.94 0.10 9.52 0.05 0.00 1.78 1.24 47.96 45.36 0.10 29.30 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 10 10 10 10 10 10 10 10 10 10 10 54.88 9.52 14.56 58.28 10.32 6

106 0.63 0.63 0.00 1.27 5.47 48.16 5.06 0.10 9.84 0.05 0.00 1.85 1.27 43.92 48.16 0.10 29.30 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 10 10 10 10 10 10 10 10 10 10 10 58 9.84 15 53.32 9.4 7.9

107 0.71 0.71 0.00 1.27 5.42 37.00 5.18 0.10 8.24 0.05 0.00 1.93 1.16 62.24 37.00 0.10 29.30 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 0.37 10 10 10 10 10 10 10 10 10 10 10 45.24 8.24 13.52 74.6 12.36 9.9

108 0.78 0.78 0.00 1.46 5.34 50.80 5.05 0.10 9.68 0.05 0.00 2.19 1.25 43.72 50.80 0.10 29.20 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 10 10 10 10 10 10 10 10 10 10 10 60.48 9.68 14.83 51.28 7.56 10.9

109 0.78 0.78 0.00 1.46 5.26 48.44 5.57 0.10 9.28 0.05 0.00 2.19 1.11 59.72 48.44 0.10 29.20 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 10 10 10 10 10 10 10 10 10 10 10 57.72 9.28 14.95 71.24 11.52 11

110 0.71 0.71 0.00 1.46 5.21 47.32 5.48 0.10 9.72 0.05 0.00 2.12 1.17 55.28 47.32 0.10 29.10 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34 10 10 10 10 10 10 10 10 10 10 10 57.04 9.72 15.3 65.68 10.4 9.8

111 0.78 0.78 0.00 1.27 5.16 50.48 1.48 0.10 9.80 0.05 0.00 2.00 1.17 51.16 50.48 0.10 29.10 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 10 10 10 10 10 10 10 10 10 10 10 60.28 9.8 11.375 61.64 10.48 9.3

112 0.78 0.78 0.00 1.27 5.17 45.44 2.20 0.10 9.88 0.19 0.00 1.85 1.01 43.24 45.44 0.10 29.10 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 10 10 10 10 10 10 10 10 10 10 10 55.32 9.88 12.18 53.64 10.4 8.8

113 0.85 0.85 0.00 1.27 5.13 41.32 1.92 0.10 8.28 0.27 0.00 1.85 1.08 44.44 41.32 0.10 29.20 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 10 10 10 10 10 10 10 10 10 10 10 49.6 8.28 10.3 54.44 10 10.7

114 0.71 0.71 0.00 1.27 5.16 45.16 1.78 0.10 9.16 0.05 0.00 1.93 0.95 11.92 45.16 0.10 29.30 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 10 10 10 10 10 10 10 10 10 10 10 54.32 9.16 11.04 61.8 49.88 9.9

115 0.71 0.71 0.00 1.46 5.18 46.64 2.04 0.10 8.44 0.19 0.27 1.71 1.06 33.84 46.64 0.10 29.60 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 10 10 10 10 10 10 10 10 10 10 10 55.08 8.44 10.58 41.56 7.72 8.9

116 0.92 0.92 0.00 1.46 5.45 44.08 2.54 0.10 10.16 0.05 0.29 2.05 1.07 37.56 44.08 0.10 29.80 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 10 10 10 10 10 10 10 10 10 10 10 54.24 10.16 12.8 46.72 9.16 10.2

117 0.92 0.92 0.00 1.66 5.50 43.00 1.78 0.10 11.00 0.05 0.29 2.24 1.01 43.28 43.00 0.10 30.10 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 10 10 10 10 10 10 10 10 10 10 10 54 11 12.88 52.96 9.68 8.7

118 0.85 0.85 0.40 1.85 5.57 43.80 2.44 0.10 11.16 0.19 0.32 2.59 1.06 28.44 43.80 0.10 30.50 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 10 10 10 10 10 10 10 10 10 10 10 54.96 11.16 13.7 36.36 7.92 8.6

119 1.14 1.14 0.43 1.66 5.85 44.20 7.67 0.10 9.88 0.05 0.32 2.86 0.88 28.20 44.20 0.10 30.80 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 10 10 10 10 10 10 10 10 10 10 10 54.08 9.88 17.65 36.6 8.4 8.9

120 0.92 0.92 0.00 1.66 6.11 42.88 7.38 0.10 9.84 0.05 0.32 2.21 0.90 34.04 42.88 0.10 31.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 10 10 10 10 10 10 10 10 10 10 10 52.72 9.84 17.32 42.32 8.28 9.4

121 1.41 1.41 0.00 1.46 6.40 25.44 7.74 0.10 7.84 0.05 0.27 2.22 1.11 20.68 25.44 0.10 31.20 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 10 10 10 10 10 10 10 10 10 10 10 33.28 7.84 15.68 28.64 7.96 13

122 1.42 1.42 0.00 1.27 6.59 33.18 7.74 0.10 7.84 0.12 0.29 2.22 0.36 722.09 33.18 0.10 31.10 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65 250 250 250 250 250 250 250 250 250 250 250 33.28 7.84 15.68 788.9513 66.85649 13

123 1.45 1.45 0.00 1.07 6.61 40.92 5.49 2.00 9.96 0.19 0.32 1.63 0.36 1,149.10 40.92 2.00 31.10 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 10 10 10 10 10 10 10 10 10 10 10 50.88 9.96 17.45 1199.1 50 25.5

124 1.17 1.17 0.00 1.27 6.63 42.44 5.77 2.00 10.80 0.19 0.27 1.80 0.85 269.40 42.44 2.00 30.90 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 10 10 10 10 10 10 10 10 10 10 10 53.24 10.8 18.57 310.64 41.24 25.5

125 1.14 1.14 0.00 1.07 6.36 40.08 7.44 2.00 9.48 0.05 0.00 2.17 0.24 87.00 40.08 2.00 30.80 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 10 10 10 10 10 10 10 10 10 10 10 49.56 9.48 18.915 103.52 16.52 13.9

126 0.63 0.63 0.00 1.66 6.49 44.16 7.35 2.00 8.88 0.05 0.00 2.24 0.21 87.88 44.16 2.00 30.80 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 10 10 10 10 10 10 10 10 10 10 10 53.04 8.88 18.23 100.28 12.4 12.9

127 0.71 0.71 0.00 1.66 6.40 44.68 0.10 9.00 10.20 0.19 0.00 2.17 0.91 72.04 44.68 9.00 30.80 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 10 10 10 10 10 10 10 10 10 10 10 54.88 10.2 19.3 85.4 13.36 12.8

128 0.92 0.92 0.00 1.46 6.52 42.96 0.09 9.00 10.64 0.05 0.00 2.34 1.05 56.04 42.96 9.00 30.80 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 10 10 10 10 10 10 10 10 10 10 10 53.6 10.64 19.735 68.44 12.4 12.8

129 0.85 0.85 0.00 1.46 6.40 41.12 0.48 9.00 11.04 0.05 0.27 2.00 0.95 49.84 41.12 9.00 30.80 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 10 10 10 10 10 10 10 10 10 10 10 52.16 11.04 20.5175 60.76 10.92 10

130 0.41 0.41 0.00 1.27 6.44 43.60 0.86 9.00 10.64 0.05 0.00 1.63 1.16 54.80 43.60 9.00 30.70 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.18 10 10 10 10 10 10 10 10 10 10 10 54.24 10.64 20.5 67.92 13.12 10.3

131 0.56 0.56 0.00 1.07 6.46 40.28 0.00 9.00 9.40 0.05 0.00 1.58 1.75 82.92 40.28 9.00 30.70 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 10 10 10 10 10 10 10 10 10 10 10 49.68 9.4 18.805 98.44 15.52 13.6

132 0.71 0.71 0.00 1.46 6.37 41.56 1.64 9.00 10.00 0.05 0.00 2.12 1.11 83.72 41.56 9.00 30.70 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 10 10 10 10 10 10 10 10 10 10 10 51.56 10 20.64 99.8 16.08 13.9

133 0.85 0.85 0.00 1.46 6.24 45.64 0.00 9.00 17.56 0.05 0.00 2.27 0.54 59.80 45.64 9.00 30.70 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 10 10 10 10 10 10 10 10 10 10 10 63.2 17.56 26.73 72.32 12.52 12.8

134 1.22 1.22 0.00 1.46 6.10 44.20 0.73 9.00 8.92 0.05 0.00 2.63 0.34 68.00 44.20 9.00 30.60 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 10 10 10 10 10 10 10 10 10 10 10 53.12 8.92 18.65 81.44 13.44 13.4

135 1.66 1.66 0.27 1.07 5.99 56.48 0.00 9.00 9.36 0.35 0.35 2.46 0.29 67.72 56.48 9.00 30.60 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 10 10 10 10 10 10 10 10 10 10 10 65.84 9.36 18.46 80.32 12.6 15.1

136 1.22 1.22 0.00 1.27 5.85 52.04 0.52 9.00 13.08 0.19 0.29 2.00 0.21 42.24 52.04 9.00 30.50 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 10 10 10 10 10 10 10 10 10 10 10 65.12 13.08 22.6 53.28 11.04 12.8

137 0.92 0.92 0.00 1.27 5.94 48.36 0.17 9.00 11.60 0.05 0.29 1.85 0.28 63.36 48.36 9.00 30.40 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 10 10 10 10 10 10 10 10 10 10 10 59.96 11.6 20.77 77.64 14.28 12.8

138 0.92 0.92 0.00 1.46 5.97 60.52 0.10 9.00 11.28 0.05 0.00 2.34 0.32 43.28 60.52 9.00 30.20 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 10 10 10 10 10 10 10 10 10 10 10 71.8 11.28 20.38 53.96 10.68 12.1

139 0.85 0.85 0.00 1.46 6.31 65.40 0.00 9.00 13.16 0.05 0.00 2.27 0.64 53.52 65.40 9.00 30.00 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 10 10 10 10 10 10 10 10 10 10 10 78.56 13.16 22.16 65.56 12.04 12.8

140 0.63 0.63 0.00 1.46 6.63 76.60 0.04 9.00 13.16 0.05 0.00 2.05 0.87 62.04 76.60 9.00 29.70 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 10 10 10 10 10 10 10 10 10 10 10 89.76 13.16 22.2 73.52 11.48 12.7

141 0.71 0.71 0.00 1.27 6.94 68.40 0.20 9.00 10.92 0.05 0.00 1.93 0.98 55.16 68.40 9.00 29.70 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 10 10 10 10 10 10 10 10 10 10 10 79.32 10.92 20.12 65.36 10.2 9.5
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142 0.41 0.41 0.00 1.27 7.24 87.48 0.09 9.00 13.84 0.05 0.00 1.63 1.39 55.48 87.48 9.00 29.70 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 10 10 10 10 10 10 10 10 10 10 10 101.32 13.84 22.93 65.36 9.88 10.7

143 0.34 0.34 0.00 1.46 7.49 79.24 0.28 9.00 10.92 0.05 0.00 1.75 1.66 78.96 79.24 9.00 29.90 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 10 10 10 10 10 10 10 10 10 10 10 90.16 10.92 20.2 91.08 12.12 9.7

144 0.41 0.41 0.00 1.27 7.75 72.88 0.54 9.00 11.64 0.05 0.00 1.63 2.03 47.60 72.88 9.00 30.00 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 10 10 10 10 10 10 10 10 10 10 10 84.52 11.64 21.18 56.88 9.28 7.9

145 0.34 0.34 0.00 1.46 7.89 57.48 0.31 9.00 10.56 0.05 0.00 1.75 2.22 61.36 57.48 9.00 29.80 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 10 10 10 10 10 10 10 10 10 10 10 68.04 10.56 19.875 70.96 9.6 8

146 0.27 0.27 0.00 1.46 7.88 59.56 0.09 9.00 10.28 0.05 0.00 1.68 2.24 58.92 59.56 9.00 29.50 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 10 10 10 10 10 10 10 10 10 10 10 69.84 10.28 19.37 70.72 11.8 9.5

147 0.34 0.34 0.00 1.07 7.66 67.16 0.00 9.00 9.92 0.05 0.00 1.37 2.35 62.24 67.16 9.00 29.30 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 10 10 10 10 10 10 10 10 10 10 10 77.08 9.92 18.92 72.24 10 10

148 0.41 0.41 0.00 1.27 7.48 74.72 0.00 9.00 11.76 0.05 0.00 1.63 2.55 83.32 74.72 9.00 29.10 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 10 10 10 10 10 10 10 10 10 10 10 86.48 11.76 20.76 95.16 11.84 10.1

149 0.27 0.27 0.00 1.46 7.31 63.60 0.00 9.00 10.56 0.05 0.00 1.68 2.27 58.60 63.60 9.00 28.90 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 10 10 10 10 10 10 10 10 10 10 10 74.16 10.56 19.56 68.84 10.24 6.1

150 0.27 0.27 0.00 1.07 7.08 64.04 0.00 9.00 10.36 0.05 0.00 1.29 2.20 56.92 64.04 9.00 28.70 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 10 10 10 10 10 10 10 10 10 10 10 74.4 10.36 19.36 65.68 8.76 9.7

151 0.19 0.19 0.00 1.27 6.98 105.24 0.27 9.00 14.32 0.05 0.00 1.41 2.52 80.64 105.24 9.00 28.70 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 10 10 10 10 10 10 10 10 10 10 10 119.56 14.32 23.585 93.52 12.88 8.9

152 0.27 0.27 0.00 1.07 6.73 62.68 0.00 9.00 10.84 0.05 0.00 1.29 2.35 55.12 62.68 9.00 28.70 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.24 10 10 10 10 10 10 10 10 10 10 10 73.52 10.84 18.54 65.4 10.28 7

153 0.05 0.05 0.00 1.07 6.71 59.52 0.00 9.00 10.52 0.05 0.00 1.07 2.06 41.72 59.52 9.00 28.60 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 0.27 10 10 10 10 10 10 10 10 10 10 10 70.04 10.52 17.52 50.08 8.36 8

154 0.05 0.05 0.00 1.07 6.72 57.56 0.00 9.00 10.28 0.05 0.00 1.07 1.97 38.24 57.56 9.00 28.60 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 10 10 10 10 10 10 10 10 10 10 10 67.84 10.28 17.48 46.4 8.16 7

155 0.05 0.05 0.00 0.88 6.66 56.00 1.50 9.00 10.16 0.05 0.00 0.88 2.05 45.80 56.00 9.00 28.50 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 10 10 10 10 10 10 10 10 10 10 10 66.16 10.16 20.66 54.32 8.52 13

156 0.05 0.05 0.00 1.07 6.61 55.48 0.10 9.00 9.00 0.05 0.00 1.07 2.22 49.16 55.48 9.00 28.50 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 10 10 10 10 10 10 10 10 10 10 10 64.48 9 18.1 57.8 8.64 9

157 0.19 0.19 0.00 1.07 6.57 54.24 0.00 9.00 9.84 0.05 0.00 1.22 2.27 42.76 54.24 9.00 28.40 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29 10 10 10 10 10 10 10 10 10 10 10 64.08 9.84 16.84 51.08 8.32 12

158 0.19 0.19 0.00 1.27 6.53 54.76 0.00 9.00 9.84 0.05 0.00 1.41 2.31 37.32 54.76 9.00 28.40 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 10 10 10 10 10 10 10 10 10 10 10 64.6 9.84 17.04 50.28 12.96 12

159 0.05 0.05 0.00 1.27 6.48 62.52 2.20 9.00 10.20 0.05 0.00 1.27 2.33 49.48 62.52 9.00 28.40 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 10 10 10 10 10 10 10 10 10 10 10 72.72 10.2 21.4 58.6 9.12 8

160 0.19 0.19 0.00 1.27 6.43 64.68 2.90 9.00 9.88 0.05 0.00 1.41 2.39 42.00 64.68 9.00 28.30 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 10 10 10 10 10 10 10 10 10 10 10 74.56 9.88 21.78 50.04 8.04 9

161 0.19 0.19 0.00 1.07 6.39 57.24 1.50 9.00 9.20 0.05 0.00 1.22 2.76 46.64 57.24 9.00 28.30 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 10 10 10 10 10 10 10 10 10 10 10 66.44 9.2 19.7 56.04 9.4 7
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2.4. LIST OF FIGURES 

Figure S 1. Measured and simulated results for the lab-scale reactor in the start-up period 

Figure S 2. Measured and simulated results for the lab-scale reactor in the continuous 

operation 

Figure S 3. Measured and simulated results for the pilot-scale reactor in Hoa Phu WTP 

Figure S 4. Measured and simulated results for the full-scale reactor in Vinh Bao WTP (D) 

Figure S 5 Measured and simulated results for the full-scale reactor in Vinh Bao WTP (R) 

Figure S 6. Measured and simulated results for the full-scale reactor in Vinh Bao WTP (R) 

(continued) 

Figure S 7. Measured and simulated results for the full-scale reactor in Vinh Bao WTP (R) 

(continued) 

Figure S 8. Measured and simulated results for the full-scale reactor in Vinh Bao WTP (R) 

(continued) 
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Figure S 1. Measured and simulated results for the lab-scale reactor in the start-up 

period 
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Figure S 2. Measured and simulated results for the lab-scale reactor in the 

continuous operation  
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Figure S 3. Measured and simulated results for the pilot-scale reactor in Hoa Phu 

WTP  
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Figure S 4. Measured and simulated results for the full-scale reactor in Vinh Bao 

WTP (D) 
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Figure S 5. Measured and simulated results for the full-scale reactor in Vinh Bao 

WTP (R) 

0

2.5

5

7.5

0 1 2 3 4 5 6 7

D
is

s
o
lv

e
d
 o

xy
g
e
n
 (

m
g
O

2
/L

)

Time (d)

0

10

20

30

0

1.5

3

4.5

6

7.5

0 1 2 3 4 5 6 7

T
e
m

p
e
ra

tu
re

 (
d
e
g
. 

C
)

A
m

m
o
n
ia

 (
m

g
N

H
4
-N

/L
)

Time (d)



0. ANNEX 

211 

 

  

 

 

 

Figure S 6. Measured and simulated results for the full-scale reactor in Vinh Bao 

WTP (R)   
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Figure S 7. Measured and simulated results for the full-scale reactor in Vinh Bao 

WTP (R) 
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Figure S 8. Measured and simulated results for the full-scale reactor in Vinh Bao 

WTP (R) 
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