
A HARDWARE-AWARE NEURAL NETWORK

WITH A LOOK-UP TABLE DECOMPOSITION

ALGORITHM

XUECHEN ZANG

A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF
PHILOSOPHY

THE UNIVERSITY OF KITAKYUSHU

2021



Declaration

I hereby declare that this thesis is my original work and it has been written
by me in its entirety. I have duly acknowledged all the sources of informa-
tion which have been used in the thesis.

This thesis has also not been submitted for any degree in any university
previously.

Xuechen Zang
July 2021

ii



Acknowledgments

I would like to thank my supervisor, Prof.Nakatake. During the five years
from the entrance of master’s degree to the graduation of PhD, he always
kept teaching me attentively and provided a lot of guidance in the process
of research.

I am grateful to Dr.Bo Liu, Dr.Chao Geng, and Dr.Xuncheng Zou. Thanks
to their kindness and support during the days and months I spent together
in the research lab, I was able to be enlightened and start again many
times when I faced difficulties.

Thanks to my mom and dad, they have always been my solid backing,
and have tolerated my vulnerabilities during my PhD and given me the
strength to persevere.

Thanks to my girlfriend, Yihe. Throughout the long experience of a foreign
relationship, she endured the stress and trials that could have been avoided
and chose to believe in me and get through it together. With the utmost
tenderness, she has always kept my life light and warm.

Finally, despite the bumps in the road, I thank myself for being so fortunate
to experience all of this.

iii



Abstract

Neural networks are one of the most rapidly developing machine learning
techniques in recent years and have been used with impressive success in
a wide range of fields, especially in electronic design automation. Neural
networks are not only involved in the design, optimization and implemen-
tation of logic circuits to improve efficiency, but have also been successfully
implemented on various mobile hardware platforms. However, the high
computational cost of neural networks, the large difference in computa-
tional accuracy with hardware, and the low structural similarity are often
obstacles to be overcome in research.

This thesis presents the knowledge and research development on the cross-
application of neural networks and logic circuits, and divides the main
related research into three chapters, which are as follows. (1) An experi-
mental procedure on how to implement the logic of multiple lookup tables,
a common basic unit in logic circuits, by employing neural networks in a
function-fitting manner is presented. The accuracy advantages and appli-
cability of neural networks are demonstrated by comparing them with the
traditional machine learning method, polynomial regression, the tuning
of neural network parameters and the comparison of results. 2) An ap-
proximate decomposition method is introduced, focusing on decomposing
a larger size look-up table (LUT) into smaller individuals. A depth-first
search divide-and-conquer algorithm is used to search for the best decom-
position scheme and generate approximate LUTs with an acceptable error
tolerance to make it easier to implement on memory cell-based logic devices.
3) A novel neural network is introduced that incorporates the structural
features of recently proposed memory-based programmable logic devices. A
hardware-aware structure, sparser connections and a smaller weight matrix
are used and can provide near full precision performance and acceptable
binary precision performance.

In summary, the cost of implementing bidirectional interaction between
neural networks and logic circuits can be effectively reduced by benefiting

iv



v

from the logic learning capability of neural networks, the decomposition
method of large-size LUTs, and the hardware-aware structure of neural
networks.



Contents

List of Figures ix
List of Tables xi
List of Algorithms xii

1 Introduction 1
1.1 The Development of Deep Neural Networks 1
1.2 Deep Learning for Approximate Logic Synthesis 2
1.3 Neural Networks Implementations on Chip 3
1.4 Organization of the Thesis 4

2 Preliminary 6
2.1 Development of Neural Network 6
2.2 Fundamentals of Neural Network 8

2.2.1 Principles 8
2.2.2 Activation Functions 11
2.2.3 Loss Functions 12
2.2.4 Back Propagation based on Gradient Descent 12

2.3 Convolutional Neural Network 16
2.3.1 Convolution Operation 16
2.3.2 Convolution Layer 17
2.3.3 Pooling Layer 19
2.3.4 Typical Convolutional Network Structure 19

2.4 Binary Neural Network 20
2.4.1 Binarized Weight Values 21
2.4.2 Back Propagation in Binary Neural Network 21
2.4.3 XNOR Operation 21

2.5 Optimizations of Neural Network 22
2.5.1 Learning Rate Scheduler 23
2.5.2 Gradient Estimation 23
2.5.3 Parameter Initialization 24
2.5.4 Batch Normalization 24
2.5.5 Regularization 25

vi



Contents vii

2.5.6 Sparse Connection 26
2.5.7 Residual Learning 26

2.6 Programmable Logic Device 27
2.6.1 Field-Programmable Gate Array 27
2.6.2 Look-up Table 28
2.6.3 Memory based Reconfigurable Logic Device 30

3 Multiple Look-up Table based Logic Learning by Neural Network 32
3.1 Problem Description 33
3.2 Network Construction 33
3.3 Experiments 35
3.4 Summary 43

4 Approximate Decomposition of Multiple Look-up Tables under Ac-
ceptable Error Tolerance 44
4.1 Approximate Decomposition for LUT 46

4.1.1 Definition of Question 46
4.1.2 Overall Decomposition VS Reserved Bit Decomposition 47
4.1.3 LUT Decomposition Algorighm 48

4.2 Experimental Results 50
4.3 Summary 52

5 MLUTNet: A Neural Network for Memory based Reconfigurable
Logic Device Architecture 53
5.1 introduction 54

5.1.1 Motivations and Contributions 54
5.1.2 Organization of the chapter 54

5.2 MLUTNet 55
5.2.1 Network Definition 55
5.2.2 Training and Connection of MLUTNet 56

5.3 Experimental Results 59
5.3.1 Performance on MNIST series datasets 61
5.3.2 Performance on CIFAR-10 and STL-10 datasets 61
5.3.3 Sparsely Connection Verification 64
5.3.4 Results Summary 65

5.4 Summary 67

6 Conclusion 68



Contents viii

References 70



List of Figures

2.1 Connections of a neuron model. xi, wi, f(), and b are the activations,
weights, non-linear function and bias, respectively. [FLJ] 9

2.2 A simple neural network example [FLJ] 10
2.3 Commonly used activation functions: (a) Sigmoid, (b) Tanh, (c) ReLU,

and (d) LeakyReLU [FLJ] 11
2.4 An example of back propagation through a neural network [FLJ] 15
2.5 An simple CNN framework. [PSY+18] 16
2.6 Calculations executed at each step of convolutional layer [LAH+21] 18
2.7 Various pooling forms [LAH+21] 19
2.8 The structure of Alexnet [Tsa18] 20
2.9 Dropout example 25
2.10 Sparse connection [FLJ] 26
2.11 Residual block with shortcut connections [HZRS15] 27
2.12 An architecture of a normal FPGA 28
2.13 A 4-LUT example 29
2.14 The structure of MRLD 30
2.15 Internal schematic of MLUT 31

3.1 Comparison of NN-based MLUT matching and typical logic synthesis 33
3.2 Approximate function configuration induced by simulation 34
3.3 Constructed NN model 36
3.4 Results for function 1; (a) Training results by PR, (b) Testing results by

NN, (c) Testing results by PR,(d) Testing results, by NN. 37
3.5 Results for function 2; (a) Training results by PR, (b) Training results by

NN, (c) Testing results by PR, (d) Testing results, by NN. 38
3.6 Training (red) and testing (purple) result of different network sizes. (a)(b)

case 1-1, (c)(d) case 1-2,(e)(f) case 1-3. 40
3.7 Training (red) and testing (purple) result of different network learning rates.

(a)(b) case 2-1, (c)(d)case 2-2, (e)(f) case 2-3. 41
3.8 Training (red) and testing (purple) result of various data density. (a)(b)

case 3-1, (c)(d) case 3-2, (e)(f)case 3-3. 42

ix



List of Figures x

4.1 Mapping to LUTs 45
4.2 Example: Decompose a 5-bit LUT 47
4.3 Progressive LUT decompositions 48
4.4 LUT decomposition process with reserved bits 49

5.1 One NN and MLUTNet 57
5.2 Full connection and neighbourhood connection 58
5.3 Dataflow in MLUTNet on MNIST 59
5.4 Performance on MNIST series datasets 62
5.5 Confusion matrices of MLUTNet 63
5.6 Performance on CIFAR-10 and STL-10 dataset 64
5.7 Performance on CIFAR-10 and STL-10 dataset 64
5.8 Comparison of fully connection and sparsely connection 65
5.9 Models operation time 66
5.10 Correct Rate Performance Ratio 67



List of Tables

2.1 XNOR and multiplication 22

3.1 Loss value of function 1. 35
3.2 Loss value of function 2. 37
3.3 Size of different networks 38
3.4 Learning rate schedulers of different networks 39
3.5 Data points density configuration 39
3.6 Loss of different NN models 43

4.1 4-bit/8bit multiplier logic decomposition 51
4.2 Decomposition Performance Summary 51

5.1 Optimal accuracy performance 65

xi



List of Algorithms

1
Stochastic gradient descent132 Back
propagation based on stochastic gradient descent14 3 Decomposition
process of LUT50 4 Algorithm:
Train a MLUTNet60

xii



Chapter 1
Introduction

Benefiting from the rapid growth of hardware computing performance in accordance
with Moore’s Law, many research fields that were once considered to require too much
computing power to be applied have been revived with new vigor. Machine learning is
one of these fields. Deep learning based on neural networks is one of the most highly
regarded technologies.

As the most rapidly developing machine learning techniques in recent years, deep neural
network and reinforcement learning have been used in a wide range of fields [SM19]
[LAH+21] [PSY+18] [RS20] and have achieved performance as good as or better than
that of human experts [SSS+17]. Deep learning and reinforcement learning have been
used to optimize the design of logic circuits [HHH+21] and their own implementation
on hardware platforms [SCYE17] [YAL20] [CBM+20] [BVM+19], not only at the
software level for logical judgments and interactions, but also in the hardware domain,
with many impressive results.

In the foreseeable future, the design and optimisation of logic circuits will become even
more automated and intelligent thanks to further developments in machine learning
technology.

1.1 The Development of Deep Neural Networks

In recent years we have seen exciting breakthroughs in the core problems of machine
learning, driven largely by advances in deep neural networks. At the same time,
the amount of data collected across a wide range of scientific domains is increasing
dramatically in both size and complexity. Overall, this suggests that there are many
exciting opportunities for the application of deep learning.

Neural networks are the core technology of deep learning. From classical single-
layer perceptrons to multi-layer perceptrons, and then the introduction of activation

1



Chapter 1. Introduction 2

functions and back propagation lead to the emergence of standard deep neural networks.
Subsequently, the variety of neural networks has become more and more abundant. The
first proposed for image classification was LeNet [LBBH98] in 1989. AlexNet [KSH12],
proposed in 2012, revived researchers’ interest in convolutional neural networks with
classification accuracy that were significantly better than other methods at the time.
This was followed by VGG [SZ15], which introduced residual learning and a jump
connection mechanism by stacking more convolutional layers and smaller convolutional
kernels, and ResNets [HZRS15], which strongly addressed the degradation problem
caused by the excessive depth of the network. DenseNets [HLvdMW18] differ from
standard neural networks in that the network is divided into several ’blocks’, with
each layer in a ’block’ being connected to every other layer. More recent complex
models include ResNeXt [XGD+17] and, more recently, EfficientNets [TL20], which has
separate scaling factors for network depth, width and spatial resolution of the input
image. Other architectures, such as Long Short-Term Memory(LSTM) [HS97] based
recurrent neural networks [CGCB15] [GDG+15] [ZSV15], spiking neural networks
[TGK+19] and other structures have also been researched and developed individually.

Despite the outstanding learning ability, deep neural networks also often suffer from
the trouble of being too large. By representing the network weights with very low
precision in order to reduce the storage space and computational complexity occupied
by the network. Binarization is the ultimate expression of this idea. As pioneering
work on binary deep neural networks, binary neural network(BNN) and XNOR-
Net have demonstrated the effectiveness of binarization and enjoy many hardware-
friendly features, including memory savings, energy efficiency and significant speed-
ups [QGL+20] [SL19].

Driven by the rapid increase in available data and computing resources, deep learning
is excelling in many tasks, including speech recognition, image classification, natural
language processing and more.

1.2 Deep Learning for Approximate Logic Synthe-

sis

Logical synthesis is an optimisation problem with complex constraints that require exact
solutions. Therefore, it is difficult to generate logic synthesis solutions directly using
deep learning algorithms, but deep learning can give help with the logic transformation
step in logic synthesis. In current synthesis tools, such as ABC [BM10], many logic



Chapter 1. Introduction 3

transformations exist.

Some previous work has focused on the use of approximation calculations in EDA. One
type of research focused on exploring the importance of structural features of specific
circuits and their output bits to obtain performance improvements through manual
approximations [GMP+11] [KGE11]. As circuits become more complex in terms of
functionality, another class of research applying automated methods is emerging, such
as heuristics based on Karnaugh graph optimisation principles [SG10], synthesising
approximate circuits under a given error constraint [VSK+12], synthesising approximate
circuits using Boolean matrix decomposition [HTR18] and so on.

However, deep learning methods have shown great potential for generating high quality
solutions to NP-complete problems, saving significant time and resource consumption
compared to traditional methods. Compared to traditional methods that typically
solve each problem from the beginning, deep learning methods extract high-dimensional
features or patterns that can be reused in other related or similar situations, thus
avoiding a great deal of potential duplication and waste. Thus, for accelerating the
solution of electronic design automation(EDA) problems, there are some studies using
deep learning methods to strengthen existing traditional optimization strategies.

LSOracle [NAT+19] relies on DNN to dynamically decide which optimizer should be
applied to different parts of the circuit. Another work proposed by Yu et al. [YXM19]
design a process of employing a CNN to map a synthesis flow to quality of results
(QoR) levels to predict the synthetic streams likely to produce the optimal QoR.

Reinforcement learning is also used for approximate logic synthesis. By modelling
the transition between two directed acyclic graphs with the same I/O behaviour as
a single action, ALS frameworks based on different algorithms and models has been
proposed, such as based on Graph convolutional nerual network [HCS+18], advantage
actor critic agent [HHSR19] and Q-learning [PNP19].

1.3 Neural Networks Implementations on Chip

While neural networks have powerful inference capabilities, their high computational
complexity and storage footprint pose significant barriers to their implementation.
General CPU platforms are not good at performing huge amounts of parallel matrix
operations. GPU platforms, while offering high computational power and an easy-to-
use development framework, have the disadvantage of being expensive. FPGA and
similar memory based programmable logic devices are the next possible competitive



Chapter 1. Introduction 4

solutions. With specific optimisation measures, overtaking GPU in terms of speed and
energy efficiency becomes possible.

Various deep neural networks FPGA-based accelerator designs have been proposed
[WGDL21] [SSEM19]. The BNN family of deep neural networks has gained more
attention and extended research as lower precision neural networks can run more
efficiently on hardware platforms, such as A batch normalization free binary CNN
for FPGA [YN17], A accelerator for BNN on FPGA [ZSZ+17] and binary CNN
on binary RRAM device [YLC+16]. In addition, researchers have also worked to
reduce the cost of their implementation on hardware devices by adjusting the network
architecture [GCK19] [SHY20].

Driven by the trend towards the ubiquitous use of deep neural networks, there is an
opportunity for networks that are more intimate with the hardware architecture and
more cost-effective implementations to become the focus of researchers’ attention.

1.4 Organization of the Thesis

The organization of the thesis is as following:

• Chapter 2 introduces the development of neural networks, the basic principles
and common optimization methods. One of the most generalized variants,
convolutional neural networks, is introduced. In addition, this chapter introduces
low-precision binary neural networks that are easier to implement in hardware.
Finally, knowledge of programmable logic devices is introduced, including basic
FPGAs, look-up tables, and a reconfigurable logic device proposed in recent
years.

• Chapter 3 describes the experimental procedure of using neural networks to im-
plement memory unit logic in a function-fitting manner. We compare deep neural
networks with a traditional machine learning method, polynomial regression,
and verify the accuracy advantages of the neural network approach.

• Chapter 4 presents an approximate decomposition method for decomposing large
lookup tables (LUTs) into smaller combinations of lookup tables. The method
uses a divide-and-conquer algorithm based on depth-first search to find the
best decomposition scheme and generate approximate LUT combinations with
acceptable error tolerances. The smaller sub-LUTs obtained after decomposition
will be easier to implement on memory cell-based logic devices.



Chapter 1. Introduction 5

• Chapter 5 introduces a novel neural network that incorporates the structural
features of recently proposed memory-based programmable logic devices. Based
on hardware-like structure, sparser connections and smaller weight matrices, on
common less complex datasets, the novel network can provide near full precision
performance and acceptable binary precision performance.

• Chapter 6 summarizes the thesis and describes the combined impact of the
research results.



Chapter 2
Preliminary

This chapter presents the necessary prior knowledge covered in the thesis.

• Sec.2.1: the introduction of the development of neural network.

• Sec.2.2: the fundamentals of generic feed-forward neural networks: design
origins, model components and principles, non-linear activation functions, back
propagation and gradient descent principles for parameter updating.

• Sec.2.3: convolutional neural network.

• Sec.2.4: binary neural networks.

• Sec.2.5: various methods used for neural network optimization such as mini-batch
gradient descent, batch normalization, and adaptive learning rates, etc..

• Sec.2.6: field-programmable gate array and memory based reconfigurable logic
device.

2.1 Development of Neural Network

Inspired by the nervous system of the human brain inspired by the human brain’s
nervous system, early neuroscientists constructed a mathematical model that mimics
the human brain’s nervous system, called an artificial neural network(ANN), or neural
network(NN) for short. In the field of machine learning, a neural network is a structural
model of a network consisting of many artificial neurons, and the strength of the
connections between these artificial neurons is a learnable parameter.

The development of neural networks can be roughly divided into five stages: birth, ice
age, revival, trough and rerising.

Birth: In 1943, McCulloch and Pitts first proposed an artificial neural network based
on simple logic operations, which was called the MP model, and thus started the

6



Chapter 2. Preliminary 7

research of artificial neural networks. In 1948, Alan Turing proposed a "B-type Turing
machine" that could learn based on Hebbian’s law. In 1951, Marvin Minsky, a student
of McCulloch and Pitts, built the first neural network machine, SNARC. F. Rosenblatt
proposed A neural network model that can simulate human perceptual ability, called
Perceptron [Ros58], and proposed a learning algorithm that approximates the human
learning process (iteration, trial and error).

In this period, neural networks were mainly used in automatic control and pattern
recognition, and achieved remarkable results.

Ice Age: In 1969, Marvin Minsky published his book "Perceptron", which pointed out
two key flaws of neural networks: first, perceptrons could not solve XNOR problem;
second, computers at that time could not provide the computational power needed to
process large neural networks. These assertions raised doubts about perceptron neural
networks and led to an "ice age" of research on neural networks.

However, during this period, scholars proposed many useful models and algorithms,
a significant portion of which became the cornerstone of later deep learning. In
1974, Paul Werbos proposed the back propagation (BP) algorithm [Wer74], which did
not attract much response at that time. In 1980, inspired by the difference in the
perceptual range of simple and complex cells in the primary visual cortex of animals,
Fukushima proposed a multi-layer neural network with convolution and sub-sampling
operations [Fuk80].

revival: The second culmination of research on neural networks was the backpropa-
gation algorithm. In the mid-1980s, a parallel distributed processing (PDP) model
became popular. The backpropagation algorithm also gradually became the main
learning algorithm for the PDP model. Subsequently, Lecun introduced the back
propagation algorithm to CNNs and achieved considerable success in handwritten
digit recognition [LBBH98]. The backpropagation algorithm has consequently become
the most successful neural network learning algorithm, until today.

Trough: Although neural networks can easily increase the number of layers and
neurons to build complex networks, their computational complexity grows with them.
The computer performance and data size at that time were not sufficient to support the
training of large-scale neural networks. In the mid-1990s, statistical learning theory and
machine learning models represented by support vector machines began to emerge. In
contrast, the disadvantages of neural networks, such as unclear theoretical foundations,
difficulty in optimization, and poor interpretability, became more prominent, and the
research on neural networks was once again in the doldrums. Support vector machines



Chapter 2. Preliminary 8

and other simpler methods (e.g., linear classifiers) gradually surpassed neural networks
in popularity in the field of machine learning.

Rerising: With the great success of deep neural networks for tasks such as speech
recognition [HS06] and image classification [KSH12], neural network-based deep learn-
ing is rapidly emerging. In recent years, the computational power of computers has
increased dramatically with the spread of massively parallel computing and GPU
devices. In addition, the size of data available for machine learning has grown. With
the powerful computing power and massive data size, computers have been able to
train a large-scale neural network end-to-end.

2.2 Fundamentals of Neural Network

Although the details of how the brain works are still to be explored, it is now generally
accepted by researchers that the brain’s main unit of computation is the neuron. As
the diagram shows, neurons themselves are joined together by a number of elements
that enter them (dendrites) and elements that leave them (axons). The neuron receives
signals that enter it through the dendrites, performs some sort of computation on
these signals, and then produces a signal on the axon. These input and output signals
are known as activations. A neuron has an axonal branch that is connected to the
dendrites of many other neurons. The connection between a branch of an axon and a
dendrite is called a synapse. A key feature of a synapse is that it can scale the signal
passing through it (xi), as shown in Figure 2. This scaling factor can be referred to as
a weight (wi), and the brain is thought to learn by changing the weight associated with
a synapse. Thus, different weights lead to different responses to the input. During
the learning process, the weights are constantly adjusted, while the way neurons are
connected to each other does not change. This feature makes the brain an excellent
source of inspiration for machine-learning style algorithms, from which the idea for
the design of ANN was derived.

2.2.1 Principles

In a feed forward neural network, each neuron belongs to a different layer. The neurons
in each layer can receive signals from the neurons in the previous layer and generate
signals for output to the next layer. Layer 0 is called the input layer, the last layer is
called the output layer, and the other intermediate layers are called the hidden layers.
There is no feedback in the whole network, the signal propagates from the input layer
to the output layer in one direction.



Chapter 2. Preliminary 9

Figure 2.1: Connections of a neuron model. xi, wi, f(), and b are the activations,
weights, non-linear function and bias, respectively. [FLJ]

Fig.2.2a shows a single layer neural network. Neurons in the input layer receive values
from the data source and propagate them to neurons in the middle layer of the network,
which is also often referred to as ’hidden layer’. There can be one or more hidden
layers. After all the hidden layers, the weighted sum is eventually propagated to
the output layer, which presents the final output of the network to the user. In the
terminology of the neural network field, the output of a neuron is often referred to as
the activation, while the synapses are often referred to as the weights.

Fig.2.2b shows an example of the computation. It can be expressed as the following
equation:

z = wi × ai + b (2.1)

a = σ(z) (2.2)

where Eq.2.1 and Eq.2.2 represents the iterative calculation process of neural networks.
Variables z, a, w and b are called activation, net activation, weight (matrix)
and bias. In this way, the feed forward neural network can pass the information layer
by layer to get the final output.

By increasing the number of hidden layers, neural networks are able to learn higher
level features with greater complexity and abstraction than shallow neural networks.
For example, in the processing of computer vision tasks, the output of the first few
hidden layers is mostly fuzzy lines and edges, corresponding to low-level features in
the image; whereas the output of hidden layers closer to the output layer is a more



Chapter 2. Preliminary 10

(a) Neurons and synapses

(b) Compute weighted sum for each layer

Figure 2.2: A simple neural network example [FLJ]



Chapter 2. Preliminary 11

specific set of shapes and forms.

2.2.2 Activation Functions

An important improvement over the traditional perceptron model is the inclusion of
a non-linear activation function, which allows the neural network to solve linearly
indistinguishable problems that cannot be solved by the perceptron model.

Common activation functions include Sigmoid, hyperbolic tangent function (Tanh),
rectified linear unit (ReLU), and leaky ReLU (LReLU). The respective formulas and
curves are presented in Fig.2.3.

Figure 2.3: Commonly used activation functions: (a) Sigmoid, (b) Tanh, (c) ReLU,
and (d) LeakyReLU [FLJ]

The purpose of the activation function is to introduce non-linearity which enables
neural networks to tackle very complex non-linear problems. The activation function is
generally at the end of each layer in the network and operates on the output activation
values that complete the weighted summation to give it a non-linear factor. In most
cases, the parameter weight w and bias b are randomly initialized and then iteratively
updated according to back-propagated loss using the gradient descent method. The
introduction of back propagation and gradient descent method can be obtained in
Section 2.2.4.



Chapter 2. Preliminary 12

2.2.3 Loss Functions

A loss function is a non-negative real number function that quantifies the difference
between the model prediction and the true label. Several common loss functions are
described below. The predicted output is represented as pi , while the desired output
is represented as yi.

(a)Mean Square Error function: This function is widely used in regression prob-
lems. The mathematical expression of the estimated Euclidean loss is Eq.2.3.

H(p, y) =
1

2N

N∑
i=1

(pi − yi)2 (2.3)

(b)Cross-Entropy Loss Function: The cross-entropy loss function can be used
to measure the difference between two probability distributions. The mathematical
representation of cross-entropy loss function is Eq.2.4.

H(p, y) = −
∑
i

yi log (pi) where i ∈ [1, N ] (2.4)

(c)Hinge Loss Function: This function is usually used in binary classification
problems. Its mathematical formula is Eq.2.5.

H(p, y) =
N∑
i=1

max (0,m− (2yi − 1) pi) (2.5)

The margin m is commonly set to 1.

2.2.4 Back Propagation based on Gradient Descent

With the addition of a non-linear activation function, the relationship between the
weights and the output can no longer be adjusted in a straightforward manner as in
the traditional perceptron model. Therefore, the gradient descent method is employed
for parameter updating during the learning process of neural networks.

When training a network, each weight value is updated by a gradient descent process.
As shown in Eq.2.6, L represents the loss of total results, wt and wt+1 represent
the weight value before/after updating and α represents learning rate (an artificially
specified factor). The gradient of loss relative to each weight, i.e. the bias of the loss



Chapter 2. Preliminary 13

with respect to the weight, is used to update the weights. This gradient indicates how
the weights should change to reduce the loss. When the gradient is positive, indicating
that an increase in the weights makes the final loss increase, this weight should be
reduced; if the gradient is negative, indicating that a decrease in the weights makes
the loss increase, this weight should be increased. This process is repeated to reduce
the overall loss.

wt+1 = wt − α∂L
∂w

(2.6)

Assuming that each sample is randomly drawn from the real data distribution in-
dependently and identically distributed, the optimization objective is to minimize
the expected value of the loss function. The gradient descent method is to take a
certain number of n samples at a time from a real data distribution of size N , and to
approximate the gradient of expected loss by the gradient of empirical loss computed
from these samples. When n = N , it is called batch gradient descent; when n = 1, it
is called stochastic gradient descent(SGD); when 1 ≤ n ≤ N , it is called mini-batch
gradient descent. The latter two methods have much lower computational complexity
than the batch gradient descent method because the number of samples collected in
a single pass is much smaller. The stochastic gradient descent method is shown in
Algorithm1.

Algorithm 1 Stochastic gradient descent

Input: Training set T =
{(

x(n), y(n)
)}N

n=1
, Validation set V , learning rate η, loss

function L
1: Initialize parameter θ(weight W , bias b)
2: repeat
3: Shuffle samples in T randomly
4: for n = 1 · · ·N do
5: Choose the sample x(n), y(n)

6: θ ← θ − η ∂L(θ;x
(n),y(n))
∂θ

7: end for
8: until Error rate on V stop decreasing.

An effective way to calculate the partial derivative of the gradient is through a process
called back propagation. Back propagation is a calculation derived from the chain
rule of calculus, where values are passed backwards through the network to calculate
how each weight affects the loss.This method has been successfully applied in the
training process of neural networks [LBOM12]. The backpropagation process requires
intermediate outputs from the network in order to perform the inverse calculation,



Chapter 2. Preliminary 14

and therefore the training of neural networks has a large data storage requirement
compared to other machine learning methods. A simple back propagation computation
is shown in Fig.2.4.

The error term in layer l can be calculated from the error term in layer l + 1, which
is called back propagation of loss. The back propagation algorithm means that the
loss term of a neuron in layer l is the sum of the weights of the error terms of all
the neurons in layer l + 1 that are connected to that neuron. Then, it multiplies the
gradient of the activation function of that neuron. By applying the chain rule, the
error term of any neuron in the network can be derived so that the gradient of its
weight relative to the loss can be calculated for gradient updating. Alg. 2 gives the
stochastic gradient descent training procedure using the back propagation algorithm.

Algorithm 2 Back propagation based on stochastic gradient descent

Input: Training set T =
{(
x(n), y(n)

)}N
n=1

, Validation set V , learning rate η, loss
function L, Number of network layers L, Regularization factor λ

1: Initialize parameter θ(weight W , bias b)
2: repeat
3: Shuffle samples in T randomly
4: for n = 1 · · ·N do
5: Choose the sample x(n), y(n)
6: (Feed forward)
7: for l = 1 · · ·L do
8: calculate input z(l) and activation a(l)
9: end for

10: (Back propagation)
11: for l = L · · · 2 do
12:

∂L(y(n),ŷ(n))
∂W (l) = δ(l)

(
a(l−1))>

13:
∂L(y(n),ŷ(n))

∂b(l)
= δ(l)

14: end for
15: (Update parameters)
16: W (l) ←W (l) − η

(
δ(l)
(
a(l−1))> + λW (l)

)
17: b(l) ← b(l) − ηδ(l)
18: end for
19: until Error rate on V stop decreasing.



Chapter 2. Preliminary 15

(a) Compute the gradient of the loss relative to
the inputs

(b) Compute the gradient of the loss relative to
the weights

Figure 2.4: An example of back propagation through a neural network [FLJ]



Chapter 2. Preliminary 16

2.3 Convolutional Neural Network

When using fully connected feed-forward networks to process images, there is one
critical problems: too many parameters. If the input image size is 100× 100× 3 (i.e.,
the image height is 100, the width is 100 and the 3 RGB colour channels), in a fully
connected feed-forward network, each neuron in the first hidden layer to the input layer
has 100× 100× 3 = 30, 000 mutually independent connections, each corresponding
to a weight parameter. As the number of neurons in the hidden layer increases, the
size of the parameters also increases dramatically. This results in a very inefficient
training of the entire neural network and is prone to overfitting.

Convolutional Neural Network (CNN or ConvNet) is a deep feed-forward neural
network, which is inspired by the Receptive Field mechanism in biology. The receptive
field mechanism refers to the property of some neurons in the auditory and visual
nervous systems that neurons receive signals only from the stimulus area they innervate.

Figure 2.5: An simple CNN framework. [PSY+18]

Current CNNs are generally feed-forward neural networks consisting of a cross-stack of
convolutional, convergence and fully connected layers, trained using a back propagation
algorithm. Fig.2.5 shows a simple CNN framework. CNNs have structural properties:
equivalent representations, sparse interactions, and parameter sharing [GBC16]. These
properties allow convolutional networks to have a certain degree of translation, scaling
and rotation invariance. Compared to feed-forward neural networks, convolutional
neural networks have fewer parameters.

2.3.1 Convolution Operation

Convolution is an important operation in analytical mathematics. In signal processing
or image processing, one-dimensional or two-dimensional convolution is often employed.
In convolutional neural networks, the main implementation of convolutional compu-
tation is to slide a convolutional kernel (also called a filter) over a feature map and



Chapter 2. Preliminary 17

obtain a new set of features by convolutional operations without flipping the kernel.
Given an input X ∈ RM×N and a convolution kernel W ∈ RU×V , the convolution
operation is defined as Eq.2.7:

yij =
U∑
u=1

V∑
v=1

wuvxi+u−1,j+v−1 (2.7)

Fig.2.6 illustrates the steps of the convolution calculation. The light blue colour
represents the area of the input feature where the convolution kernel is sized, and the
light green box represents the 2× 2 convolution kernel. The resulting product values
from multiplying elements in the same position in both are all added up to the output
feature value.

In this example, the size of the convolution kernel is 2× 2 and the step size is 1, so
the final size of the output feature map is smaller than the size of the input feature
map by 1. To obtain the feature maps of any size we need, the padding method is
available. By padding zeros around the feature map, feature extraction can be made
more flexible before performing the convolution operation.

2.3.2 Convolution Layer

The core difference between the convolutional layer and the fully connected layer is
that the matrix multiplication operation in the fully connected layer is replaced by
the convolutional operation. Similar to the definition in Eq.2.1, the input of lth layer
of the convolutional neural network is the result of the convolution of the activation
value of (l − 1)th layer with the convolution kernel of lth layer, i.e., as shown in Eq.2.8.

z(l) = w(l) ⊗ a(l−1) + b(l) (2.8)

As a result of these properties, the convolutional layer gains two significant advantages
over the fully connected layer: 1) sparse connectivity. In a fully connected layer, each
neuron in one layer is connected to all neurons in the next layer. In contrast, in a
convolutional layer, each neuron is connected to only those neurons in the next layer
within a window that does not exceed the size of the convolutional kernel. As a result,
the number of weights or connections required between convolutional layers is greatly
reduced compared to fully connected layers. 2) Shared weights. Between convolutional
layers, weights are not distributed between neurons, but all neurons share the same set
of weights in a convolutional kernel, a fact that greatly reduces the required training



Chapter 2. Preliminary 18

Figure 2.6: Calculations executed at each step of convolutional layer [LAH+21]



Chapter 2. Preliminary 19

time and computational cost.

2.3.3 Pooling Layer

The main task of the pooling layer is to sub-sample the feature map to reduce the
number of features and thus the number of parameters, while retaining as much
dominant information (or features) as possible. Similar to the convolution operation,
the span of the pooling and the size of the filter are assigned before the pooling
operation is performed. Of the multiple pooling methods available, the most familiar
and frequently utilised pooling methods are maximum pooling and average pooling.
Fig.2.7 illustrates these three pooling operations.

Figure 2.7: Various pooling forms [LAH+21]

2.3.4 Typical Convolutional Network Structure

A typical convolutional network is a cross-stack of convolutional layers, pooling layers,
and fully connected layers. A convolutional block contains m consecutive convolutional
layers and b pooling layers (m is usually set to 2 ∼ 5 and b to 0 or 1). A convolutional
network can have n consecutive convolutional blocks stacked on top of each other,
followed by k fully-connected layers (the range of values for n is large; k is typically
0 ∼ 2).

AlexNet [KSH12] is the first modern deep convolutional network model that uses many
modern deep convolutional network techniques for the first time, such as using GPUs
for parallel training, using ReLU [NH10] as a non-linear activation function, using
Dropout [SHK+14] to prevent overfitting, and using data augmentation to improve
the accuracy of the model. The structure of AlexNet is shown in Fig.2.8 and consists
of five convolutional layers, three convergence layers and three fully connected layers
(the last layer is the output layer using the Softmax function). Because the size of the



Chapter 2. Preliminary 20

network exceeded the memory limit of a single GPU at the time, AlexNet splits the
network into two halves for parallel training.

Figure 2.8: The structure of Alexnet [Tsa18]

AlexNet has inspired a great deal of later work as the iconic modern neural network
structure. Although it is now no longer good enough for State-of-the-Art, it still plays
an important role as a classical model in teaching and low-threshold applications.

2.4 Binary Neural Network

Although deep neural networks have satisfactory performance for many tasks, they
rely on high-performance hardware such as GPUs to meet the high demand for storage
and computing conditions. In real-world applications, the conditions of the devices
are often not sufficient to meet the demand.

In order to reduce the storage and computing threshold of the network, a popular
approach is to use a low precision representation of the network weights, which serves
to compress the network. The conventional precision for neural networks is FP32,
which is a 32-bit floating point number. A common low precision is INT-8, which
is an 8-bit fixed-point integer. The most extreme form of low precision processing
is binarization. The corresponding neural network is known as a binary neural
network(BNN) [CHS+16].



Chapter 2. Preliminary 21

2.4.1 Binarized Weight Values

Since weights in full precision floating point numbers consume too many computational
resources, binary neural networks aim to represent weights and activations in 1 bit, i.e.
weights and activations in a neural network can only have two possible values, -1 (0)
or +1, as the logic of Sign() function defined as Eq.2.9.

xb = Sign(x) =


+1 if x ≥ 0

−1 otherwise
(2.9)

2.4.2 Back Propagation in Binary Neural Network

While training a binary neural network, if a gradient descent based back propagation
algorithm is to be used to update the parameters, there is no way to directly derive the
derivative values and therefore perform gradient descent directly, as the binarization
function described above is not differentiable. A solution to this problem is to introduce
the technique of straight-through estimators (STE), as shown in Eq.2.10.

clip(x,−1, 1) = max(−1,min(1, x)) (2.10)

Using STE, the weights can then be gradient updated using an established and proven
optimiser such as SDG or Adam. The updated weights are stored in the true weights
Wr, while the trained network uses the binarized weights Wb. The other parts are
consistent with standard back propagation.

For the optimization of binary neural networks, it is common practice to reduce the
quantization error of the weights and activation values. It is a straightforward solution
similar to the standard quantization mechanism, i.e., the quantization parameters
should be as close as possible to the full precision parameters, with the expectation
that the performance of the binary neural network model will be close to the full
precision parameters. Out of concern to avoid the problem of Wr differing too much
from Wb and thus causing the weights to be difficult to change, BNNs limit the value
of Wr to between -1 and +1.

2.4.3 XNOR Operation

When using binarized weights and activation values, the original dot product operation
can be reduced to a bitwise operation. The binary values can be either -1 or +1.



Chapter 2. Preliminary 22

If 0/1 is used to encode -1/+1, as shown in Tab.2.1, the multiplication of binary
values is identical to XNOR logic. Using XNOR logic-based bit operations instead
of dot-multiplication can save significant computational resources in the hardware
implementation.

Encoding(Value) XNOR(Multiply)

0(-1) 0(-1) 1(+1)

0(-1) 1(+1) 0(-1)

1(+1) 0(-1) 0(-1)

1(+1) 1(+1) 1(+1)

Table 2.1: XNOR and multiplication

XNOR is simpler at the bit level than the dot product operation of multiplying and
then summing. For a binary encoding generated by XNOR operation, it can be
summed by multiplying the number of 1 bits in a set of XNOR products by 2 and
subtracting its total number of bits to sum it. The operation of these bits is much
simpler than multiplying and summing multi-bit floating point numbers, which can
result in shorter operation times and less hardware resource requirements. It is also a
clear benefit for the application of neural networks on FPGA-based devices.

2.5 Optimizations of Neural Network

The neural network model is a non-convex function, coupled with the problem of
gradient disappearance in deep networks, which makes it difficult to optimize; in
addition, deep neural network models generally have more parameters and larger
training data, which can lead to lower training efficiency. At present, researchers
have developed a number of empirical techniques from extensive practice to improve
learning efficiency and obtain a good network model in terms of optimization.

When training deep neural networks, the size of the training data is usually quite large.
If in gradient descent each iteration, the gradient over the entire training data has to
be computed, which requires more computational resources. In addition the data in a
large training set is usually very redundant, and it is not necessary to compute the
gradient over the entire training set. Therefore, when training deep neural networks,
mini-batch gradient descent is often used.

The main factors affecting the small batch gradient descent method are 1) batch size



Chapter 2. Preliminary 23

2) learning rate and 3) gradient estimation. In order to train deep neural networks
more efficiently, based on the standard small-batch gradient descent method, some
improvements are also often used to speed up the optimization, such as how to choose
the batch size, how to adjust the learning rate, and how to correct the gradient
estimation.

2.5.1 Learning Rate Scheduler

The learning rate is an important hyper-parameter when optimizing neural networks.
In gradient descent, the value of the learning rate is very critical; if it is too large,
it will not converge, and if it is too small, it will converge too slowly. Commonly
used learning rate scheduler methods include learning rate decay, learning rate warm-
up, periodic learning rate adjustment and some adaptive learning rate adjustment
methods such as AdaGrad, RMSprop [GHS], Stochastic Gradient Descent with Warm
Restarts(SGDR) [LH17], etc.

In SGDR, the learning rate is increased or decreased periodically according to the
cosine function and each period is longer than the previous one, depending on the
proportion of the Warm-Up parameter. Its mathematical definition is given in Eq.2.11.

ηt = ηimin +
1

2

(
ηimax − ηimin

)(
1 + cos

(
Tcur
Ti

π

))
(2.11)

where ηimin and ηimax are the learning rate ranges. Tcur accounts for how many epochs
have been performed since the last restart. Therefore, the learning rate is increased or
decreased periodically according to the cosine function and each period is longer than
the previous one, depending on the proportion of the Warm-Up parameter.

2.5.2 Gradient Estimation

In addition to adjusting the learning rate, a correction to the gradient estimate can be
made. In the stochastic (or mini-batch) gradient descent method, if the number of
samples selected at a time is relatively small, the loss will decrease in an oscillatory
manner. By applying a correction to the gradient to reduce randomness, the speed of
optimisation can be improved.

The most general method currently available is Adaptive Moment Estimation (Adam)
[KB17], which can be seen as a combination of the momentum method and RMSProp
[GHS], allowing the use of both momentum as the direction of parameter updates and



Chapter 2. Preliminary 24

adaptive adjustment of the learning rate.

2.5.3 Parameter Initialization

Parameter learning of neural networks is a non-convex optimization problem. When
gradient descent is used to optimize the network parameters, the selection of the
initial values of the parameters is very critical, which is related to the optimization
efficiency and generalization ability of the network. There are usually three methods
of parameter initialization: pretrained initialization, random initialization and fixed
value initialization.

Pretraining initialization: Different initial values of parameters converge to different
local optimal solutions. Although the losses of these local optima are relatively
close to each other in the training set, their generalization ability varies greatly. A
good initialization will cause the network to converge to a local optimum with high
generalization power. Usually, a model that has been trained on large-scale data can
provide a good initial value for the parameters.

Random initialization: One of the simplest and most widely used methods of
random initialization is to generate the initial values of the parameters by sampling
from a distribution with a fixed mean (usually 0) and variance.

Fixed value initialization: For some special parameters, we can initialize them with
a special fixed value based on experience. E.g., the bias is usually initialized with 0.

2.5.4 Batch Normalization

The Batch Normalization (BN) method [IS15] is an effective layer-by-layer normaliza-
tion method that can normalize any intermediate layer in a neural network. At the
first, the motivation for batch normalization was to solve the internal covariance bias
problem, but later researchers found that the main advantage of normalisation was
that it led to a smoother optimization profile [STIM18].

As shown in Eq.2.12, The distribution of layer input activations (σ, µ) is normalized so
that it has zero mean and unit standard deviation. The parameters (γ, β) are learned
from training. ε is a small constant to avoid numerical problems.

y =
x− µ√
σ2 + ε

γ + β (2.12)

BN can normalize the input distribution of each neural layer to a standard normal



Chapter 2. Preliminary 25

distribution, which allows each neural layer to have better scale invariance to its input.
Regardless of the parameter changes in the lower layers, the inputs in the higher
layers remain relatively stable. On the other hand, it can make the optimization
landscape(the surface shapes of loss functions in high-dimensional space) of the neural
network smoother and make the gradient more stable, thus increasing the convergence
speed.

2.5.5 Regularization

Regularization is a class of methods that improves generalization by limiting the
complexity of the model and thus avoiding overfitting. L1 and L2 regularization are
the most commonly used regularization methods in machine learning. Overfitting of
the model on the training dataset is reduced by constraining the L1 and L2 norms of
the parameters.

Another widely used regularisation method is Dropout [SHK+14], where a random
number of neurons are dropped (along with their corresponding connected edges) to
avoid overfitting when training a deep neural network. Fig.2.9 gives an example of a
network after the dropout method has been applied. By applying the Dropout method,
the network is not dependent on the output of a particular neuron and the robustness
is greatly enhanced

(a) Standard network (b) Dropout applied network

Figure 2.9: Dropout example



Chapter 2. Preliminary 26

2.5.6 Sparse Connection

The fully connected layer is the most common component unit in a deep neural network.
In a fully connected layer, the output activation consists of a weighted sum of all
input activations, i.e. each output is connected to all inputs in the previous layer,
a feature that leads to significant storage and arithmetic requirements. The idea of
sparse connectivity is to remove some of the connections by setting their weights to
zero without undue impact on the final accuracy. The Fig.2.10 shows an example of a
fully connected layer compared to a sparsely connected one.

Figure 2.10: Sparse connection [FLJ]

If this idea of sparsity is applied to network structures, structured sparsity occurs
by fixing the size of the input window. Keeping the weights of the input window
constant over the same single learning process allows all outputs to share the same
set of weights, thus effectively reducing the space required to store the weights. The
convolutional neural networks are designed with this in mind.

2.5.7 Residual Learning

Residual learning, proposed in [HZRS15], improves the efficiency of information
propagation by adding shortcut connections to the non-linear convolutional layers.
Unlike standard convolutional neural networks, the basic unit of a residual network is



Chapter 2. Preliminary 27

the residual block, with each residual block containing two convolutional layers, two
activation function layers and a shortcut connection, as shown in the Fig.2.11.

Figure 2.11: Residual block with shortcut connections [HZRS15]

In theory, a nonlinear unit consisting of a neural network has sufficient capacity to
approximate the original objective function F(x) or the residual function F(x)− x,
but in practice the latter is easier to learn. The power of residual learning made
ResNet the first deep neural network to exceed human-level accuracy in the ImageNet
challenge. The idea of residual learning is also not limited to convolutional neural
networks, but is commonly used in deep neural networks.

2.6 Programmable Logic Device

2.6.1 Field-Programmable Gate Array

Field-programmable gate array(FPGA) is a programmbale logic device. The biggest
advantage of FPGAs over application specific integrated circuits(ASICs) is that they
are re-programmable, whereas ASICs are not. This reconfiguration feature makes
FPGAs widely suitable for prototyping and rapid verification, thus minimizing serious
design errors. Second, FPGAs require only minutes to tens of minutes to reconfigure
the internal logic, which is a significant advantage for rapid iteration requirements.
Designers can update or modify the logic at any time, which is not possible in an
ASIC. However, FPGAs also have some disadvantages, due to their flexible nature,
they are larger and slower than their counterparts. But overall, FPGAs are still one of
the top choices for lightweight general-purpose development needs.



Chapter 2. Preliminary 28

A standard FPGA has the following components: (I) programming logic blocks, also call
configurable logic blocks(CLB), which enable logic functions. (II) routing interconnects,
which are used to establish connections between the programmed logic blocks; and (III)
input and output blocks(IOB), which are ultimately used to implement the interaction
between the internal structure of the FPGA and the external peripherals. Fig.2.12
illustrates a SRAM-based FPGA architecture, where SM and PSB represents switch
matrix and programmable switch blocks.

Figure 2.12: An architecture of a normal FPGA

2.6.2 Look-up Table

The look-up table (LUT) is one of the basic components of the CLB and is divided
into single-input LUTs and multi-input LUTs. for an LUT with k input pins, the
number of bit combinations it can be configured is 2k. 4-LUT(shown in Fig.2.13) is
one of the most commonly used LUTs in FPGAs and as mentioned above, it has 4
input pins and 16 input bit combinations to configure.

The LUT is essentially a Random Access Memory(RAM), and when the user describes
a logic circuit through a schematic or hardware description language, the FPGA
development software automatically calculates all possible results of the logic circuit



Chapter 2. Preliminary 29

Figure 2.13: A 4-LUT example



Chapter 2. Preliminary 30

and writes the results into the RAM in advance, so that each signal input for logic
operation is equivalent to inputting an address for a lookup table, finding out the
content corresponding to the address, and then outputting it. By using lookup tables
instead of logic gates as the basic unit of CLB, FPGA circuits can provide higher
flexibility and integration complexity.

2.6.3 Memory based Reconfigurable Logic Device

In addition to standard FPGAs, there are other kinds of programmable logic devices
that use SRAM-based LUTs as the basic unit. One example is a recently proposed
memory based reconfigurable logic device (MRLD) [WHT+17], taking multiple look-up
tables (MLUT) as the core component structure, has demonstrated attracting benefits
such as low production cost, low power and small delay and owns programmable
function to implement designed circuit logic. Its structure is shown in Fig. 2.14.

Figure 2.14: The structure of MRLD

MRLD is an MLUT array constructed with a special internal connection structure.
As shown in Fig. 2.15, a MLUT block has 4 SRAM with 8 bits for each and one
8-bit output control register and can implement input-and-output relationships under
the the number of bits. MLUTs are basic reconfigurable elements that consist of
synchronous SRAM and asynchronous SRAM, with address inputs and data outputs
forming pairs of interconnects. For an MLUT, the address input comes from the data



Chapter 2. Preliminary 31

outputs of its neighboring MLUTs, and the outputs are connected to the address
inputs of these MLUTs. Each MLUT can operate as a independent CLB or a wiring
block(like SM or PSB).

Figure 2.15: Internal schematic of MLUT

Compared to logic and switch block independent FPGAs, the MRLD has the following
advantages: Each MLUT can be used as a logic block or wiring element by configuring
the corresponding truth table in the SRAM. the address input/data output of the
MLUT will be the input/output of the configured logic circuit (or wiring element).
Since the logic blocks and wiring elements are configured in the SRAM, there is no
longer a need for as many interconnect resources as in an FPGA, making it possible
to have high density reconfigurable devices with small latency and low power.



Chapter 3
Multiple Look-up Table based Logic
Learning by Neural Network

Abstract

This section presents approximate computing consistent with a memory-
based reconfigurable logic device (MRLD). We propose a novel implemen-
tation flow how to realize a function of multiple look up table (MLUT) by
employing neural network (NN) based machine learning. Like a function
fitting, our method implements a logic function induced by a set of input
and output. To verify the performance of approximate computing imple-
mentation, we compare a general polynomial regression method and a deep
neural network. The results suggest relatively a deeper NN is superior on
loss value and accuracy rate. The NN models achieve lower symbol error
rate (SER) and get considerable loss reduction respectively compared to
the polynomial regression.

32



Chapter 3. Multiple Look-up Table based Logic Learning by
Neural Network 33

3.1 Problem Description

A typical hardware implementation contains a logic synthesis, which is the process of
converting a high-level description of design into an optimized gate-level representation.
Usually, the source of logic synthesis information is hardware description language in
RTL level, and target is to generate netlist of circuit. After partitioning, floorplan,
placement and routing, the circuit can get mapping with designed logic finally, as
shown in Fig.3.1a. A tentative idea is to employ reconfigurable hardware device like
FPGA or SRAM logic device which owns programmable function to approach designed
circuit logic, as shown in Fig.3.1b.

(a) Typical Logic Synthesis procedure

(b) NN-based MLUT mapping procedure

Figure 3.1: Comparison of NN-based MLUT matching and typical logic synthesis

Assuming that a NN model can learn the input-and-output relationship, under not
guaranteed accuracy request, we can implement an approximate function on logic
device, as shown in Fig.3.2. Through the function simulation, an input-and-output
relationship of circuit logic can be obtained.

Considering the high computation and strong ability of abstracting deep-layer char-
acteristics, it is appropriate to be solved with neural network. Under appropriate
parameter configuration, NN is not limited by degrees of polynomial and probably has
effective performance on approximate function fitting problem.

3.2 Network Construction

The NN model consists of multiple layers, mainly including a fully connected (FC)
layer, a nonlinear activation layer, and an output layer. The fully connected layer
performs linear transformation of the input vectors. It is the main component of the
NN model. The nonlinear activation layer uses the rectified linear unit RELU function.



Chapter 3. Multiple Look-up Table based Logic Learning by
Neural Network 34

Figure 3.2: Approximate function configuration induced by simulation



Chapter 3. Multiple Look-up Table based Logic Learning by
Neural Network 35

The Softmax layer is crucial for implementing the output probability distribution and
is often used for a variety of classification problems; whereas for numerical regression
problems, the Softmax layer is incompatible with the expected data form. In this
paper, the last layer of the NN model is set as the FC layer, which directly outputs
the prediction results.

The constructed NN model is shown in Fig.3.3 The size of the input layers is not
preset to allow for scaling to different needs. The number of hidden layers is set to 5
and the optimizer uses the Adam optimizer, which is able to achieve a good balance
between convergence speed and global optimization. The loss function uses the mean
square error (MSE) function.

3.3 Experiments

To check the performance of NN method, an appropriate target function for fitting
should be set. In the following experiment, two typical functions are chosen as
simulation targets. Function 1 is 3.1, and function 2 is 3.2.

f(x) = 2x3 + 5x2 + 8x (3.1)

f(x) = (x2 + x−1) + sin x (3.2)

Function 1 is a typical polynomial function without a bias while function 2 is a
polynomial function based on sin(x). For a polynomial regression (PR) model, it is
difficult to fit. In order to show comparison, the fitting results and loss value tables of
learning result for function 1 are shown in Fig.3.4 and Tab.3.1, respectively.

Model Polynomial Regression Neural Network

Training 36.82k 12.41k

Testing 1.39× 106k 433.38k

Table 3.1: Loss value of function 1.

As well, the fitting results and loss value tables for function 2 are shown in Fig.3.5
and Tab.3.2, respectively. It can be seen obviously that, under the case of simple
polynomial function 1, both models, NN and PR, can learn the function, though NN
takes a little advance than PR. For the sin-based function 2, both methods meet



Chapter 3. Multiple Look-up Table based Logic Learning by
Neural Network 36

Figure 3.3: Constructed NN model



Chapter 3. Multiple Look-up Table based Logic Learning by
Neural Network 37

Figure 3.4: Results for function 1; (a) Training results by PR, (b) Testing results by
NN, (c) Testing results by PR,(d) Testing results, by NN.

the limitation of the fitting ability on outside range, which is limited by the fitting
principle. While in the range of training data, for the new testing data, NN performs
much better.

Model Polynomial Regression Neural Network

Training 197.536 25.386

Testing 1.719× 107k 14k

Table 3.2: Loss value of function 2.

Although the performance of NN outperforms that of PR model, it still does not
satisfy the request well. To reduce the loss and improve the accuracy in further steps,
some optimizing measures are essential to be operated.

To enhance the quality of an NN method, a natural idea is expanding the size of
network and deepen its depth. A larger network leads to better performance is generally
known in area of machine learning, yet with the demerits of slower convergence speed
and a higher risk of over-fitting. By testing with various-size networks, it is helpful



Chapter 3. Multiple Look-up Table based Logic Learning by
Neural Network 38

Figure 3.5: Results for function 2; (a) Training results by PR, (b) Training results
by NN, (c) Testing results by PR, (d) Testing results, by NN.

to find the optimized size for practical problems. In this chapter, three different size
networks are generated, details in Tab.3.3.

Hidden Layers Amount Hidden Layers Size

case1-1 5 100

case1-2 20 100

case1-3 20 200

Table 3.3: Size of different networks

Parameter tuning is also an effective method to achieve the optimal convergence point
of whole areas. Plus, learning rate is essential for the whole model. Too large learning
rate leads to slow the convergence speed even not be able to converge at an optimal
point. However, too small learning rate also causes tardy convergence speed and needs
more time. For this dilemma, a properly appropriate learning rate is considerable. A
big learning rate contributes to accelerate training process but causes negative effect
in later period because of oscillation. In contrast, although a small learning rate can
avoid oscillation problem but costs much more time. A compromise method is to add



Chapter 3. Multiple Look-up Table based Logic Learning by
Neural Network 39

decay to learning rate, such as step decay and exponential decay. The cases with
different decay methods are also attached in Tab.3.4.

Initial learning rate Decay

case2-1 0.01 N/A

case2-2 0.001 N/A

case2-3 0.001 0.9 EXP

Table 3.4: Learning rate schedulers of different networks

Density of training data points can also cause unexpected influence. One model may
behave well when training data points are given sufficiently, but there is still the possi-
bility of worse performance when density of training data decreases. Comprehensive
checking of the model performance is an indispensable part in evaluation. Density
configurations are shown in Tab.3.5.

Data points amount

case 3-1 200

case 3-2 500

case 3-3 1000

Table 3.5: Data points density configuration

The fitting results of Tab.3.3 (about different network size) are illustrated in Fig.3.6
The fitting results of Tab.3.4 (about different learning rate) are shown in Fig.3.7.
Analogously, the results of Tab.3.5 (about different data density) are demonstrated in
Fig. 3.8. Furthermore, loss values of all cases are summarized in Tab.3.6.

Observing the loss value of training/testing, a few key points can be concluded: 1) By
increasing the size of network, both testing loss inside and outside decreased (from
case 1-1 to case 1-3). However, a deeper NN tends to suffer from the over-fitting and
is also hard to accelerate. 2) By adding decay to default learning rate, the testing loss
can be reduced effectively (case 2-1 and 2-3). Another noteworthy point is in case 2-2,
under the case of too small learning rate, the final results become over-fitting situation
and leads to higher testing loss inside. It is important to choose an initial rate and
add decay rate cautiously. 3) Along with the increasing of data density, which is same
as the amount of data points, the NN model is harder to drop in over-fitting trap and
easier to obtain lower testing loss.



Chapter 3. Multiple Look-up Table based Logic Learning by
Neural Network 40

Figure 3.6: Training (red) and testing (purple) result of different network sizes.
(a)(b) case 1-1, (c)(d) case 1-2,(e)(f) case 1-3.



Chapter 3. Multiple Look-up Table based Logic Learning by
Neural Network 41

Figure 3.7: Training (red) and testing (purple) result of different network learning
rates. (a)(b) case 2-1, (c)(d)case 2-2, (e)(f) case 2-3.



Chapter 3. Multiple Look-up Table based Logic Learning by
Neural Network 42

Figure 3.8: Training (red) and testing (purple) result of various data density. (a)(b)
case 3-1, (c)(d) case 3-2, (e)(f)case 3-3.



Chapter 3. Multiple Look-up Table based Logic Learning by
Neural Network 43

Training Loss Testing Loss Testing Loss (Prediction)

Case 1-1 6.72k 4.38k 1734k

Case 1-2 4.57k 2.99k 699k

Case 1-3 8.36k 2.69k 328k

Case 2-1 4.72k 3.86k 777k

Case 2-2 3.01k 6.03k 462k

Case 2-3 3.27k 3.23k 323k

Case 3-1 6.42k 7.93k 633k

Case 3-2 9.09k 4.07k 537k

Case 3-3 10.73k 2.81k 491k

Table 3.6: Loss of different NN models

3.4 Summary

This chapter proposes an approximate computing experiment with its result for function
mapping based on neural network and makes comparison with existing polynomial
regression method. Basically, neural network performs better on reduction of loss than
polynomial regression method. However, deeper network is also harder to train and
easier to drop in the bucket of over-fitting on simple functions.

The uncomplicated structure of the neural network reveals the limitations of making
numerical predictions outside the input range. Another obvious drawback is that due
to the nature of the neural network itself, it does not learn as well as it could for
discrete functions that are not continuous.



Chapter 4
Approximate Decomposition of Multiple
Look-up Tables under Acceptable Error
Tolerance

Abstract

Approximate calculations are widely used in electronics design automation
and optimization to help achieve effective area compression and complexity
reduction. For more complex multiple lookup table logic, a common
problem is that the size is too large to be deployed directly on the memory
cells of configurable logic devices. The subject of this chapter is a novel
approximation method based on a depth-first search and partitioning
algorithm by setting reserved bits in order to decompose larger size LUTs
into combinations of smaller LUTs and finally generate approximate LUT
combinations with an acceptable threshold accuracy. The experiments are
performed on 4-bit/8-bit multiplier logic.

44



Chapter 4. Approximate Decomposition of Multiple Look-up
Tables under Acceptable Error Tolerance 45

Unlike traditional logic synthesis-based circuit hardware, logic devices like FPGAs
or SRAM-based logic devices have programmable functions to deploy the designed
circuit logic. Through functional simulation, the truth table of the circuit logic, i.e.,
the input and output relationships of the logic, can be obtained, as shown in Fig.4.1(a).
Assuming that a memory unit is large enough to store the truth table, the logic can
be implemented directly using a single memory unit.

Figure 4.1: Mapping to LUTs

However, in a real reconfigurable hardware device, we have to map the truth table
into a set of look-up tables (LUTs), which are interconnected as shown in Fig.4.1(b).
An LUT is a form of table that holds predefined information in an array-like entry
format that is easily accessible. In Boolean logic, an N-bit LUT can encode an N-input
Boolean function by storing the corresponding truth table. In the N -bit case, the LUT
has 2N rows, each corresponding to one possible bit pattern. The input of the Boolean
function drives the LUT to access the value of the corresponding output stored in the
array.

In general, the input and output sizes of a given truth table are much larger than
the LUTs of the device. Therefore, decomposing the larger LUT logic into smaller
combinations of LUT logic and maintaining a relatively low and acceptable error rate
facilitates the efficient use of reconfigurable hardware devices and reduces the difficulty
of mapping larger LUT logic.



Chapter 4. Approximate Decomposition of Multiple Look-up
Tables under Acceptable Error Tolerance 46

4.1 Approximate Decomposition for LUT

In this chapter, we provide a new idea to decompose the truth table of a given logic to
generate a set of smaller LUTs, keeping the intrinsic logic intact. The basic approach
is to decompose a LUT into smaller LUTs that are connected in a cascade. A key idea
is the setting of reserved bits, which refers to reserving a portion of the input bits of a
relatively preceding sub-LUT for a later LUT in a cascade connection.

4.1.1 Definition of Question

A universal LUT optimization definition is given as follows: for a given LUT and its
approximation LUT, the Boolean logic of them are F and F ′. The functions of both
logics are represented as Y = F (X) and Y ′ = F ′(X) (We label approximation relative
variables by the apostrophe, lso in later). For the same input set X = {x0, x1, . . . , xn},
there are different output set Y = {y0, y1, . . . , yn} and Y ′ = {y′0, y′1, . . . , y′n}. To
evaluate the performance of approximation results, we define the correct rate Rc,
which is defined as follows:

Ci =

{
0, yi 6= y′i

1, yi = y′i
(4.1)

Rc =

∑n
i=1Ci
n

(4.2)

For Boolean logic, an N-bit input Boolean truth table can represented by an N-bit
LUT completely. While for a lot of actual Boolean logics, some different inputs do not
always map different output values but the same ones, which generates repeated output
values and provides the space of optimization. By counting the amount of the same
outputs individuals to understand their distribution, we can efficiently decompose LUT
and generate approximation within an acceptable error tolerance rate. To decompose
LUT with large size effectively, we utilize the methodology of block dividing: For each
nonrepeat output value, we divide the inputs corresponding to the same output value
into the same group and count the amount of output groups. Obviouly, for N-bit LUTs
with d non-repeat output values, d is definitely not bigger than 2N , which reveals
potential optimization space.

An the example shown in Fig. 4.2, a decomposed 4-bit LUT are combined of two
parts. The first part A = G(X) works like an encoder, which encodes input X to
intermediate variables A. And the second part Y ′ = H(A) works like a decoder,



Chapter 4. Approximate Decomposition of Multiple Look-up
Tables under Acceptable Error Tolerance 47

decoding intermediate variables A to Boolean output Y ′. For the whole process, there
is Y ′ = F ′(X) = H(G(X)).

Figure 4.2: Example: Decompose a 5-bit LUT

4.1.2 Overall Decomposition VS Reserved Bit Decomposi-
tion

About how to decompose a LUT, we propose two different ways to compare: overall
decomposition (OD) and reserved bit decomposition (RBD). For more intuitive, a
4-bit LUT optimization comparison is showed in Fig. 4.3. The original LUT is of 4-bit
inputs and 4-bit outputs, representing it simply as (4, 4). In Fig. 4.3 (a), it has been
decomposed to two new LUTs, (4, 3) and (3, 4) respectively. And in Fig. 4.3 (b), LUTs
are of size (3, 2) and (3, 4). And the input x3 is the reserved bit, which connects the
sub-LUT, Y ′ = H(A).

An attempt of decomposing a 4-bit LUT are shown in Fig.4.3 to make a brief explana-
tion. In Fig.4.3(a) using the OD method, the condition for lossless decomposition is
that the amount of non-repeat individuals of the output value set Y ′1 is not over the
maximum possibilities that the digits a0 a2 can express, that is, 23 = 8. In Fig.4.3(b)
using the RBD method, the condition for lossless decomposition is that for each value
(0 or 1) of the reserved bit x3, the number of non-repeat individuals of output value
set Y ′2 is not over the maximum possibilities that the digits a0 a1 can express 22 = 4.
In Fig.4.3(c), the output bits of the first sub-LUT A = G(X) are further reduced on



Chapter 4. Approximate Decomposition of Multiple Look-up
Tables under Acceptable Error Tolerance 48

Figure 4.3: Progressive LUT decompositions

the basis of Fig. 4.3(b). In actual situations, this step will be executed if there is still
rest optimization space after the RBD is completed. If not, this step will be skipped.

Therefore, it is clear that: If an N-bit LUT can be decomposed losslessly by RBD, it
can also be decomposeed losslessly by OD. On the contrary, if an N-bit LUT can be
decomposeed losslessly by OD, it may not be able to be decomposed losslessly by RBD.
Adding reserved bit reduces rest optimization space. To classify reserved bits does
reduce the size of decomposed LUTs, while add restrictions to LUT decomposition.

In a short summary, if the result of OD is within the error tolerance, then further
try to use RBD. If the RBD decomposition succeeds to obtain a feasible solution,
further attempt will be made to reduce the intermediate transition output bits of the
sub-LUT, so as to reduce the number of terminals of the sub-LUT and reduce the
subsequent mapping cost.

4.1.3 LUT Decomposition Algorighm

Although it actually imports extra cost, the method of decomposeing larger LUTs to
smaller ones make it easier to use reconfigurable hardware device to approach designed
complex circuit logic. The decomposition cost can be evaluated from two indicators:
one is the total additional size increment of the decomposed LUTs compared to the
original LUTs, and another is Rc, the accuracy of the output of the decomposed
circuit compared to the original LUTs. For the given and fixed LUTs logic and its
decomposition, two factors are related to the size of the extra cost. The amount
of non-repeat output values d and configuration of reserved bits. The two factors
determine how many bits transition input and output (a0 − a2) can be reduced in the



Chapter 4. Approximate Decomposition of Multiple Look-up
Tables under Acceptable Error Tolerance 49

intermediate process of decomposition, the size of the extra LUT size cost and the
final accuracy result, Rc.

In OD process, it is not difficult to calculate the Rc from counting the non-repeat
output value individuals. Assuming the output value set Y , having d different non-
repeat output values. For an N-bit LUT and 2N > d > 2N−1, the decomposition loss
will be the (d− 2N−1) groups which owns the least entries. Thus, Rc is available to be
calculated. For RBD, it is unavailable to obtain the Rc of the whole LUT due to the
existing of reserved bits. Because it is possible that same output values in the same
divided group, while correspond unequal reserved bits values. Therefore, we propose
a methodology of divide-and-conquer, dividing the whole LUT into separate blocks
and count the total loss to calculate the Rc of the whole LUT. The process of dividing
LUT according to reserved bits has been shown in Fig. 4.4.

Figure 4.4: LUT decomposition process with reserved bits

Another factor influencing dividing process and final performance is the choice of
reserved bits, because different bit patterns have different weight of influence on
internal logic. For an N-bit LUT, the choice space of k reserved bit is Ck

N , and the
total space {C1

N + ...+ CN
N }. To find optimal solutions, we use depth-first search in

the total space. The pseudo Algorithm. 3 is given to explain the procedure.



Chapter 4. Approximate Decomposition of Multiple Look-up
Tables under Acceptable Error Tolerance 50

Algorithm 3 Decomposition process of LUT
Require: Y : the output of N -bit LUT L, Rcm: required minimal correct rate
Ensure: RES: LUT decomposition result
1: RES = {}
2: for k in range(0, N − 1) do
3: space = Permutation(Ck

N) /* Search space: the permutation of reserved bit
selection */

4: length = len(space) /* the length of search space */
5: for i in range(0, length) do
6: resi = Decompose(Y, space[i]) /* Decompose LUT L by selected reserved bits

*/
7: Rc = CalculateLoss(resi) /* Calculate the correct rate Rc */
8: if Rc > Rcm then
9: RES.append(resi)

10: end if
11: end for
12: end for
13: return RES

4.2 Experimental Results

In this section, we test the LUT decomposition methodology on cases of basic arithmetic
multiplier logic, using an 4-bit multiplier logic and a 8-bit multiplier logic respectively.
For the 4-bit multiplier logic, the input part consists of two parts i1 = x0x1x2x3&i2 =

x4x5x6x7, each part as two 4-bit binary numbers. And the output i1 × i2 is an 8-bit
binary number. The 8-bit multiplier logic is similar and includes two 8-bit input and
one 16-bit output. The error rate limitation is set as 30% and the results beyond it
will be droped. The operation result of the LUT decomposition methodology under
4-bit and 8-bit multiplier logic are shown in Tab. 4.1.

The LUT decomposition methodology optimizes the two indexes under the error
rate tolerance: the amount and selection of reserved bits, and the another is the
maximum decomposition accuracy of the remaining part, the sub-LUT. The benefits
and additional costs under each approximate solution are also shown in Tab. 4.2.
Experimental results show the decomposition of the 4-bit/8-bit multiplier logic and
obtain 2-4 bit reduction within error rate of 5.4%-23.4% / 0-19.4%.

Operation time: 4-bit 2.271 s, 8-bit about 44min. Operated under the hardware
environment of Intel i7-6700HQ and 16GB RAM.



Chapter 4. Approximate Decomposition of Multiple Look-up
Tables under Acceptable Error Tolerance 51

Case Method LUT Size Reserved Bit Correct/Total

4-bit
MUL

OD (8,6)+(6,8) N/A 215/256

RBD

(7,6)+(7,8) x3 242/256
(6,5)+(7,8) x3, x7 229/256
(5,4)+(7,8) x2, x3, x7 196/256
(4,3)+(7,8) x1, x2, x3, x7 183/256

4-bit
MUL

OD (16,14)+(14,16) N/A 63288/65536

RBD

(15,14)+(15,16) x7 65536/65536
(15,13)+(14,16) x7 52784/65536
(14,12)+(14,16) x7, x15 48711/65536
(13,12)+(15,16) x6, x7, x15 57611/65536

Table 4.1: 4-bit/8bit multiplier logic decomposition

Case LUT Size Method
Total Bit
Reduction

Correct
Rate

Additional
Size Cost

4-bit
MUL

(8,6)+(6,8) OD 2 0.840 25%
(7,6)+(7,8)

RBD

2 0.946 50%
(6,5)+(7,8) 3 0.895 25%
(5,4)+(7,8) 4 0.766 12.5%
(4,3)+(7,8) 5 0.715 6.25%

8-bit
MUL

(16,14)+(14,16) OD 2 0.966 100%
(15,14)+(15,16)

RBD

2 1.0 50%
(13,12)+(15,16) 4 0.879 12.5%
(15,13)+(14,16) 3 0.806 50%
(14,12)+(14,16) 4 0.744 25%

Table 4.2: Decomposition Performance Summary



Chapter 4. Approximate Decomposition of Multiple Look-up
Tables under Acceptable Error Tolerance 52

4.3 Summary

We have introduced a divide-and-conquer methodology focusing how decompose a large
truth table into smaller LUTs and combine them to the approximation of original truth
table. The experiments of universal multiplier logic have been conducted and the result
shows that it is available to generate approximate truth tables under an acceptable
error tolerance by reasonable selection of reserved bits and decomposition accuracy.
This reduces the difficulty of mapping large-scale LUT logic to finite input/output
programmable logic circuits effectively.

As the data results shown in Section 4.2, there are multiple approximate LUT decom-
posing solutions for the same single LUT complexity reduction, and corresponding to
different error rate and additional cost of LUT scale selection.

On the other hand, because of the limitation of decomposition and exhaustive search
in computational efficiency, when facing large scale LUTs. This will also be one of our
future directions of exploring the way to search optimal decomposition solutions of
larger size truth tables more efficiently.



Chapter 5
MLUTNet: A Neural Network for
Memory based Reconfigurable Logic
Device Architecture

Abstract

Neural networks have been widely used and implemented on various hard-
ware platforms, but high computational costs and low similarity of network
structures relative to hardware structures are often obstacles to research.
In this chapter, we propose a novel neural network in combination with the
structural features of a recently proposed memory-based programmable
logic device, compare it with the standard structure, and test it on common
datasets with full and binary precision, respectively. The experimental re-
sults reveal that the new structured network can provide almost consistent
full-precision performance and binary-precision performance ranging from
61.0% to 78.8% after using sparser connections and about 50% reduction
in the size of the weight matrix.

53



Chapter 5. MLUTNet: A Neural Network for Memory based
Reconfigurable Logic Device Architecture 54

5.1 introduction

5.1.1 Motivations and Contributions

When deploying neural networks to MRLD-like programmable logic hardware, there
are two most critical issues: storage cost and architecture conversion. Some works on
limiting the numerical accuracy of neural networks have been presented, but how to
structurally reorganize to cut the complexity and storage expense of the network is
still a meaningful problem to be solved.

Based on the starting point of solving the above problem, we propose a new neural
network based on the MRLD structure named MLUTNet. In MLUTNet, we adopt
a network topology similar to the MRLD structure to partition the middle layer of
the network in order to reduce the storage expense of neural network deployment on
hardware platforms effectively. The contributions of this chapter are as follows.

• We propose MLUTNet, a novel neural network with an atypical structure.MLUTNet
combines the advantages of two aspects: the efficient learning performance of
neural networks and the similar structure of MRLD, which makes MLUTNet
easy to implement on MRLD or other similar logical storage devices without
much extra effort.

• We conducted experiments and compared the results with their MLUTNet
versions on three different popular datasets using standard and binary neural
networks as the baselines, respectively. Compared to a fully connected neural
network of the same size, MLUTNet saves over 50% of the weight matrix storage
space and also reduces the size of individual weight matrices efficiently, with
acceptable performance loss in accuracy on the dataset.

• The method is simple and easy to implement with good scalability; the MLUTNet
version of a particular network can be substituted for the original network at no
additional cost to meet the need to reduce the size of the network. This is very
friendly for subsequent extension studies.

5.1.2 Organization of the chapter

The chapter is organized as following:

• Section 5.2 presents an explanation of the proposed MLUTNet and its operation
principle.



Chapter 5. MLUTNet: A Neural Network for Memory based
Reconfigurable Logic Device Architecture 55

• Section 5.3 shows the experimental results and analysis.

• Section 5.4 concludes and summarizes.

5.2 MLUTNet

5.2.1 Network Definition

Assuming an end-to-end approach to train directly on full precision neural networks,
i.e., using the input-target data pairs of data as training data and then mapping the
trained neural networks to MRLD, we will face many potential problems. 1) The
hidden layers of standard neural networks are usually fully connected, the size of
individual weight matrix is large, and the number of connections grows exponentially
with the size of the weight matrix. From the SRAM storage point of view, it is
unrealistic to achieve a reasonable mapping on MRLD without limiting the size of
the weight matrix and the number of connections. 2) The parameter storage and
arithmetic processes inside the standard neural network are executed at full precision
by default. However, most programmable logic devices support limited precision, and
the operational expenses increase dramatically when the precision is higher. Therefore,
it is important to use a neural network model with limited precision to find a balance
between accuracy and cost. 3) The nonlinear activation functions commonly used
in neural networks, such as Sigmoid and tanh, usually require proprietary resources
for implementation on programmable logic devices and can only be approximated
with limited accuracy. Although the expense of a single operation is not significant,
considering that each parameter of the hidden layer weights is involved in the activation
operation, a more sensible measure is to switch to other activation functions that are
more friendly to hardware mapping.

To address the above issues, we use the following measures to improve them. For 1),
we import the methods of splitting the hidden layer and neighbor-only connections.
Since MRLD devices are composed of multiple MLUTs as basic cells, each MLUT can
be regarded as a small SRAM array with data storage or logic wiring or both. We
split the originally larger hidden layers according to the MRLD topology, perform the
computation and parameter update separately, and merge them into the final result
after the computation is completed. And for the connections between the split weight
matrices, we utilize neighbor connections to reduce the number of connections and
also play a role in preventing overfitting. For 2), we import the idea of low precision
neural network, BNN, as the comparative alternative to the full-precision standard



Chapter 5. MLUTNet: A Neural Network for Memory based
Reconfigurable Logic Device Architecture 56

neural network. BNN uses a 1-bit representation for the weights and XNOR-bit
operation instead of the usual multiplication operation. Compared with full-precision
multiplication, both the software training cost and the hardware computation cost can
be effectively reduced. For 3), we use the ReLU function [NH10] and Htanh functions
as activation functions instead of the traditional Sigmoid and tanh. Benefiting from
their simple numerical logic,both can be implemented by linear combinations of logic
gates.

ReLU(x) = max(0, x) (5.1)

Htanh(x) = max(−1,min(1, x)) (5.2)

5.2.2 Training and Connection of MLUTNet

Based on the above analysis, we propose a new artificial neural network structure,
MLUTNet. Fig. 5.1 shows an illustration of the conversion and comparison of a single
hidden layer neural network with MLUTNet.

In addition to having the learning potential of a standard neural network, the weight
matrix separated structure and sparse connection design employed by MLUTNet make
it more friendly for subsequent mapping and implementation on MRLD and similar
hardware. Based on the trained MLUTNet, the weight matrix can be mapped to
MLUT units and wired on the MRLD depending on the network connectivity. If the
split matrix still exceeds the unit storage limit of the device, then it needs to be stored
separately in multiple memory units while increasing the cost of data exchange in
the network implementation. It means that there will be multiple MLUTs that are
combined as a larger generalized “Big-MLUT” within which the weight matrix is stored
and data is exchanged.

A key point of interest is how each sub-layer should be connected to the next sub-layer
between adjacent hidden layers. A plain and natural idea is to use full connectivity
in the same way that neurons within a hidden layer are connected to each other.
But unfortunately, this approach is not feasible. On the one hand, it is difficult or
impossible to fully interconnect the MLUT units storing the weight matrix due to the
limitation of the number of connections within the hardware and cost considerations.
On the other hand, for MLUTNet, full interconnection between sub-layers does not
necessarily enhance performance, but may cause degradation of network performance
by reducing the sparsity of the network, as reflected in the experimental data in Section
5.3.



Chapter 5. MLUTNet: A Neural Network for Memory based
Reconfigurable Logic Device Architecture 57

(a) NN

(b) MLUTNet

Figure 5.1: One NN and MLUTNet



Chapter 5. MLUTNet: A Neural Network for Memory based
Reconfigurable Logic Device Architecture 58

Considering the need to fit the structure of MRLD as closely as possible and to reduce
the obstacles for subsequent implementations, we use neighborhood connection, as
shown in 5.2. The connections between sub-layers will be dropped by some determined
logic (e.g., red connection are dropped in the odd number of layers and blue ones in
even layers). If a sub-layer has input from more than one sub-layer, the input it receives
is summed up as the new input. This connection method has several advantages: firstly,
sparse neighbour-only connections make the network structure as similar as possible
to the MRLD topology, reducing barriers to subsequent implementation; furthermore,
sparse inter-layer connections reduce the possibility of over-fitting; and finally, a smaller
number of connections reduces the computational and memory overhead of the network.
The disadvantage is that each sub-layer can only affect its neighboring sub-layers, so
the network needs to be deep enough to ensure learning capability.

As a result of the above discussion, the network logic of MLUTNet was finalised as
follows. Layers of the network are split into multiple sub-layers, and no connection is
created between sub-layers of the same layer. The activation function is attached after
each sub-layer. During the training process of the network, the training of sub-layers
in the same layer is run in parallel. In the input layer, the input data matrix is cut
equally along the Y-axis and used as the output of the sub-layers of the input layer,
respectively. And at the output layer, the outputs of the two sub-layers are combined
along the Y-axis and used as the final output.

(a) Full (b) Neighbourhood

Figure 5.2: Full connection and neighbourhood connection

To make the process more understandable, we illustrate the process with a segment of



Chapter 5. MLUTNet: A Neural Network for Memory based
Reconfigurable Logic Device Architecture 59

actual MNIST data going through MLUTNet. As shown in the Figure. 5.3, the test
data is a gray-scale image with an initial dimension of 28× 28 and the content is a
handwritten number whose label is a one-dimensional vector of size 10. This vector is
one-hot, i.e., only one element is 1 and the rest is 0. The x-axis coordinate of element
1 represents the content of the image, i.e., which of the numbers 0 to 9 is the image.
Suppose we use a batch size of 100 for each training, i.e., the initial dimension of the
data is 100× 28× 28. After binarizing the data, the size of the input data is 100× 784.
When entering the input layer, the input data is divided into two matrices of size
100× 392. It is then multiplied with the weight matrix of size 392× 392 in the hidden
layer. In the output layer, we will finally get two matrices of size 100× 5 and merge
them into the final result of 100× 10. For more specific process details, the MLUTNet
generic training flow written according to the algorithm format is shown in Algorithm
4.

Figure 5.3: Dataflow in MLUTNet on MNIST

5.3 Experimental Results

We configure four types of network models, standard neural network(NN), binary
neural network(BNN), MLUTNet neural network(MLUTNet), and binary MLUTNet
(B-MLUTNet) neural network. The experimental results are operated under the
following hardware environment: Intel i7-6700HQ, NVIDIA GTX 1060 and 16GB
RAM. The related codes are implemented by PyTorch framework.

Details configurations about the models are briefly described as follows. The ratio of



Chapter 5. MLUTNet: A Neural Network for Memory based
Reconfigurable Logic Device Architecture 60

Algorithm 4 Algorithm: Train a MLUTNet
Require: the number of network layers L, the number of sub-layers each layer S,

weights of network W , activation values a, gradient values g, learning rate η
Ensure: updated weights W t+1, updated learning rate ηt+1

1: {Forward propagation}
2: for k in range(1, L) do
3: for m in range(1, S) do
4: (if Binary) Wk,m ← Binarize(Wk,m)
5: ak,m ← abk−1,mWk,m

6: (if Binary) ak,m ← Binarize(ak,m)
7: end for
8: end for
9: {Backward propagation}

10: for k in range(L, 1) do
11: for m in range(1, S) do
12: gak−1,m

← gak,mWk,m

13: gWk,m
← g>ak,mak−1,m

14: end for
15: end for
16: {Updating parameters}
17: for k in range(1, L) do
18: W t+1

k ← Update(Wk,m, η, gWk,m
)

19: ηt+1 ← Scheduler(η)
20: end for



Chapter 5. MLUTNet: A Neural Network for Memory based
Reconfigurable Logic Device Architecture 61

training dataset to validation dataset is set as 80%:20%. RMSProp optimizer is used
as the optimizer for the experiments. The epochs of the experiments are set to 40. The
initial learning rate is 0.001. The learning rate scheduler is set to exponential decay
mode and cosine annealing mode respectively, the exponential decay mode halves the
learning rate every 10 epochs, the cosine annealing mode period is set to 5, and the
"Warm-up" multiplier parameter is set to 2.

5.3.1 Performance on MNIST series datasets

The experiments conducted on three MNIST series datasets: MNIST [LC10], K-
MNIST [CBIK+18] and fashion MNIST [XRV17]. In these datasets, the contents of
images in datasets are graphics of handwritten numbers, Japanese hiragana characters
from ancient books, and fashion items, respectively. The images are gray-scale images
with the resolution of 28×28. The accuracy convergence process and the corresponding
confusion matrices for each group of experiments are exhibited in Fig.5.4 and Fig.5.5.

By reviewing the experimental results, some conclusions can be revealed. 1) In the
full precision case, MLUTNet exhibits comparable performance to the standard NN
on all three datasets. With enough epochs, the accuracy of the test dataset for each
case converges steadily to approximately the same level. 2) In the binary accuracy
case, MLUTNet has different degrees of performance loss compared to the standard
BNN. It is the largest in KMNIST with 35.3% and the smallest in MNIST with 20.6%.
3) The performance of the decay scheduler is more stable, but Cosine annealing shows
better performance in F-MNIST. The full-accuracy MLUTNet with Cosine annealing
scheduler achieves a lead of about 0.71% over the NN with decay scheduler; the
binary-precision MLUTNet with Cosine annealing scheduler improves the accuracy by
9.03% over using the decay scheduler.

5.3.2 Performance on CIFAR-10 and STL-10 datasets

In the CIFAR-10 dataset, images are divided into 10 categories. Each image is an
RGB image with three color channels and a resolution of 32× 32. And in the STL-10
dataset, the resolution of the images is further improved to 96× 96.

The experimental results on the CIFAR-10 dataset and the STL-10 dataset are shown
in Fig. 5.6. At full precision, the NN and MLUTNet achieve about 57% accuracy on
the CIFAR-10 dataset and about 45% accuracy on the STL-10 dataset, which is a
normal performance for standard structured neural networks. The confusion matrices
are shown in Fig.5.7. However, at binary precision, BNN and binary MLUTNet cannot



Chapter 5. MLUTNet: A Neural Network for Memory based
Reconfigurable Logic Device Architecture 62

0 5 10 15 20 25 30 35
Epochs

0.965

0.970

0.975

0.980

0.985

Ac
cu

ar
cy

NN Decay
NN CosAnnealingWarm
MLUTNet Decay
MLUTNet CosAnnealingWarm

(a) MNIST full-precision

0 5 10 15 20 25 30 35
Epochs

0.84

0.86

0.88

0.90

0.92

0.94

Ac
cu

ar
cy

NN Decay
NN CosAnnealingWarm
MLUTNet Decay
MLUTNet CosAnnealingWarm

(b) KMNIST full-precision

0 5 10 15 20 25 30 35
Epochs

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

Ac
cu
ar
cy

NN Decay
NN CosAnnealingWarm
MLUTNet Decay
MLUTNet CosAnnealingWarm

(c) F-MNIST full-precision

0 5 10 15 20 25 30 35
Epochs

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu
ar
cy

BNN Decay
BNN CosAnnealingWarm
B-MLUTNet Decay
B-MLUTNet CosAnnealingWarm

(d) MNIST binary-precision

0 5 10 15 20 25 30 35
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu
ar
cy BNN Decay

BNN CosAnnealingWarm
B-MLUTNet Decay
B-MLUTNet CosAnnealingWarm

(e) KMNIST binary-precision

0 5 10 15 20 25 30 35
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ar
cy

BNN Decay
BNN CosAnnealingWarm
B-MLUTNet Decay
B-MLUTNet CosAnnealingWarm

(f) F-MNIST binary-precision

Figure 5.4: Performance on MNIST series datasets



Chapter 5. MLUTNet: A Neural Network for Memory based
Reconfigurable Logic Device Architecture 63

(a) MNIST MLUTNet (b) KMNIST MLUTNet

(c) F-MNIST MLUTNet (d) MNIST B-MLUTNet

(e) MNIST B-MLUTNet (f) MNIST B-MLUTNet

Figure 5.5: Confusion matrices of MLUTNet



Chapter 5. MLUTNet: A Neural Network for Memory based
Reconfigurable Logic Device Architecture 64

learn and converge smoothly due to the limited structural complexity.

0 5 10 15 20 25 30 35
Epochs

0.35

0.40

0.45

0.50

0.55

Ac
cu
ar
cy

NN_Decay
NN_CosAnnealing
MLUTNet_Decay
MLUTNet_CosAnnealing

(a) CIFAR-10

0 5 10 15 20 25 30 35 40
Epochs

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

Ac
cu

ar
cy

MLP Decay
MLP CosAnnealingWarm
MLUTNet Decay
MLUTNet CosAnnealingWarm

(b) STL-10

Figure 5.6: Performance on CIFAR-10 and STL-10 dataset

(a) CIFAR-10 MLUTNet (b) STL-10 MLUTNet

Figure 5.7: Performance on CIFAR-10 and STL-10 dataset

5.3.3 Sparsely Connection Verification

We conducted a set of comparative experiments regarding the way neighboring sub-
layers are connected in MLUTNet. In the experiments, MLUTNet and Binary-
MLUTNet are connected according to fully connected and sparsely connected, respec-
tively, and tested under the same dataset, and the results are shown in Fig.5.8.

The fully connected MLUTNet does not show any significant advantage while increasing
the computational effort, while the fully connected B-MLUTNet causes a significant
decrease in accuracy instead. We speculate that this is because the sparsely connected
sub-layers somehow avoids premature overfitting.



Chapter 5. MLUTNet: A Neural Network for Memory based
Reconfigurable Logic Device Architecture 65

0 5 10 15 20 25 30 35
Epochs

0.970

0.975

0.980

0.985

Ac
cu
ar
cy

FC_Decay
FC_CosAnnealingWarm
SC_Decay
SC_CosAnnealingWarm

(a) On MLUTNet

0 5 10 15 20 25 30 35
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu
ar
cy

FC_Decay
FC_CosAnnealingWarm
SC_Decay
SC_CosAnnealingWarm

(b) On Binary MLUTNet

Figure 5.8: Comparison of fully connection and sparsely connection

5.3.4 Results Summary

A summary of the optimal results of different accuracy models under each model is
shown in Tab.5.1. The run-time of models are shown in Fig.5.9.

NN MLUTNet BNN B-MLUTNet
MNIST 0.9877 0.9883 0.9759 0.7693

K-MNIST 0.9347 0.9348 0.909 0.5552
F-MNIST 0.9053 0.9092 0.7909 0.5382
CIFAR-10 0.5813 0.5775 N/A N/A
STL-10 0.4305 0.4186 N/A N/A

Table 5.1: Optimal accuracy performance

On all four datasets, using the results of the standard NN as the baseline, Fig. 5.10
shows the correct rate performance ratio of MLUTNet. The results show that the
final accuracy performance of MLUTNet in full-precision is comparable to that of the
standard NN model, and the size of the former’s weight matrix is about half of that of
the latter; in binary-precision, depending on the dataset, respectively, the accuracy
performance of MLUTNet ranges from 61% to 78.8% of that of the standard BNN
model.

The experimental results demonstrate the effectiveness of MLUTNet. Under full-
precision, MLUTNet achieves comparable performance to standard NN using a smaller
scale weight matrix and fewer inter-layer connections; under binary-precision, MLUT-
Net suffers from the accuracy impact caused by the reduced weight matrix, and the
final accuracy is reduced compared to standard BNN.



Chapter 5. MLUTNet: A Neural Network for Memory based
Reconfigurable Logic Device Architecture 66

Figure 5.9: Models operation time



Chapter 5. MLUTNet: A Neural Network for Memory based
Reconfigurable Logic Device Architecture 67

Figure 5.10: Correct Rate Performance Ratio

5.4 Summary

In this chapter, we propose MLUTNet, an innovative neural network structure, by
combining the structural features of MRLD devices. In MLUTNet, we import and
effectively utilize measures such as binarized weights, scale reduction of the weight
matrix, and sparse connection to significantly reduce the computing expense and
porting cost of the network and maintain a relatively acceptable performance.

The experimental results reveal that MLUTNet achieves essentially equivalent or
slightly better accuracy on test datasets. Moreover, on binary-precision networks,
although cutting the weight matrix brings a greater additional precision impact,
MLUTNet also achieves 78.8%, 61.0%, and 68.0% of the performance of the standard
NN model on the three datasets of the MNIST series, respectively.

In Summary, we have verified the effectiveness of MLUTNet in full-precision on general
datasets, and further improving the performance and stability through optimization
measures will be the focus of our next step. In addition, in this chapter, due to the
limitation of the standard NN’s own structure, it cannot learn and converge smoothly
on the CIFAR-10 dataset with binarization accuracy. Therefore, further extension of
the MLUTNet structure to convolutional neural networks will also be a target of our
future research.



Chapter 6
Conclusion

Overall, with the help of customization of neural networks, appropriate algorithmic
optimization and improvement of the structural adaptation of the networks, this thesis
conducts a study on the reduction of barriers to the implementation of bidirectional
logic within a framework based on the cross-application of MRLD hardware and neural
networks.

To reach this goal, many research and experimental methods have been applied. These
include building networks using programming languages and deep learning frameworks,
constructing learning target logic functions, preprocessing data for training, tuning and
visualization of network parameters, and underlying customization of basic hidden layer
units. Through the research approach as described above, meaningful findings were
derived and demonstrated the effectiveness of neural networks for learning multiple
lookup table logic, the effectiveness of large-size LUT decomposition algorithms for
reducing the complexity of individual LUTs, and the excellent performance of the
hardware-inspired neural network MLUTNet, respectively. Overall, the findings are
able to strongly support the conclusions in the thesis.

The research included in this thesis together form a framework based on MRLD
hardware and neural network learning and implementation, the core components of
which are hardware-aware neural network and a look-up table decomposition algorithm.
with the help of customization of neural network With the help of customization of
the neural network, appropriate algorithmic optimization and improvement of the
structural adaptation of the network, the barrier of bidirectional flow of logic between
the MRLD hardware and the neural network is reduced. This is a new alternative
route for researchers who wish to implement approximate logic at low cost.

In addition to the above stated advantages, the research content and the proposed
results of this thesis also contain the following limitations: (1) In the proposed process
of learning approximate target multiple lookup table logic using neural networks,

68



Chapter 6. Conclusion 69

the selection of the target function is more limited by the continuity of the function
values. (2) In the proposed larger size LUT decomposition algorithm, the maximum
depth of decomposition is very strongly correlated with the internal logic of the LUT,
which leads to significant performance limitations (3) For the hardware- aware neural
network MLUTNet, its performance is similar to that of the standard NN model at
full precision, but significant performance degradation occurs at binarized precision,
and the network structure that mimics the hardware structure is clearly the The
network structure mimicking the hardware structure is obviously the main reason for
this result.

Finally, there are still many issues that need further research. Such as exploring
the learning effect of neural networks on more general discrete logic or even Boolean
functions, thus further lowering the threshold of logic implementation; the extension
and modification of large-size LUT decomposition algorithms to other common logics;
the extension of MLUTNet structure to convolutional neural networks, and whether
MLUTNet based on convolutional neural networks is sufficient to overcome the problem
of degradation of binarization accuracy due to its own specificity. Together, these
issues constitute the goal of further research in the future.



References

[BM10] Robert Brayton and Alan Mishchenko. Abc: An academic industrial-
strength verification tool. In Tayssir Touili, Byron Cook, and Paul
Jackson, editors, Computer Aided Verification, pages 24–40, Berlin,
Heidelberg, 2010. Springer Berlin Heidelberg.

[BVM+19] Maxence Bouvier, Alexandre Valentian, Thomas Mesquida, Francois
Rummens, Marina Reyboz, Elisa Vianello, and Edith Beigne. Spiking
neural networks hardware implementations and challenges. ACM Jour-
nal on Emerging Technologies in Computing Systems, 15(2):1–35, Jun
2019.

[CBIK+18] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb,
Kazuaki Yamamoto, and David Ha. Deep learning for classical japanese
literature, 2018.

[CBM+20] Maurizio Capra, Beatrice Bussolino, Alberto Marchisio, Muhammad
Shafique, Guido Masera, and Maurizio Martina. An updated survey
of efficient hardware architectures for accelerating deep convolutional
neural networks. Future Internet, 12(7), 2020.

[CGCB15] Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Ben-
gio. Gated feedback recurrent neural networks, 2015.

[CHS+16] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv,
and Yoshua Bengio. Binarized neural networks: Training deep neural
networks with weights and activations constrained to +1 or -1, 2016.

[FLJ] A. Karpathy F.F. Li and J. Johnson. Stanford cs class cs231n: Convo-
lutional neural networks for visual recognition.

[Fuk80] K. Fukushima. Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position.
Biological Cybernetics, 36:193–202, 1980.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
MIT Press, 2016. http://www.deeplearningbook.org.

70

http://www.deeplearningbook.org


References 71

[GCK19] Roshan Gopalakrishnan, Yansong Chua, and Ashish Jith Sreejith Ku-
mar. Hardware-friendly neural network architecture for neuromorphic
computing, 2019.

[GDG+15] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende,
and Daan Wierstra. Draw: A recurrent neural network for image
generation, 2015.

[GHS] Nitish Srivastava Geoffrey Hinton and Kevin Swersky. Neural net-
works for machine learning, lecture 6a, overview of mini-batch gradient
descent.

[GMP+11] Vaibhav Gupta, Debabrata Mohapatra, Sang Phill Park, Anand Raghu-
nathan, and Kaushik Roy. Impact: Imprecise adders for low-power
approximate computing. In IEEE/ACM International Symposium on
Low Power Electronics and Design, pages 409–414, 2011.

[HCS+18] Winston Haaswijk, Edo Collins, Benoit Seguin, Mathias Soeken,
Frédéric Kaplan, Sabine Süsstrunk, and Giovanni De Micheli. Deep
learning for logic optimization algorithms. In 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1–4, 2018.

[HHH+21] Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma,
Zhaoyang Shen, Juejian Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong,
Xuefei Ning, Yuzhe Ma, Haoyu Yang, Bei Yu, Huazhong Yang, and
Yu Wang. Machine learning for electronic design automation: A survey,
2021.

[HHSR19] Abdelrahman Hosny, Soheil Hashemi, Mohamed Shalan, and Sherief
Reda. Drills: Deep reinforcement learning for logic synthesis, 2019.

[HLvdMW18] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q.
Weinberger. Densely connected convolutional networks, 2018.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, November 1997.

[HS06] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006.

[HTR18] Soheil Hashemi, Hokchhay Tann, and Sherief Reda. Blasys: Approxi-
mate logic synthesis using boolean matrix factorization. In 2018 55th



References 72

ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6,
2018.

[HZRS15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition, 2015.

[IS15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift, 2015.

[KB17] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization, 2017.

[KGE11] Parag Kulkarni, Puneet Gupta, and Milos Ercegovac. Trading accuracy
for power with an underdesigned multiplier architecture. In 2011 24th
Internatioal Conference on VLSI Design, pages 346–351, 2011.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. In Proceedings
of the 25th International Conference on Neural Information Processing
Systems - Volume 1, NIPS’12, page 1097–1105, Red Hook, NY, USA,
2012. Curran Associates Inc.

[LAH+21] Jinglan Zhang Laith Alzubaidi, Amjad J. Humaidi, et al. Review of
deep learning: concepts, cnn architectures, challenges, applications,
future directions. Journal of Big Data, 8(53), 2021.

[LBBH98] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[LBOM12] Yann A. LeCun, Léon Bottou, Genevieve B. Orr, and Klaus Robert
Müller. Efficient backprop, pages 9–48. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). Springer Verlag, 2012. Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.

[LC10] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
2010.

[LH17] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent
with warm restarts, 2017.



References 73

[NAT+19] Walter Lau Neto, Max Austin, Scott Temple, Luca Amaru, Xifan Tang,
and Pierre-Emmanuel Gaillardon. Lsoracle: a logic synthesis framework
driven by artificial intelligence: Invited paper. In 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages
1–6, 2019.

[NH10] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th International
Conference on International Conference on Machine Learning, ICML’10,
page 807–814, Madison, WI, USA, 2010. Omnipress.

[PNP19] Ghasem Pasandi, Shahin Nazarian, and Massoud Pedram. Approximate
logic synthesis: A reinforcement learning-based technology mapping
approach, 2019.

[PSY+18] Samira Pouyanfar, Saad Sadiq, Yilin Yan, Haiman Tian, Yudong Tao,
Maria Presa Reyes, Mei-Ling Shyu, Shu-Ching Chen, and S. S. Iyengar.
A survey on deep learning: Algorithms, techniques, and applications.
ACM Comput. Surv., 51(5), September 2018.

[QGL+20] Haotong Qin, Ruihao Gong, Xianglong Liu, Xiao Bai, Jingkuan Song,
and Nicu Sebe. Binary neural networks: A survey. Pattern Recognition,
105:107281, 2020.

[Ros58] F. Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review, 65 6:386–
408, 1958.

[RS20] Maithra Raghu and Eric Schmidt. A survey of deep learning for scientific
discovery, 2020.

[SCYE17] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient
processing of deep neural networks: A tutorial and survey. Proceedings
of the IEEE, 105(12):2295–2329, 2017.

[SG10] Doochul Shin and Sandeep K. Gupta. Approximate logic synthesis for
error tolerant applications. In 2010 Design, Automation Test in Europe
Conference Exhibition (DATE 2010), pages 957–960, 2010.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural



References 74

networks from overfitting. Journal of Machine Learning Research,
15(56):1929–1958, 2014.

[SHY20] Jiong Si, Sarah Harris, and Evangelos Yfantis. Neural networks on an
fpga and hardware-friendly activation functions. Journal of Computer
and Communications, 08:251–277, 01 2020.

[SL19] Taylor Simons and Dah-Jye Lee. A review of binarized neural networks.
Electronics (Switzerland), 8(6), 2019.

[SM19] Ajay Shrestha and Ausif Mahmood. Review of deep learning algorithms
and architectures. IEEE Access, 7:53040–53065, 2019.

[SSEM19] Ahmad Shawahna, Sadiq M. Sait, and Aiman El-Maleh. FPGA-Based
accelerators of deep learning networks for learning and classification: A
review. IEEE Access, 7:7823–7859, 2019.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou,
Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai,
Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent
Sifre, George van den Driessche, Thore Graepel, and Demis Hass-
abis. Mastering the game of go without human knowledge. Nature,
550(7676):354–359, Oct 2017.

[STIM18] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander
Mądry. How does batch normalization help optimization? In Proceedings
of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, page 2488–2498, Red Hook, NY, USA, 2018. Curran
Associates Inc.

[SZ15] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition, 2015.

[TGK+19] Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh,
Timothée Masquelier, and Anthony Maida. Deep learning in spiking
neural networks. Neural Networks, 111:47–63, Mar 2019.

[TL20] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling
for convolutional neural networks, 2020.

[Tsa18] Sik-Ho Tsang. Review: Alexnet, caffenet — winner of ilsvrc 2012 (image
classification), 2018.



References 75

[VSK+12] Swagath Venkataramani, Amit Sabne, Vivek Kozhikkottu, Kaushik
Roy, and Anand Raghunathan. Salsa: Systematic logic synthesis of
approximate circuits. In DAC Design Automation Conference 2012,
pages 796–801, 2012.

[Wer74] P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences. PhD thesis, Harvard University, 1974.

[WGDL21] Ran Wu, Xinmin Guo, Jian Du, and Junbao Li. Accelerating neural
network inference on FPGA-based platforms—a survey. Electronics
(Switzerland), 10(9):1–25, 2021.

[WHT+17] Senling Wang, Yoshinobu Higami, Hiroshi Takahashi, Masayuki Sato,
Mitsunori Katsu, and Shoichi Sekiguchi. Testing of interconnect defects
in memory based reconfigurable logic device (mrld). In 2017 IEEE 26th
Asian Test Symposium (ATS), pages 17–22, 2017.

[XGD+17] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.
Aggregated residual transformations for deep neural networks, 2017.

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms, 2017.

[YAL20] Huo Yingge, Imran Ali, and Kang-Yoon Lee. Deep neural networks on
chip - a survey. In 2020 IEEE International Conference on Big Data
and Smart Computing (BigComp), pages 589–592, 2020.

[YLC+16] Shimeng Yu, Zhiwei Li, Pai-Yu Chen, Huaqiang Wu, Bin Gao, Deli
Wang, Wei Wu, and He Qian. Binary neural network with 16 mb
rram macro chip for classification and online training. In 2016 IEEE
International Electron Devices Meeting (IEDM), pages 16.2.1–16.2.4,
2016.

[YN17] Haruyoshi Yonekawa and Hiroki Nakahara. On-chip memory based
binarized convolutional deep neural network applying batch normaliza-
tion free technique on an fpga. In 2017 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages
98–105, 2017.

[YXM19] Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis
flows without human knowledge, 2019.



References 76

[ZSV15] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural
network regularization, 2015.

[ZSZ+17] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau
Lin, Mani Srivastava, Rajesh Gupta, and Zhiru Zhang. Accelerating
binarized convolutional neural networks with software-programmable
fpgas. In Proceedings of the 2017 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, FPGA ’17, page 15–24, New
York, NY, USA, 2017. Association for Computing Machinery.


	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	The Development of Deep Neural Networks
	Deep Learning for Approximate Logic Synthesis
	Neural Networks Implementations on Chip
	Organization of the Thesis

	Preliminary
	Development of Neural Network
	Fundamentals of Neural Network
	Principles
	Activation Functions
	Loss Functions
	Back Propagation based on Gradient Descent

	Convolutional Neural Network
	Convolution Operation
	Convolution Layer
	Pooling Layer
	Typical Convolutional Network Structure

	Binary Neural Network
	Binarized Weight Values
	Back Propagation in Binary Neural Network
	XNOR Operation

	Optimizations of Neural Network
	Learning Rate Scheduler
	Gradient Estimation
	Parameter Initialization
	Batch Normalization
	Regularization
	Sparse Connection
	Residual Learning

	Programmable Logic Device
	Field-Programmable Gate Array
	Look-up Table
	Memory based Reconfigurable Logic Device


	Multiple Look-up Table based Logic Learning by Neural Network
	Problem Description
	Network Construction
	Experiments
	Summary

	Approximate Decomposition of Multiple Look-up Tables under Acceptable Error Tolerance
	Approximate Decomposition for LUT
	Definition of Question
	Overall Decomposition VS Reserved Bit Decomposition
	LUT Decomposition Algorighm

	Experimental Results
	Summary

	MLUTNet: A Neural Network for Memory based Reconfigurable Logic Device Architecture
	introduction
	Motivations and Contributions
	Organization of the chapter

	MLUTNet
	Network Definition
	Training and Connection of MLUTNet

	Experimental Results
	Performance on MNIST series datasets
	Performance on CIFAR-10 and STL-10 datasets
	Sparsely Connection Verification
	Results Summary

	Summary

	Conclusion
	References

